def test_compression_eval_trained(_params, tmp_path):
    p = _params
    args = p['args']
    tc = p['test_config']

    args['mode'] = 'test'
    args['log-dir'] = tmp_path
    args['workers'] = 4
    args['seed'] = 1
    checkpoint_path = os.path.join(args['checkpoint-save-dir'],
                                   tc['checkpoint_name'] + '_best.pth')
    args['resume'] = checkpoint_path
    if 'weights' in args:
        del args['weights']

    reset_context('orig')
    reset_context('quantized_graphs')
    runner = Command(
        create_command_line(get_cli_dict_args(args), tc['sample_type']))
    res = runner.run(timeout=tc['timeout'])
    assert res == 0

    output_path = None
    for root, _, names in os.walk(str(tmp_path)):
        for name in names:
            if 'output' in name:
                output_path = os.path.join(root, name)

    assert os.path.exists(output_path)
    with open(output_path, "r") as f:
        last_line = f.readlines()[-1]
        acc1 = float(re.findall("\\d+\\.\\d+", last_line)[0])
        assert torch.load(checkpoint_path)['best_acc1'] == approx(
            acc1, abs=tc['absolute_tolerance_eval'])
Exemplo n.º 2
0
def test_can_load_quant_algo__with_defaults():
    model = BasicConvTestModel()
    config = get_basic_quantization_config()
    reset_context('orig')
    reset_context('quantized_graphs')
    compression_algo = create_compression_algorithm(deepcopy(model), config)
    assert isinstance(compression_algo, Quantization)
    quant_model = compression_algo.model

    model_conv = get_all_modules_by_type(model, 'Conv2d')
    quant_model_conv = get_all_modules_by_type(
        quant_model.get_nncf_wrapped_module(), 'NNCFConv2d')
    assert len(model_conv) == len(quant_model_conv)

    for module_name in model_conv:
        scope = module_name.split('/')
        scope[-1] = scope[-1].replace('Conv2d', 'NNCFConv2d')
        quant_module_name = '/'.join(scope)
        assert quant_module_name in quant_model_conv

        store = []
        for op in quant_model_conv[quant_module_name].pre_ops.values():
            if isinstance(op, (UpdateInputs, UpdateWeight)) and isinstance(
                    op.operand, SymmetricQuantizer):
                assert op.__class__.__name__ not in store
                store.append(op.__class__.__name__)
        assert UpdateWeight.__name__ in store
Exemplo n.º 3
0
    def test_number_of_nodes_for_module_in_loop__not_input_node(self):
        num_iter = 5
        patch_torch_operators()

        class LoopModule(nn.Module):
            class Inner(nn.Module):
                def forward(self, x):
                    s = F.sigmoid(x)
                    t = F.tanh(x)
                    result = F.sigmoid(x) * t + F.tanh(x) * s
                    return result

                @staticmethod
                def nodes_number():
                    return 7

            def __init__(self):
                super().__init__()
                self.inner = self.Inner()

            def forward(self, x):
                for _ in range(num_iter):
                    x = self.inner(F.relu(x))
                return x

            def nodes_number(self):
                return self.inner.nodes_number() + num_iter

        test_module = LoopModule()
        reset_context('test')
        with context('test') as ctx:
            _ = test_module(torch.zeros(1))
            assert ctx.graph.get_nodes_count() == test_module.nodes_number()
Exemplo n.º 4
0
def test_compression_train(_params, tmp_path):
    p = _params
    args = p['args']
    tc = p['test_config']

    args['mode'] = 'train'
    args['log-dir'] = tmp_path
    args['workers'] = 4
    args['seed'] = 1

    reset_context('orig')
    reset_context('quantized_graphs')
    runner = Command(
        create_command_line(get_cli_dict_args(args), tc['sample_type']))
    res = runner.run(timeout=tc['timeout'])

    assert res == 0
    checkpoint_path = os.path.join(args['checkpoint-save-dir'],
                                   tc['checkpoint_name'] + '_best.pth')
    assert os.path.exists(checkpoint_path)
    actual_acc = torch.load(checkpoint_path)['best_acc1']
    ref_acc = tc['expected_accuracy']
    better_accuracy_tolerance = 3
    tolerance = tc[
        'absolute_tolerance_train'] if actual_acc < ref_acc else better_accuracy_tolerance
    assert actual_acc == approx(ref_acc, abs=tolerance)
Exemplo n.º 5
0
def test_export_stacked_bi_lstm(tmp_path):
    p = LSTMTestSizes(3, 3, 3, 3)
    patch_torch_operators()
    config = get_empty_config(input_sample_size=(1, p.hidden_size,
                                                 p.input_size))
    config['compression'] = {'algorithm': 'quantization'}

    config.log_dir = str(tmp_path)
    reset_context('orig')
    reset_context('quantized_graphs')
    # TODO: batch_first=True fails with building graph: ambiguous call to mul or sigmoid
    test_rnn = NNCF_RNN('LSTM',
                        input_size=p.input_size,
                        hidden_size=p.hidden_size,
                        num_layers=2,
                        bidirectional=True,
                        batch_first=False)
    algo, model = create_compressed_model(test_rnn, config)

    test_path = str(tmp_path.joinpath('test.onnx'))
    algo.export_model(test_path)
    assert os.path.exists(test_path)

    onnx_num = 0
    model = onnx.load(test_path)
    # pylint: disable=no-member
    for node in model.graph.node:
        if node.op_type == 'FakeQuantize':
            onnx_num += 1
    assert onnx_num == 54
def test_loaded_model_evals_according_to_saved_acc(_params, tmp_path):
    p = _params
    config_path = p['nncf_config_path']
    checkpoint_path = p['checkpoint_path']

    tmp_path = str(tmp_path)
    args = {}
    args['data'] = tmp_path + '/' + p['dataset']
    args['dataset'] = p['dataset']
    args['config'] = str(config_path)
    args['mode'] = 'test'
    args['log-dir'] = tmp_path
    args['workers'] = 4
    args['seed'] = 1
    args['resume'] = checkpoint_path

    if p['execution_mode'] == ExecutionMode.MULTIPROCESSING_DISTRIBUTED:
        args['multiprocessing-distributed'] = ''
    else:
        pytest.skip("DataParallel eval takes too long for this test to be run during pre-commit")

    reset_context('orig')
    reset_context('quantized_graphs')
    runner = Command(create_command_line(get_cli_dict_args(args), "classification"))
    res = runner.run()
    assert res == 0

    acc1 = parse_best_acc1(tmp_path)
    assert torch.load(checkpoint_path)['best_acc1'] == pytest.approx(acc1)
def test_quantize_has_proper_is_weights_flag():
    class Model(nn.Module):
        def __init__(self, size=1):
            super().__init__()
            self.size = size
            self.conv = nn.Conv2d(size, size, size)

        def forward(self, x):
            return self.conv(x)

    model = Model()
    reset_context('orig')
    reset_context('quantized_graphs')

    quant_model = QuantizedNetwork(model,
                                   create_quantize_module,
                                   inputs_shape=(1, 1, 2, 2),
                                   dummy_forward_fn=create_dummy_forward_fn(
                                       (1, 1, 2, 2)))
    for module in quant_model.modules():
        if isinstance(module, NNCFConv2d):
            for op in module.pre_ops.values():
                assert isinstance(op, (UpdateWeight, UpdateInputs))
                assert op.operand.is_weights is isinstance(op, UpdateWeight)
    for _, aq in quant_model.activation_quantizers.items():
        assert aq.is_weights is False
Exemplo n.º 8
0
def test_quantization_configs__custom():
    model = BasicConvTestModel()

    config = get_basic_quantization_config()
    config['compression'].update({
        "weights": {
            "mode": "asymmetric",
            "per_channel": True,
            "signed": False,
            "bits": 4
        },
        "activations": {
            "mode": "asymmetric",
            "bits": 4,
            "signed": True,
        },
    })
    reset_context('orig')
    reset_context('quantized_graphs')
    compression_algo = create_compression_algorithm(model, config)

    weight_quantizers, activation_quantizers = split_quantizers(
        compression_algo.model)

    ref_weight_qconfig = QuantizerConfig(4, QuantizationMode.ASYMMETRIC, None,
                                         True, None, True)
    for wq in weight_quantizers:
        compare_qconfigs(ref_weight_qconfig, wq.config)

    ref_activation_qconfig = QuantizerConfig(4, QuantizationMode.ASYMMETRIC,
                                             True, False, None, False)
    for wq in activation_quantizers:
        compare_qconfigs(ref_activation_qconfig, wq.config)
Exemplo n.º 9
0
def test_compression_eval_trained(_params, tmp_path):
    p = _params
    args = p['args']
    tc = p['test_config']

    args['mode'] = 'test'
    args['log-dir'] = tmp_path
    args['workers'] = 4
    args['seed'] = 1
    checkpoint_path = os.path.join(args['checkpoint-save-dir'],
                                   tc['checkpoint_name'] + '_best.pth')
    args['resume'] = checkpoint_path
    if 'weights' in args:
        del args['weights']

    reset_context('orig')
    reset_context('quantized_graphs')
    runner = Command(
        create_command_line(get_cli_dict_args(args), tc['sample_type']))
    res = runner.run(timeout=tc['timeout'])
    assert res == 0

    acc1 = parse_best_acc1(tmp_path)
    assert torch.load(checkpoint_path)['best_acc1'] == approx(
        acc1, abs=tc['absolute_tolerance_eval'])
 def test_quantize_network(self, model_name, model_builder, input_size):
     net = model_builder()
     ctx = reset_context('orig')
     ctx = reset_context('quantized_graphs')
     qnet = QuantizedNetwork(net, input_size)
     _ = qnet(torch.zeros(*input_size))
     _ = qnet(torch.zeros(*input_size))
     check_graph(to_networkx(ctx), model_name, 'quantized')
def test_cpu_only_mode_produces_cpu_only_model(config, tmp_path, mocker):
    reset_context('orig')
    reset_context('quantized_graphs')
    c = config

    config_factory = ConfigFactory(config['config'], tmp_path / 'config.json')
    args = {
        "--data": c["dataset_path"],
        "--config": config_factory.serialize(),
        "--log-dir": tmp_path,
        "--batch-size": c["batch_size"] * torch.cuda.device_count(),
        "--workers": 1,
        "--epochs": 1,
        "--cpu-only": None
    }

    command_line = " ".join(key if val is None else "{} {}".format(key, val)
                            for key, val in args.items())

    if config["sample_type"] == "classification":
        import examples.classification.main as sample
        if is_binarization(config['config']):
            mocker.patch(
                "examples.classification.binarization_worker.train_epoch_bin")
            mocker.patch(
                "examples.classification.binarization_worker.validate")
            import examples.classification.binarization_worker as bin_worker
            bin_worker.validate.return_value = (0, 0)
        else:
            mocker.patch("examples.classification.main.train_epoch")
            mocker.patch("examples.classification.main.validate")
            sample.validate.return_value = (0, 0)
    elif config["sample_type"] == "semantic_segmentation":
        import examples.semantic_segmentation.main as sample
        import examples.semantic_segmentation.train
        mocker.spy(examples.semantic_segmentation.train.Train, "__init__")
    elif config["sample_type"] == "object_detection":
        import examples.object_detection.main as sample
        mocker.patch("examples.object_detection.main.train")

    sample.main(shlex.split(command_line))

    # pylint: disable=no-member
    if config["sample_type"] == "classification":
        if is_binarization(config['config']):
            import examples.classification.binarization_worker as bin_worker
            model_to_be_trained = bin_worker.train_epoch_bin.call_args[0][
                2]  # model
        else:
            model_to_be_trained = sample.train_epoch.call_args[0][1]  # model
    elif config["sample_type"] == "semantic_segmentation":
        model_to_be_trained = examples.semantic_segmentation.train.Train.__init__.call_args[
            0][1]  # model
    elif config["sample_type"] == "object_detection":
        model_to_be_trained = sample.train.call_args[0][0]  # net

    for p in model_to_be_trained.parameters():
        assert not p.is_cuda
Exemplo n.º 12
0
    def test_number_of_nodes_for_module_with_nested_loops(self):
        num_iter = 5
        patch_torch_operators()

        class TestIterModule(nn.Module):
            @ITERATION_MODULES.register()
            class TestIterModule_ResetPoint(nn.Module):
                def __init__(self, loop_module):
                    super().__init__()
                    self.loop_module = loop_module

                def forward(self, x):
                    return self.loop_module(F.relu(x))

            def __init__(self):
                super().__init__()
                self.loop_module = self.LoopModule2()
                self.reset_point = self.TestIterModule_ResetPoint(
                    self.loop_module)

            def forward(self, x):
                for _ in range(num_iter):
                    x = self.reset_point(x)
                return x

            class LoopModule2(nn.Module):
                @ITERATION_MODULES.register()
                class LoopModule2_ResetPoint(nn.Module):
                    def __init__(self, inner):
                        super().__init__()
                        self.inner = inner

                    def forward(self, x):
                        return self.inner(F.relu(x))

                def __init__(self):
                    super().__init__()
                    self.inner = self.Inner()
                    self.reset_helper = self.LoopModule2_ResetPoint(self.inner)

                def forward(self, x):
                    for _ in range(num_iter):
                        self.reset_helper(x)
                    return x

                class Inner(nn.Module):
                    def forward(self, x):
                        s = F.sigmoid(x)
                        t = F.tanh(x)
                        result = t + s
                        return result

        test_module = TestIterModule()
        reset_context('test')
        with context('test') as ctx:
            _ = test_module(torch.zeros(1))
            assert ctx.graph.get_nodes_count() == num_iter
 def test_quantize_network(self, model_name, model_builder, input_size, _quantize_config):
     net = model_builder()
     ctx = reset_context('orig')
     ctx = reset_context('quantized_graphs')
     qnet = QuantizedNetwork(net, _quantize_config.quantizer, input_size,
                             dummy_forward_fn=create_dummy_forward_fn(input_size))
     _ = qnet(torch.zeros(*input_size))
     _ = qnet(torch.zeros(*input_size))
     check_graph(to_networkx(ctx), model_name, _quantize_config.graph_dir)
def test_resnet18__with_qinput():
    net = test_models.ResNet18()
    ctx = reset_context('orig')
    ctx = reset_context('quantized_graphs')
    input_shape = (1, 3, 32, 32)
    qnet = QuantizedNetwork(net, input_shape, quantize_inputs=True)
    _ = qnet(torch.zeros(*input_shape))
    _ = qnet(torch.zeros(*input_shape))

    check_graph(to_networkx(ctx), 'resnet18_qinput.dot', 'quantized')
Exemplo n.º 15
0
 def test_quantize_network(self, model_name, model_builder, forward_fn_, _quantize_config):
     net = model_builder()
     ctx = reset_context('orig')
     ctx = reset_context('quantized_graphs')
     qnet = QuantizedNetwork(net, _quantize_config.quantizer,
                             input_infos=[ModelInputInfo(forward_fn_.keywords["input_size_"]), ],
                             dummy_forward_fn=forward_fn_)
     qnet.to(self.device)
     forward_fn_(qnet)
     forward_fn_(qnet)
     check_graph(ctx.graph, model_name, _quantize_config.graph_dir)
Exemplo n.º 16
0
def test_output_quantization(_quantize_config):
    net = test_models.UNet()
    ctx = reset_context('orig')
    ctx = reset_context('quantized_graphs')
    input_shape = (1, 3, 360, 480)
    qnet = QuantizedNetwork(net, _quantize_config.quantizer, [ModelInputInfo(input_shape), ],
                            quantize_outputs=True)
    _ = qnet(torch.zeros(*input_shape))
    _ = qnet(torch.zeros(*input_shape))

    check_graph(ctx.graph, 'unet_qoutput.dot', _quantize_config.graph_dir)
Exemplo n.º 17
0
def test_resnet18__with_ignore(_quantize_config):
    net = test_models.ResNet18()
    ctx = reset_context('orig')
    ctx = reset_context('quantized_graphs')
    input_shape = (1, 3, 32, 32)
    qnet = QuantizedNetwork(net, _quantize_config.quantizer, [ModelInputInfo(input_shape), ],
                            ignored_scopes=['ResNet/Sequential[layer3]'])
    _ = qnet(torch.zeros(*input_shape))
    _ = qnet(torch.zeros(*input_shape))

    check_graph(ctx.graph, 'resnet18_ignore.dot', _quantize_config.graph_dir)
Exemplo n.º 18
0
def test_resnet18__with_not_qinput(_quantize_config):
    net = test_models.ResNet18()
    ctx = reset_context('orig')
    ctx = reset_context('quantized_graphs')
    input_shape = (1, 3, 32, 32)
    qnet = QuantizedNetwork(net, _quantize_config.quantizer, [ModelInputInfo(input_shape), ],
                            quantize_inputs=False)
    _ = qnet(torch.zeros(*input_shape))
    _ = qnet(torch.zeros(*input_shape))

    check_graph(ctx.graph, 'resnet18_no_qinput.dot', _quantize_config.graph_dir)
def test_resnet18__with_ignore(_quantize_config):
    net = test_models.ResNet18()
    ctx = reset_context('orig')
    ctx = reset_context('quantized_graphs')
    input_shape = (1, 3, 32, 32)
    qnet = QuantizedNetwork(net, _quantize_config.quantizer, input_shape,
                            dummy_forward_fn=create_dummy_forward_fn(input_shape),
                            ignored_scopes=['ResNet/Sequential[layer3]'])
    _ = qnet(torch.zeros(*input_shape))
    _ = qnet(torch.zeros(*input_shape))

    check_graph(to_networkx(ctx), 'resnet18_ignore.dot', _quantize_config.graph_dir)
def test_resnet18__with_ignore():
    net = test_models.ResNet18()
    ctx = reset_context('orig')
    ctx = reset_context('quantized_graphs')
    input_shape = (1, 3, 32, 32)
    qnet = QuantizedNetwork(net,
                            input_shape,
                            ignored_scopes=['ResNet/Sequential[layer3]'])
    _ = qnet(torch.zeros(*input_shape))
    _ = qnet(torch.zeros(*input_shape))

    check_graph(to_networkx(ctx), 'resnet18_ignore.dot', 'quantized')
def test_output_quantization(_quantize_config):
    net = test_models.UNet()
    ctx = reset_context('orig')
    ctx = reset_context('quantized_graphs')
    input_shape = (1, 3, 360, 480)
    qnet = QuantizedNetwork(net, _quantize_config.quantizer, input_shape,
                            dummy_forward_fn=create_dummy_forward_fn(input_shape),
                            quantize_outputs=True)
    _ = qnet(torch.zeros(*input_shape))
    _ = qnet(torch.zeros(*input_shape))

    check_graph(to_networkx(ctx), 'unet_qoutput.dot', _quantize_config.graph_dir)
def test_resnet18__with_not_qinput(_quantize_config):
    net = test_models.ResNet18()
    ctx = reset_context('orig')
    ctx = reset_context('quantized_graphs')
    input_shape = (1, 3, 32, 32)
    qnet = QuantizedNetwork(net, _quantize_config.quantizer, input_shape,
                            dummy_forward_fn=create_dummy_forward_fn(input_shape),
                            quantize_inputs=False)
    _ = qnet(torch.zeros(*input_shape))
    _ = qnet(torch.zeros(*input_shape))

    check_graph(to_networkx(ctx), 'resnet18_no_qinput.dot', _quantize_config.graph_dir)
Exemplo n.º 23
0
def test_scale_and_sign_init_for_quant_algo():
    model = TwoConvTestModel()

    config = get_empty_config()
    config['compression'] = {
        'algorithm': 'quantization',
        'initializer': {
            'num_init_steps': 1
        }
    }

    reset_context('orig')
    reset_context('quantized_graphs')
    compression_algo = create_compression_algorithm(model, config)
    model = compression_algo.model

    input_sample_size = config.input_sample_size

    class OnesDatasetMock:
        def __init__(self, input_size):
            self.input_size = input_size
            super().__init__()

        def __getitem__(self, index):
            return torch.ones(self.input_size), torch.ones(1)

        def __len__(self):
            return 1

    data_loader = torch.utils.data.DataLoader(OnesDatasetMock(
        input_sample_size[1:]),
                                              batch_size=1,
                                              num_workers=1,
                                              shuffle=False)
    compression_algo.initialize(data_loader)

    model_conv = get_all_modules_by_type(model, 'Quantize')
    ref_table = {
        '.*Sequential\\[0\\].*UpdateWeight.*': (True, 1),
        '.*Sequential\\[1\\].*UpdateWeight. *': (False, 1),
        '.*activation_quantizers.*Sequential\\[0\\].*': (True, 4),
        '.*activation_quantizers.*Sequential\\[1\\].*': (True, 24)
    }
    for name, module in model_conv.items():
        for pattern, ref_values in ref_table.items():
            match = re.search(pattern, name)
            if match:
                assert isinstance(module, Quantize)
                assert module.signed == ref_values[
                    0], 'sign is not matched for {}'.format(name)
                assert module.scale == ref_values[
                    1], 'scale is not matched for {}'.format(name)
Exemplo n.º 24
0
def activation_quantizers_dumping_worker(current_gpu, config, tmp_path):
    model = resnet50(pretrained=False)

    reset_context('orig')
    reset_context('quantized_graphs')

    algo = create_compression_algorithm(model, config)
    model = algo.model
    path = get_path_to_keys(tmp_path, current_gpu)
    print(path)
    with open(path, 'w') as f:
        f.writelines("%s\n" % key
                     for key in model.activation_quantizers.keys())
Exemplo n.º 25
0
def test_can_create_quant_loss_and_scheduler():
    model = BasicConvTestModel()

    config = get_basic_quantization_config()
    reset_context('orig')
    reset_context('quantized_graphs')
    compression_algo = create_compression_algorithm(model, config)

    loss = compression_algo.loss
    assert isinstance(loss, CompressionLoss)

    scheduler = compression_algo.scheduler
    assert isinstance(scheduler, CompressionScheduler)
Exemplo n.º 26
0
def test_custom_quantizable_subgraph_patterns(_quantize_config):
    net = test_models.SENet18()
    ctx = reset_context('orig')
    ctx = reset_context('quantized_graphs')
    input_shape = (1, 3, 32, 32)
    qnet = QuantizedNetwork(net, _quantize_config.quantizer, [ModelInputInfo(input_shape), ],
                            quantize_outputs=False,
                            quantizable_subgraph_patterns=(("sigmoid", "__mul__"),
                                                           ("__iadd__", "batch_norm")))
    _ = qnet(torch.zeros(*input_shape))
    _ = qnet(torch.zeros(*input_shape))

    check_graph(ctx.graph, 'senet_custom_patterns.dot', _quantize_config.graph_dir)
Exemplo n.º 27
0
def test_can_restore_binary_mask_on_magnitude_quant_algo_resume():
    config = get_empty_config()
    config["compression"] = [
        {"algorithm": "magnitude_sparsity", "weight_importance": "abs",
         "params": {"schedule": "multistep", "sparsity_levels": [0.3, 0.5]}},
        {"algorithm": "quantization"}]
    reset_context('orig')
    reset_context('quantized_graphs')
    magnitude_quant_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    # load_state doesn't support CPU + Quantization
    sparse_model = torch.nn.DataParallel(magnitude_quant_algo.model)
    sparse_model.cuda()
    with torch.no_grad():
        sparse_model(torch.ones([1, 1, 10, 10]))

    reset_context('orig')
    reset_context('quantized_graphs')
    config = get_empty_config()
    config["compression"] = [{"algorithm": "const_sparsity"}, {"algorithm": "quantization"}]
    const_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    const_sparse_model = const_algo.model

    load_state(const_sparse_model, sparse_model.state_dict())

    op = const_sparse_model.module.conv1.pre_ops['0']
    check_equal(ref_mask_1, op.operand.binary_mask)

    op = const_sparse_model.module.conv2.pre_ops['0']
    check_equal(ref_mask_2, op.operand.binary_mask)
def test_ambiguous_function():
    class Model(nn.Module):
        def __init__(self):
            super().__init__()
            self.layers = nn.ModuleList(
                [nn.Conv2d(1, 1, 1), nn.Conv2d(1, 1, 1)])

        def forward(self, x):
            for layer in self.layers:
                x = F.relu(layer(x))

    reset_context('orig')
    reset_context('quantized_graphs')
    mod = Model()
    QuantizedNetwork(mod, inputs_shape=(1, 1, 1, 1))
    def test_build_graph(self, model_name, model_builder, input_size):
        net = model_builder()
        ctx = reset_context('test')
        with context('test') as c:
            _ = net(torch.zeros(input_size))
            c.reset_scope_operator_call_counters()
            _ = net(torch.zeros(input_size))

        check_graph(to_networkx(ctx), model_name, 'original')
Exemplo n.º 30
0
def test_quantization_configs__with_defaults():
    model = BasicConvTestModel()
    config = get_basic_quantization_config()
    reset_context('orig')
    reset_context('quantized_graphs')
    compression_algo = create_compression_algorithm(deepcopy(model), config)

    weight_quantizers, activation_quantizers = split_quantizers(
        compression_algo.model)

    ref_weight_qconfig = QuantizerConfig(8, QuantizationMode.SYMMETRIC, None,
                                         False, None, True)
    for wq in weight_quantizers:
        compare_qconfigs(ref_weight_qconfig, wq.config)

    ref_activation_qconfig = QuantizerConfig(8, QuantizationMode.SYMMETRIC,
                                             None, False, None, False)
    for wq in activation_quantizers:
        compare_qconfigs(ref_activation_qconfig, wq.config)