Exemplo n.º 1
0
def test_disable_shape_matching():
    class MatMulModel(nn.Module):
        def __init__(self):
            super().__init__()
            self.dummy_param = torch.nn.Parameter(torch.ones([1]))

        def forward(self, inputs):
            half1, half2 = torch.chunk(inputs, 2, dim=2)
            return torch.bmm(half1, half2.transpose(1, 2))

    model = MatMulModel()

    input_shape_1 = (3, 32, 32)
    input_shape_2 = (4, 64, 64)

    qnet_no_shape = NNCFNetwork(deepcopy(model), input_infos=[ModelInputInfo(input_shape_1), ],
                                scopes_without_shape_matching=['MatMulModel'])  # type: NNCFNetwork

    context = qnet_no_shape.get_tracing_context()
    context.enable_trace_dynamic_graph()
    _ = qnet_no_shape(torch.zeros(*input_shape_1))
    graph_1 = deepcopy(qnet_no_shape.get_dynamic_graph())

    _ = qnet_no_shape(torch.zeros(*input_shape_2))
    graph_2 = deepcopy(qnet_no_shape.get_dynamic_graph())

    assert graph_1 == graph_2

    nodes_1 = list(graph_1.get_all_nodes())
    assert len(nodes_1) == 5  # 1 input node + 1 chunk + 1 transpose + 1 matmul + 1 output node

    qnet = NNCFNetwork(model, input_infos=[ModelInputInfo(input_shape_1), ])  # type: NNCFNetwork
    context = qnet.get_tracing_context()
    context.enable_trace_dynamic_graph()
    _ = qnet(torch.zeros(*input_shape_1))
    _ = qnet(torch.zeros(*input_shape_2))
    # The second forward run should have led to an increase in registered node counts
    # since disable_shape_matching was False and the network was run with a different
    # shape of input tensor
    assert qnet.get_dynamic_graph().get_nodes_count() > graph_1.get_nodes_count()
Exemplo n.º 2
0
def create_compressed_model(model: Module,
                            config: NNCFConfig,
                            compression_state: Optional[Dict[str, Any]] = None,
                            dummy_forward_fn: Callable[[Module], Any] = None,
                            wrap_inputs_fn: Callable[[Tuple, Dict], Tuple[Tuple, Dict]] = None,
                            wrap_outputs_fn: Callable[[Tuple, Dict], Tuple[Tuple, Dict]] = None,
                            dump_graphs=True) \
        -> Tuple[CompressionAlgorithmController, NNCFNetwork]:
    """
    The main function used to produce a model ready for compression fine-tuning from an original PyTorch
    model and a configuration object.
    dummy_forward_fn
    :param model: The original model. Should have its parameters already loaded from a checkpoint or another
    source.
    :param config: A configuration object used to determine the exact compression modifications to be applied
    to the model
    :param compression_state: representation of the entire compression state to unambiguously restore
    the compressed model. Includes builder and controller states.
    :param dummy_forward_fn: if supplied, will be used instead of a *forward* function call to build
    the internal graph representation via tracing. Specifying this is useful when the original training pipeline
    has special formats of data loader output or has additional *forward* arguments other than input tensors.
    Otherwise, the *forward* call of the model during graph tracing will be made with mock tensors according
    to the shape specified in the config object. The dummy_forward_fn code MUST contain calls to nncf.nncf_model_input
    functions made with each compressed model input tensor in the underlying model's args/kwargs tuple, and these
    calls should be exactly the same as in the wrap_inputs_fn function code (see below); if dummy_forward_fn is
    specified, then wrap_inputs_fn also must be specified.
    :param wrap_inputs_fn: if supplied, will be used on the module's input arguments during a regular, non-dummy
    forward call before passing the inputs to the underlying compressed model. This is required if the model's input
    tensors that are important for compression are not supplied as arguments to the model's forward call directly, but
    instead are located in a container (such as list), and the model receives the container as an argument.
    wrap_inputs_fn should take as input two arguments - the tuple of positional arguments to the underlying
    model's forward call, and a dict of keyword arguments to the same. The function should wrap each tensor among the
    supplied model's args and kwargs that is important for compression (e.g. quantization) with an nncf.nncf_model_input
    function, which is a no-operation function and marks the tensors as inputs to be traced by NNCF in the internal
    graph representation. Output is the tuple of (args, kwargs), where args and kwargs are the same as were supplied in
    input, but each tensor in the original input. Must be specified if dummy_forward_fn is specified.
    :param dump_graphs: Whether or not should also dump the internal graph representation of the
    original and compressed models in the .dot format into the log directory.
    :return: A controller for the compression algorithm (or algorithms, in which case the controller
    is an instance of CompositeCompressionController) and the model ready for compression parameter training wrapped
    as an object of NNCFNetwork."""

    if dummy_forward_fn is not None and wrap_inputs_fn is None:
        raise ValueError(
            "A custom dummy forward function was specified, but the corresponding input wrapping function "
            "was not. In case a custom dummy forward function is specified for purposes of NNCF graph "
            "building, then the wrap_inputs_fn parameter MUST also be specified and be consistent with "
            "the input wrapping done in dummy_forward_fn.")

    is_legacy_model_state_dict = compression_state is not None and \
                                 BaseController.BUILDER_STATE not in compression_state and \
                                 BaseController.CONTROLLER_STATE not in compression_state
    maybe_convert_legacy_names_in_compress_state(compression_state)
    # Compress model that will be deployed for the inference on target device. No need to compress parts of the
    # model that are used on training stage only (e.g. AuxLogits of Inception-v3 model) or unused modules with weights.
    # As a consequence, no need to care about spoiling BN statistics, as there're disabled in eval mode.
    model.eval()

    if dump_graphs:
        if dummy_forward_fn is None:
            input_info_list = create_input_infos(config)
            graph_builder = GraphBuilder(
                custom_forward_fn=create_dummy_forward_fn(
                    input_info_list, with_input_tracing=True))
        else:
            graph_builder = GraphBuilder(custom_forward_fn=dummy_forward_fn)

        if is_main_process():
            graph = graph_builder.build_graph(model)
            graph.visualize_graph(
                osp.join(config.get("log_dir", "."), "original_graph.dot"))

    set_debug_log_dir(config.get("log_dir", "."))

    input_info_list = create_input_infos(config)
    scopes_without_shape_matching = config.get('scopes_without_shape_matching',
                                               [])
    ignored_scopes = config.get('ignored_scopes')
    target_scopes = config.get('target_scopes')

    original_model_accuracy = None
    if is_accuracy_aware_training(config):
        if config.has_extra_struct(ModelEvaluationArgs):
            evaluation_args = config.get_extra_struct(ModelEvaluationArgs)
            with torch.no_grad():
                original_model_accuracy = evaluation_args.eval_fn(model)
                nncf_logger.info("Non-compressed model accuracy = {}".format(
                    original_model_accuracy))

    compressed_model = NNCFNetwork(
        model,
        input_infos=input_info_list,
        dummy_forward_fn=dummy_forward_fn,
        wrap_inputs_fn=wrap_inputs_fn,
        wrap_outputs_fn=wrap_outputs_fn,
        ignored_scopes=ignored_scopes,
        target_scopes=target_scopes,
        scopes_without_shape_matching=scopes_without_shape_matching,
        original_model_accuracy=original_model_accuracy)

    should_init = compression_state is None

    builder = create_compression_algorithm_builder(config, should_init)
    is_state_loadable = not is_legacy_model_state_dict and compression_state is not None
    if is_state_loadable:
        builder.load_state(compression_state[BaseController.BUILDER_STATE])

    builder.apply_to(compressed_model)
    compression_ctrl = builder.build_controller(compressed_model)
    if is_state_loadable:
        compression_ctrl.load_state(
            compression_state[BaseController.CONTROLLER_STATE])

    # Required to ensure that the model leaving create_compressed_model has correct compressed graph.
    # In particular, this is currently required for correct functioning of RNNs.
    compressed_model.rebuild_graph()

    try:
        if is_legacy_model_state_dict:
            from nncf.torch import load_state
            state_dict_to_load = compression_state.get('state_dict',
                                                       compression_state)
            load_state(compressed_model, state_dict_to_load, is_resume=True)
    finally:
        if dump_graphs and is_main_process():
            compressed_model_graph = compressed_model.get_graph()
            compressed_model_graph.visualize_graph(
                osp.join(config.get("log_dir", "."), "compressed_graph.dot"))

    # Synchronize all processes if run in distributed mode
    if is_dist_avail_and_initialized():
        try:
            barrier()
        # Exception can be raised during running barrier
        # if the backend not in the supported list https://pytorch.org/docs/stable/distributed.html
        except RuntimeError as err:
            nncf_logger.warning(err)
            nncf_logger.warning(
                "NNCF continues work, while does not guarantee that "
                "the processes will finish model's compression at the same time. "
                "If your training pipeline demands the processes be synchronized, please, "
                "keep attention to that error")
            return compression_ctrl, compressed_model
    compressed_model.get_tracing_context().disable_trace_dynamic_graph()
    return compression_ctrl, compressed_model
Exemplo n.º 3
0
class TestInsertionCommands:
    @pytest.fixture()
    def setup(self):
        self.compressed_model = NNCFNetwork(InsertionPointTestModel(),
                                            [ModelInputInfo([1, 1, 10, 10])])  # type: NNCFNetwork

    conv1_node_name = 'InsertionPointTestModel/NNCFConv2d[conv1]/conv2d_0'
    point_for_conv1_weights = PTTargetPoint(target_type=TargetType.OPERATION_WITH_WEIGHTS,
                                            target_node_name=conv1_node_name)
    point_for_conv1_inputs = PTTargetPoint(target_type=TargetType.OPERATOR_PRE_HOOK,
                                           target_node_name=conv1_node_name)
    point_for_conv1_activations = PTTargetPoint(target_type=TargetType.POST_LAYER_OPERATION,
                                                target_node_name=conv1_node_name)

    conv2_node_name = 'InsertionPointTestModel/NNCFConv2d[conv2]/conv2d_0'
    point_for_conv2_weights = PTTargetPoint(target_type=TargetType.OPERATION_WITH_WEIGHTS,
                                            target_node_name=conv2_node_name)
    point_for_conv2_inputs = PTTargetPoint(target_type=TargetType.OPERATOR_PRE_HOOK,
                                           target_node_name=conv2_node_name)
    point_for_conv2_activations = PTTargetPoint(target_type=TargetType.POST_LAYER_OPERATION,
                                                target_node_name=conv2_node_name)

    linear_node_name = 'InsertionPointTestModel/linear_0'
    point_for_linear_weight_input = PTTargetPoint(target_type=TargetType.OPERATOR_PRE_HOOK,
                                                  target_node_name=linear_node_name, input_port_id=0)
    point_for_linear_activation = PTTargetPoint(target_type=TargetType.OPERATOR_POST_HOOK,
                                                target_node_name=linear_node_name)

    relu_node_name = 'InsertionPointTestModel/ReLU[relu]/relu_0'
    point_for_relu_inputs = PTTargetPoint(target_type=TargetType.OPERATOR_PRE_HOOK,
                                          target_node_name=relu_node_name, input_port_id=0)
    point_for_relu_activations = PTTargetPoint(target_type=TargetType.OPERATOR_POST_HOOK,
                                               target_node_name=relu_node_name)

    available_points = [point_for_conv1_weights,
                        point_for_conv2_weights,
                        point_for_conv1_inputs,
                        point_for_conv2_inputs,
                        point_for_conv1_activations,
                        point_for_conv2_activations,
                        point_for_linear_activation,
                        point_for_linear_weight_input,
                        point_for_relu_activations,
                        point_for_relu_inputs]

    @pytest.mark.parametrize("target_point", available_points)
    def test_single_insertions(self, setup, target_point: PTTargetPoint):
        insertion_point = PTInsertionPoint(target_point.target_type,
                                           OperationAddress.from_str(target_point.target_node_name),
                                           target_point.input_port_id)
        if insertion_point.insertion_type in [PTInsertionType.OPERATOR_PRE_HOOK, PTInsertionType.OPERATOR_POST_HOOK]:
            hook = lambda x: x
        else:
            hook = BaseOp(lambda x: x)

        self.compressed_model.insert_at_point(insertion_point, [hook])

        # pylint:disable=protected-access
        if insertion_point.insertion_type == PTInsertionType.OPERATOR_PRE_HOOK:
            ctx = self.compressed_model.get_tracing_context()
            pre_hook_id = PreHookId(insertion_point.op_address, input_port_id=insertion_point.input_port_id)
            assert ctx._pre_hooks[pre_hook_id][0] is hook
        if insertion_point.insertion_type == PTInsertionType.OPERATOR_POST_HOOK:
            ctx = self.compressed_model.get_tracing_context()
            assert ctx._post_hooks[insertion_point.op_address][0] is hook
        if insertion_point.insertion_type == PTInsertionType.NNCF_MODULE_PRE_OP:
            module = self.compressed_model.get_module_by_scope(insertion_point.module_scope)
            assert module.pre_ops["0"] is hook

        if insertion_point.insertion_type == PTInsertionType.NNCF_MODULE_POST_OP:
            module = self.compressed_model.get_module_by_scope(insertion_point.module_scope)
            assert module.post_ops["0"] is hook

    priority_types = ["same", "different"]
    insertion_types = TargetType
    priority_test_cases = list(itertools.product(priority_types, insertion_types))

    @staticmethod
    def check_order(iterable1: List, iterable2: List, ordering: List):
        for idx, order in enumerate(ordering):
            assert iterable1[idx] is iterable2[order]

    # pylint:disable=undefined-variable
    @pytest.mark.parametrize("case", priority_test_cases, ids=[x[1].name + '-' + x[0] for x in priority_test_cases])
    def test_priority(self, case, setup):
        # pylint:disable=too-many-branches
        priority_type = case[0]
        insertion_type = case[1]
        if insertion_type in [TargetType.OPERATION_WITH_WEIGHTS, TargetType.POST_LAYER_OPERATION]:
            hook1 = BaseOp(lambda x: x)
            hook2 = BaseOp(lambda x: 2 * x)
            hook3 = BaseOp(lambda x: 3 * x)
        else:
            hook1 = lambda x: x
            hook2 = lambda x: 2 * x
            hook3 = lambda x: 3 * x

        if insertion_type == TargetType.OPERATION_WITH_WEIGHTS:
            point = self.point_for_conv2_weights
        elif insertion_type == TargetType.POST_LAYER_OPERATION:
            point = self.point_for_conv1_activations
        elif insertion_type == TargetType.OPERATOR_PRE_HOOK:
            point = self.point_for_linear_weight_input
        elif insertion_type == TargetType.OPERATOR_POST_HOOK:
            point = self.point_for_relu_activations
        else:
            pytest.skip("Insertion type {} currently unsupported in PT".format(insertion_type))

        if priority_type == "same":
            # Same-priority commands will be executed in registration order
            command1 = PTInsertionCommand(point, hook1, TransformationPriority.DEFAULT_PRIORITY)
            command2 = PTInsertionCommand(point, hook2, TransformationPriority.DEFAULT_PRIORITY)
            command3 = PTInsertionCommand(point, hook3, TransformationPriority.DEFAULT_PRIORITY)
        else:
            # Prioritized commands will be executed in ascending priority order
            command1 = PTInsertionCommand(point, hook1, TransformationPriority.SPARSIFICATION_PRIORITY)
            command2 = PTInsertionCommand(point, hook2, TransformationPriority.QUANTIZATION_PRIORITY)
            command3 = PTInsertionCommand(point, hook3, TransformationPriority.DEFAULT_PRIORITY)

        layout = PTTransformationLayout()
        layout.register(command1)
        layout.register(command2)
        layout.register(command3)
        self.compressed_model = PTModelTransformer(self.compressed_model).transform(layout)

        hook_list = [hook1, hook2, hook3]

        if priority_type == "same":
            order = [0, 1, 2]
        elif priority_type == "different":
            order = [2, 0, 1]

        # pylint:disable=protected-access
        if insertion_type == TargetType.OPERATOR_PRE_HOOK:
            ctx = self.compressed_model.get_tracing_context()
            pre_hook_id = PreHookId(OperationAddress.from_str(point.target_node_name),
                                    input_port_id=point.input_port_id)
            self.check_order(ctx._pre_hooks[pre_hook_id], hook_list, order)
        if insertion_type == TargetType.OPERATOR_POST_HOOK:
            ctx = self.compressed_model.get_tracing_context()
            self.check_order(ctx._post_hooks[OperationAddress.from_str(point.target_node_name)],
                             hook_list, order)

        if insertion_type == TargetType.OPERATION_WITH_WEIGHTS:
            module = self.compressed_model.get_containing_module(point.target_node_name)
            # Works because Pytorch ModuleDict is ordered
            self.check_order([x.operand for x in module.pre_ops.values()], hook_list, order)

        if insertion_type == TargetType.POST_LAYER_OPERATION:
            module = self.compressed_model.get_containing_module(point.target_node_name)
            # Works because Pytorch ModuleDict is ordered
            self.check_order(list(module.post_ops.values()), hook_list, order)