Exemplo n.º 1
0
def save_metric_output(scores, curves, base_dir, name):
    """
    Helper function to save output of the function in a nice format
    """
    scores_string = {str(key): str(item) for key, item in scores.items()}

    save_json(scores_string, base_dir / f"{name}.json")
    save_pickle({"scores": scores, "curves": curves}, base_dir / f"{name}.pkl")
Exemplo n.º 2
0
def reformat_labels(target: Path):
    for p in subfiles(target, identifier="*json", join=True):
        label = load_json(Path(p))
        mal_labels = label["scores"]
        instance_classes = {
            key: int(item >= 3)
            for key, item in mal_labels.items()
        }
        save_json({
            "instances": instance_classes,
            "scores": mal_labels
        }, Path(p))
Exemplo n.º 3
0
def _create_mask(source, target, centers, rads):
    try:
        logger.info(f"Processing {source.stem}")
        data = sitk.ReadImage(str(source))
        mask = create_circle_mask_itk(data, centers, rads, ndim=3)
        sitk.WriteImage(
            mask, str(target / f"{source.stem.replace('.', '_')}.nii.gz"))
        save_json({"instances": {str(k + 1): 0
                                 for k in range(len(centers))}},
                  target / f"{source.stem.replace('.', '_')}.json")
    except Exception as e:
        logger.error(
            f"Case {source.stem} failed with {e} and {traceback.format_exc()}")
Exemplo n.º 4
0
def create_masks(source: Path, target: Path, df: pd.DataFrame,
                 num_processes: int):
    files = []
    split = {}
    for i in range(10):
        subset_dir = source / f"subset{i}"
        if not subset_dir.is_dir():
            logger.error(f"{subset_dir} is not s valid subset directory!")
            continue

        tmp = list((subset_dir.glob('*.mhd')))
        files.extend(tmp)
        for t in tmp:
            split[t.stem.replace('.', '_')] = i
    save_json(split, target.parent.parent / "splits.json")

    centers = []
    rads = []
    for f in files:
        c = []
        r = []
        try:
            series_df = df.loc[{f.name.rsplit('.', 1)[0]}]
        except KeyError:
            pass
        else:
            for _, row in series_df.iterrows():
                c.append((float(row['coordX']), float(row['coordY']),
                          float(row['coordZ'])))
                r.append(float(row['diameter_mm']) / 2)
        centers.append(c)
        rads.append(r)

    assert len(files) == len(centers) == len(rads)
    with Pool(processes=num_processes) as p:
        p.starmap(_create_mask, zip(files, repeat(target), centers, rads))
Exemplo n.º 5
0
def import_nnunet_boxes(
    # settings
    nnunet_prediction_dir: Pathlike,
    save_dir: Pathlike,
    boxes_gt_dir: Pathlike,
    classes: Sequence[str],
    stuff: Optional[Sequence[int]] = None,
    num_workers: int = 6,
):
    assert nnunet_prediction_dir.is_dir(
    ), f"{nnunet_prediction_dir} is not a dir"
    save_dir = Path(save_dir)
    save_dir.mkdir(parents=True, exist_ok=True)
    summary = []

    # create sweep dir
    sweep_dir = Path(nnunet_prediction_dir)
    postprocessing_settings = {}

    # optimize min num voxels
    logger.info("Looking for optimal min voxel size")
    min_num_voxel_settings = [0, 5, 10, 15, 20]
    scores = []
    for min_num_voxel in min_num_voxel_settings:
        # create temp dir
        sweep_prediction = sweep_dir / f"sweep_min_voxel{min_num_voxel}"
        sweep_prediction.mkdir(parents=True)

        # import with settings
        import_dir(
            nnunet_prediction_dir=nnunet_prediction_dir,
            target_dir=sweep_prediction,
            min_num_voxel=min_num_voxel,
            save_seg=False,
            save_iseg=False,
            stuff=stuff,
            num_workers=num_workers,
        )

        # evaluate
        _scores, _ = evaluate_box_dir(
            pred_dir=sweep_prediction,
            gt_dir=boxes_gt_dir,
            classes=classes,
            save_dir=None,
        )
        scores.append(_scores[TARGET_METRIC])
        summary.append({f"Min voxel {min_num_voxel}": _scores[TARGET_METRIC]})
        logger.info(f"Min voxel {min_num_voxel} :: {_scores[TARGET_METRIC]}")
        shutil.rmtree(sweep_prediction)

    idx = int(np.argmax(scores))
    postprocessing_settings["min_num_voxel"] = min_num_voxel_settings[idx]
    logger.info(
        f"Found min num voxel {min_num_voxel_settings[idx]} with score {scores[idx]}"
    )

    # optimize score threshold
    logger.info("Looking for optimal min probability threshold")
    min_threshold_settings = [None, 0.1, 0.2, 0.3, 0.4, 0.5]
    scores = []
    for min_threshold in min_threshold_settings:
        # create temp dir
        sweep_prediction = sweep_dir / f"sweep_min_threshold_{min_threshold}"
        sweep_prediction.mkdir(parents=True)

        # import with settings
        import_dir(
            nnunet_prediction_dir=nnunet_prediction_dir,
            target_dir=sweep_prediction,
            min_threshold=min_threshold,
            save_seg=False,
            save_iseg=False,
            stuff=stuff,
            num_workers=num_workers,
            **postprocessing_settings,
        )

        # evaluate
        _scores, _ = evaluate_box_dir(
            pred_dir=sweep_prediction,
            gt_dir=boxes_gt_dir,
            classes=classes,
            save_dir=None,
        )
        scores.append(_scores[TARGET_METRIC])
        summary.append({f"Min score {min_threshold}": _scores[TARGET_METRIC]})
        logger.info(f"Min score {min_threshold} :: {_scores[TARGET_METRIC]}")
        shutil.rmtree(sweep_prediction)

    idx = int(np.argmax(scores))
    postprocessing_settings["min_threshold"] = min_threshold_settings[idx]
    logger.info(
        f"Found min threshold {min_threshold_settings[idx]} with score {scores[idx]}"
    )

    logger.info("Looking for best probability aggregation")
    aggreagtion_settings = ["max", "median", "mean", "percentile95"]
    scores = []
    for aggregation in aggreagtion_settings:
        # create temp dir
        sweep_prediction = sweep_dir / f"sweep_aggregation_{aggregation}"
        sweep_prediction.mkdir(parents=True)

        # import with settings
        import_dir(
            nnunet_prediction_dir=nnunet_prediction_dir,
            target_dir=sweep_prediction,
            aggregation=aggregation,
            save_seg=False,
            save_iseg=False,
            stuff=stuff,
            num_workers=num_workers,
            **postprocessing_settings,
        )
        # evaluate
        _scores, _ = evaluate_box_dir(
            pred_dir=sweep_prediction,
            gt_dir=boxes_gt_dir,
            classes=classes,
            save_dir=None,
        )
        scores.append(_scores[TARGET_METRIC])
        summary.append({f"Aggreagtion {aggregation}": _scores[TARGET_METRIC]})
        logger.info(f"Aggreagtion {aggregation} :: {_scores[TARGET_METRIC]}")
        shutil.rmtree(sweep_prediction)

    idx = int(np.argmax(scores))
    postprocessing_settings["aggregation"] = aggreagtion_settings[idx]
    logger.info(
        f"Found aggregation {aggreagtion_settings[idx]} with score {scores[idx]}"
    )

    save_pickle(postprocessing_settings, save_dir / "postprocessing.pkl")
    save_json(summary, save_dir / "summary.json")
    return postprocessing_settings
Exemplo n.º 6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'tasks',
        type=str,
        nargs='+',
        help="One or multiple of: Task003_Liver, Task007_Pancreas, "
        "Task008_HepaticVessel, Task010_Colon",
    )
    args = parser.parse_args()
    tasks = args.tasks

    decathlon_props = {
        "Task003_Liver": {
            "seg2det_stuff": [
                1,
            ],  # liver
            "seg2det_things": [
                2,
            ],  # cancer
            "min_size": 3.,
            "labels": {
                "0": "cancer"
            },
            "labels_stuff": {
                "1": "liver"
            },
        },
        "Task007_Pancreas": {
            "seg2det_stuff": [
                1,
            ],  # pancreas
            "seg2det_things": [
                2,
            ],
            "min_size": 3.,
            "labels": {
                "0": "cancer"
            },
            "labels_stuff": {
                "1": "pancreas"
            },
        },
        "Task008_HepaticVessel": {
            "seg2det_stuff": [
                1,
            ],  # vessel
            "seg2det_things": [
                2,
            ],
            "min_size": 3.,
            "labels": {
                "0": "tumour"
            },
            "labels_stuff": {
                "1": "vessel"
            },
        },
        "Task010_Colon": {
            "seg2det_stuff": [],
            "seg2det_things": [
                1,
            ],
            "min_size": 3.,
            "labels": {
                "0": "cancer"
            },
            "labels_stuff": {},
        },
    }

    basedir = Path(os.getenv('det_data'))
    for task in tasks:
        task_data_dir = basedir / task

        logger.remove()
        logger.add(sys.stdout, level="INFO")
        logger.add(task_data_dir / "prepare.log", level="DEBUG")
        logger.info(f"Preparing task: {task}")

        source_raw_dir = task_data_dir / "raw"
        source_data_dir = source_raw_dir / "imagesTr"
        source_labels_dir = source_raw_dir / "labelsTr"
        splitted_dir = task_data_dir / "raw_splitted"

        if not source_data_dir.is_dir():
            raise ValueError(f"Exptected training images at {source_data_dir}")
        if not source_labels_dir.is_dir():
            raise ValueError(
                f"Exptected training labels at {source_labels_dir}")
        if not (p := source_raw_dir / "dataset.json").is_file():
            raise ValueError(f"Expected dataset json to be located at {p}")

        target_data_dir = splitted_dir / "imagesTr"
        target_label_dir = splitted_dir / "labelsTr"
        target_data_dir.mkdir(parents=True, exist_ok=True)
        target_label_dir.mkdir(parents=True, exist_ok=True)

        # preapre meta
        original_meta = load_json(source_raw_dir / "dataset.json")

        dataset_info = {
            "task": task,
            "name": original_meta["name"],
            "target_class": None,
            "test_labels": True,
            "modalities": original_meta["modality"],
            "dim": 3,
            "info": {
                "original_labels": original_meta["labels"],
                "original_numTraining": original_meta["numTraining"],
            },
        }
        dataset_info.update(decathlon_props[task])
        save_json(dataset_info, task_data_dir / "dataset.json")

        # prepare data and labels
        case_ids = get_case_ids_from_dir(source_data_dir,
                                         remove_modality=False)
        case_ids = sorted([c for c in case_ids if c])
        logger.info(f"Found {len(case_ids)} for preparation.")

        for cid in maybe_verbose_iterable(case_ids):
            process_case(
                cid,
                source_data_dir,
                source_labels_dir,
                target_data_dir,
                target_label_dir,
            )

        # with Pool(processes=6) as p:
        #     p.starmap(process_case, zip(case_ids,
        #                                 repeat(source_images),
        #                                 repeat(source_labels),
        #                                 repeat(target_images),
        #                                 repeat(target_labels),
        #                                 ))

        # create an artificial test split
        create_test_split(
            splitted_dir=splitted_dir,
            num_modalities=1,
            test_size=0.3,
            random_state=0,
            shuffle=True,
        )
Exemplo n.º 7
0
def instances_from_segmentation(source_file: Path, output_folder: Path,
                                rm_classes: Sequence[int] = None,
                                ro_classes: Dict[int, int] = None,
                                subtract_one_of_classes: bool = True,
                                fg_vs_bg: bool = False,
                                file_name: Optional[str] = None
                                ):
    """
    1. Optionally removes classes from the segmentation (
    e.g. organ segmentation's which are not useful for detection)

    2. Optionally reorders the segmentation indices

    3. Converts semantic segmentation to instance segmentation's via
    connected components

    Args:
        source_file: path to semantic segmentation file
        output_folder: folder where processed file will be saved
        rm_classes: classes to remove from semantic segmentation
        ro_classes: reorder classes before instances are generated
        subtract_one_of_classes: subtracts one from the classes
            in the instance mapping (detection networks assume
            that classes start from 0)
        fg_vs_bg: map all foreground classes to a single class to run
            foreground vs background detection task.
        file_name: name of saved file (without file type!)
    """
    if subtract_one_of_classes and fg_vs_bg:
        logger.info("subtract_one_of_classes will be ignored because fg_vs_bg is "
                    "active and all foreground classes ill be mapped to 0")

    seg_itk = sitk.ReadImage(str(source_file))
    seg_npy = sitk.GetArrayFromImage(seg_itk)

    if rm_classes is not None:
        seg_npy = remove_classes(seg_npy, rm_classes)

    if ro_classes is not None:
        seg_npy = reorder_classes(seg_npy, ro_classes)

    instances, instance_classes = seg2instances(seg_npy)
    if fg_vs_bg:
        num_instances_check = len(instance_classes)
        seg_npy[seg_npy > 0] = 1
        instances, instance_classes = seg2instances(seg_npy)
        num_instances = len(instance_classes)
        if num_instances != num_instances_check:
            logger.warning(f"Lost instance: Found {num_instances} instances before "
                           f"fg_vs_bg but {num_instances_check} instances after it")

    if subtract_one_of_classes:
        for key in instance_classes.keys():
            instance_classes[key] -= 1

    if fg_vs_bg:
        for key in instance_classes.keys():
            instance_classes[key] = 0

    seg_itk_new = sitk.GetImageFromArray(instances)
    seg_itk_new = sitk_copy_metadata(seg_itk, seg_itk_new)

    if file_name is None:
        suffix_length = sum(map(len, source_file.suffixes))
        file_name = source_file.name[:-suffix_length]

    save_json({"instances": instance_classes}, output_folder / f"{file_name}.json")
    sitk.WriteImage(seg_itk_new, str(output_folder / f"{file_name}.nii.gz"))
Exemplo n.º 8
0
def run_analysis_suite(prediction_dir: Path, gt_dir: Path, save_dir: Path):
    for iou, score in maybe_verbose_iterable(
            list(product([0.1, 0.5], [0.1, 0.5]))):
        _save_dir = save_dir / f"iou_{iou}_score_{score}"
        _save_dir.mkdir(parents=True, exist_ok=True)

        found_predictions = list(prediction_dir.glob("*_boxes.pkl"))
        logger.info(f"Found {len(found_predictions)} predictions for analysis")

        df, analysis_ids = collect_overview(
            prediction_dir,
            gt_dir,
            iou=iou,
            score=score,
            max_num_fp_per_image=5,
            top_n=10,
        )
        df.to_json(_save_dir / "analysis.json", indent=4, orient='index')
        df.to_csv(_save_dir / "analysis.csv")
        save_json(analysis_ids, _save_dir / "analysis_ids.json")

        all_pred, all_target, all_pred_ious, all_pred_scores = collect_score_iou(
            prediction_dir, gt_dir, iou=iou, score=score)
        confusion_ax = plot_confusion_matrix(all_pred,
                                             all_target,
                                             iou=iou,
                                             score=score)
        plt.savefig(_save_dir / "confusion_matrix.png")
        plt.close()

        iou_score_ax = plot_joint_iou_score(all_pred_ious, all_pred_scores)
        plt.savefig(_save_dir / "joint_iou_score.png")
        plt.close()

        all_pred, all_target, all_boxes = collect_boxes(prediction_dir,
                                                        gt_dir,
                                                        iou=iou,
                                                        score=score)
        sizes_fig, sizes_ax = plot_sizes(all_pred,
                                         all_target,
                                         all_boxes,
                                         iou=iou,
                                         score=score)
        plt.savefig(_save_dir / "sizes.png")
        with open(str(_save_dir / 'sizes.pkl'), "wb") as fp:
            pickle.dump(sizes_fig, fp, protocol=4)
        plt.close()

        sizes_fig, sizes_ax = plot_sizes_bar(all_pred,
                                             all_target,
                                             all_boxes,
                                             iou=iou,
                                             score=score)
        plt.savefig(_save_dir / "sizes_bar.png")
        with open(str(_save_dir / 'sizes_bar.pkl'), "wb") as fp:
            pickle.dump(sizes_fig, fp, protocol=4)
        plt.close()

        sizes_fig, sizes_ax = plot_sizes_bar(all_pred,
                                             all_target,
                                             all_boxes,
                                             iou=iou,
                                             score=score,
                                             max_bin=100)
        plt.savefig(_save_dir / "sizes_bar_100.png")
        with open(str(_save_dir / 'sizes_bar_100.pkl'), "wb") as fp:
            pickle.dump(sizes_fig, fp, protocol=4)
        plt.close()
Exemplo n.º 9
0
def _train(
    task: str,
    ov: List[str],
    do_sweep: bool,
):
    """
    Run training

    Args:
        task: task to run training for
        ov: overwrites for config manager
        do_sweep: determine best emprical parameters for run
    """
    print(f"Overwrites: {ov}")
    initialize_config_module(config_module="nndet.conf")
    cfg = compose(task, "config.yaml", overrides=ov if ov is not None else [])

    assert cfg.host.parent_data is not None, 'Parent data can not be None'
    assert cfg.host.parent_results is not None, 'Output dir can not be None'

    train_dir = init_train_dir(cfg)

    pl_logger = MLFlowLogger(
        experiment_name=cfg["task"],
        tags={
            "host": socket.gethostname(),
            "fold": cfg["exp"]["fold"],
            "task": cfg["task"],
            "job_id": os.getenv('LSB_JOBID', 'no_id'),
            "mlflow.runName": cfg["exp"]["id"],
        },
        save_dir=os.getenv("MLFLOW_TRACKING_URI", "./mlruns"),
    )
    pl_logger.log_hyperparams(
        flatten_mapping(
            {"model": OmegaConf.to_container(cfg["model_cfg"], resolve=True)}))
    pl_logger.log_hyperparams(
        flatten_mapping({
            "trainer":
            OmegaConf.to_container(cfg["trainer_cfg"], resolve=True)
        }))

    logger.remove()
    logger.add(sys.stdout, format="{level} {message}", level="INFO")
    log_file = Path(os.getcwd()) / "train.log"
    logger.add(log_file, level="INFO")
    logger.info(f"Log file at {log_file}")

    meta_data = {}
    meta_data["torch_version"] = str(torch.__version__)
    meta_data["date"] = str(datetime.now())
    meta_data["git"] = log_git(nndet.__path__[0], repo_name="nndet")
    save_json(meta_data, "./meta.json")
    try:
        write_requirements_to_file("requirements.txt")
    except Exception as e:
        logger.error(f"Could not log req: {e}")

    plan_path = Path(str(cfg.host["plan_path"]))
    plan = load_pickle(plan_path)
    save_json(create_debug_plan(plan), "./plan_debug.json")

    data_dir = Path(cfg.host["preprocessed_output_dir"]
                    ) / plan["data_identifier"] / "imagesTr"

    datamodule = Datamodule(
        augment_cfg=OmegaConf.to_container(cfg["augment_cfg"], resolve=True),
        plan=plan,
        data_dir=data_dir,
        fold=cfg["exp"]["fold"],
    )
    module = MODULE_REGISTRY[cfg["module"]](
        model_cfg=OmegaConf.to_container(cfg["model_cfg"], resolve=True),
        trainer_cfg=OmegaConf.to_container(cfg["trainer_cfg"], resolve=True),
        plan=plan,
    )
    callbacks = []
    checkpoint_cb = ModelCheckpoint(
        dirpath=train_dir,
        filename='model_best',
        save_last=True,
        save_top_k=1,
        monitor=cfg["trainer_cfg"]["monitor_key"],
        mode=cfg["trainer_cfg"]["monitor_mode"],
    )
    checkpoint_cb.CHECKPOINT_NAME_LAST = 'model_last'
    callbacks.append(checkpoint_cb)
    callbacks.append(LearningRateMonitor(logging_interval="epoch"))

    OmegaConf.save(cfg, str(Path(os.getcwd()) / "config.yaml"))
    OmegaConf.save(cfg,
                   str(Path(os.getcwd()) / "config_resolved.yaml"),
                   resolve=True)
    save_pickle(plan, train_dir / "plan.pkl")  # backup plan
    splits = load_pickle(
        Path(cfg.host.preprocessed_output_dir) / datamodule.splits_file)
    save_pickle(splits, train_dir / "splits.pkl")

    trainer_kwargs = {}
    if cfg["train"]["mode"].lower() == "resume":
        trainer_kwargs[
            "resume_from_checkpoint"] = train_dir / "model_last.ckpt"

    num_gpus = cfg["trainer_cfg"]["gpus"]
    logger.info(f"Using {num_gpus} GPUs for training")
    plugins = cfg["trainer_cfg"].get("plugins", None)
    logger.info(f"Using {plugins} plugins for training")

    trainer = pl.Trainer(
        gpus=list(range(num_gpus)) if num_gpus > 1 else num_gpus,
        accelerator=cfg["trainer_cfg"]["accelerator"],
        precision=cfg["trainer_cfg"]["precision"],
        amp_backend=cfg["trainer_cfg"]["amp_backend"],
        amp_level=cfg["trainer_cfg"]["amp_level"],
        benchmark=cfg["trainer_cfg"]["benchmark"],
        deterministic=cfg["trainer_cfg"]["deterministic"],
        callbacks=callbacks,
        logger=pl_logger,
        max_epochs=module.max_epochs,
        progress_bar_refresh_rate=None
        if bool(int(os.getenv("det_verbose", 1))) else 0,
        reload_dataloaders_every_epoch=False,
        num_sanity_val_steps=10,
        weights_summary='full',
        plugins=plugins,
        terminate_on_nan=True,  # TODO: make modular
        move_metrics_to_cpu=True,
        **trainer_kwargs)
    trainer.fit(module, datamodule=datamodule)

    if do_sweep:
        case_ids = splits[cfg["exp"]["fold"]]["val"]
        if "debug" in cfg and "num_cases_val" in cfg["debug"]:
            case_ids = case_ids[:cfg["debug"]["num_cases_val"]]

        inference_plan = module.sweep(
            cfg=OmegaConf.to_container(cfg, resolve=True),
            save_dir=train_dir,
            train_data_dir=data_dir,
            case_ids=case_ids,
            run_prediction=True,
        )

        plan["inference_plan"] = inference_plan
        save_pickle(plan, train_dir / "plan_inference.pkl")

        ensembler_cls = module.get_ensembler_cls(
            key="boxes",
            dim=plan["network_dim"])  # TODO: make this configurable
        for restore in [True, False]:
            target_dir = train_dir / "val_predictions" if restore else \
                train_dir / "val_predictions_preprocessed"
            extract_results(
                source_dir=train_dir / "sweep_predictions",
                target_dir=target_dir,
                ensembler_cls=ensembler_cls,
                restore=restore,
                **inference_plan,
            )

        _evaluate(
            task=cfg["task"],
            model=cfg["exp"]["id"],
            fold=cfg["exp"]["fold"],
            test=False,
            do_boxes_eval=True,  # TODO: make this configurable
            do_analyze_boxes=True,  # TODO: make this configurable
        )
Exemplo n.º 10
0
def prepare_case(case_dir: Path, target_dir: Path, df: pd.DataFrame):
    target_data_dir = target_dir / "imagesTr"
    target_label_dir = target_dir / "labelsTr"

    case_id = str(case_dir).split('/')[-1]
    logger.info(f"Processing case {case_id}")
    df = df[df.PatientID == case_id]

    # process data
    img = sitk.ReadImage(str(case_dir / f"{case_id}_ct_scan.nrrd"))
    sitk.WriteImage(img, str(target_data_dir / f"{case_id}.nii.gz"))
    img_arr = sitk.GetArrayFromImage(img)

    # process mask
    final_rois = np.zeros_like(img_arr, dtype=np.uint8)
    mal_labels = {}
    roi_ids = set([
        ii.split('.')[0].split('_')[-1] for ii in os.listdir(case_dir)
        if '.nii.gz' in ii
    ])

    rix = 1
    for rid in roi_ids:
        roi_id_paths = [
            ii for ii in os.listdir(case_dir) if '{}.nii'.format(rid) in ii
        ]
        nodule_ids = [ii.split('_')[2].lstrip("0") for ii in roi_id_paths]
        rater_labels = [
            df[df.NoduleID == int(ii)].Malignancy.values[0]
            for ii in nodule_ids
        ]
        rater_labels.extend([0] * (4 - len(rater_labels)))
        mal_label = np.mean([ii for ii in rater_labels if ii > -1])

        roi_rater_list = []
        for rp in roi_id_paths:
            roi = sitk.ReadImage(str(case_dir / rp))
            roi_arr = sitk.GetArrayFromImage(roi).astype(np.uint8)
            assert roi_arr.shape == img_arr.shape, [
                roi_arr.shape, img_arr.shape, case_id,
                roi.GetSpacing()
            ]
            for ix in range(len(img_arr.shape)):
                npt.assert_almost_equal(roi.GetSpacing()[ix],
                                        img.GetSpacing()[ix])
            roi_rater_list.append(roi_arr)

        roi_rater_list.extend([np.zeros_like(roi_rater_list[-1])] *
                              (4 - len(roi_id_paths)))
        roi_raters = np.array(roi_rater_list)
        roi_raters = np.mean(roi_raters, axis=0)
        roi_raters[roi_raters < 0.5] = 0
        if np.sum(roi_raters) > 0:
            mal_labels[rix] = mal_label
            final_rois[roi_raters >= 0.5] = rix
            rix += 1
        else:
            # indicate rois suppressed by majority voting of raters
            logger.warning(f'suppressed roi! {roi_id_paths}')

    mask_itk = sitk.GetImageFromArray(final_rois)
    sitk.WriteImage(mask_itk, str(target_label_dir / f"{case_id}.nii.gz"))
    instance_classes = {key: int(item >= 3) for key, item in mal_labels}
    save_json({
        "instances": instance_classes,
        "scores": mal_labels
    }, target_label_dir / f"{case_id}")
Exemplo n.º 11
0
    logger.add(task_data_dir / "prepare.log", level="DEBUG")

    meta = {
        "name": "Luna",
        "task": "Task016_Luna",
        "target_class": None,
        "test_labels": False,
        "labels": {
            "0": "lesion",
        },
        "modalities": {
            "0": "CT",
        },
        "dim": 3,
    }
    save_json(meta, task_data_dir / "dataset.json")

    # prepare data and labels
    csv = source_data_dir / "annotations.csv"
    convert_data(source_data_dir, target_data_dir, num_processes=num_processes)

    df = pd.read_csv(csv, index_col='seriesuid')
    create_masks(source_data_dir,
                 target_label_dir,
                 df,
                 num_processes=num_processes)

    # generate split
    logger.info("Generating luna splits... ")
    saved_original_splits = load_json(task_data_dir / "splits.json")
    logger.info(
Exemplo n.º 12
0
    def export_dataset_info(self):
        """
        Export dataset settings (dataset.json for nnunet)
        """
        self.target_dir.mkdir(exist_ok=True, parents=True)
        dataset_info = {}
        dataset_info["name"] = self.data_info.get("name", "unknown")
        dataset_info["description"] = self.data_info.get(
            "description", "unknown")
        dataset_info["reference"] = self.data_info.get("reference", "unknown")
        dataset_info["licence"] = self.data_info.get("licence", "unknown")
        dataset_info["release"] = self.data_info.get("release", "unknown")
        min_size = self.data_info.get("min_size", 0)
        min_vol = self.data_info.get("min_vol", 0)
        dataset_info["prep_info"] = f"min size: {min_size} ; min vol {min_vol}"

        dataset_info["tensorImageSize"] = f"{self.data_info.get('dim', 3)}D"
        # dataset_info["tensorImageSize"] = self.data_info.get("tensorImageSize", "4D")
        dataset_info["modality"] = self.data_info.get("modalities", {})
        if not dataset_info["modality"]:
            logger.error("Did not find any modalities for dataset")

        # +1 for seg classes because of background
        dataset_info["labels"] = {"0": "background"}
        instance_classes = self.data_info.get("labels", {})
        if not instance_classes:
            logger.error("Did not find any labels of dataset")
        for _id, _class in instance_classes.items():
            seg_id = int(_id) + 1
            dataset_info["labels"][str(seg_id)] = _class

        if self.export_stuff:
            stuff_classes = self.data_info.get("labels_stuff", {})
            num_instance_classes = len(instance_classes)
            # copy stuff classes into nnuent dataset.json
            stuff_classes = {
                str(int(key) + num_instance_classes): item
                for key, item in stuff_classes.items() if int(key) > 0
            }
            dataset_info["labels_stuff"] = stuff_classes
            dataset_info["labels"].update(stuff_classes)

        _case_ids = get_case_ids_from_dir(self.label_dir,
                                          remove_modality=False)
        case_ids_tr = get_case_ids_from_dir(self.tr_image_dir,
                                            remove_modality=True)
        assert len(set(_case_ids).union(case_ids_tr)) == len(
            _case_ids), "All training  images need a label"
        dataset_info["numTraining"] = len(case_ids_tr)

        dataset_info["training"] = [{
            "image": f"./imagesTr/{cid}.nii.gz",
            "label": f"./labelsTr/{cid}.nii.gz"
        } for cid in case_ids_tr]

        if self.ts_image_dir is not None:
            case_ids_ts = get_case_ids_from_dir(self.ts_image_dir,
                                                remove_modality=True)
            dataset_info["numTest"] = len(case_ids_ts)
            dataset_info["test"] = [
                f"./imagesTs/{cid}.nii.gz" for cid in case_ids_ts
            ]
        else:
            dataset_info["numTest"] = 0
            dataset_info["test"] = []
        save_json(dataset_info, self.target_dir / "dataset.json")