Exemplo n.º 1
0
    def grad_frobenius(self, mini_batch_f, mini_batch_u):
        # This class method calculates the gradient self.grad_U

        for l in range(self.N):
            self.grad_U[l] = np.zeros((self.N, self.N), dtype=complex)
            # We occupy a gradient for the subsequent calculation of the sum

        # Calculate self.list_A and self.list_B
        for k in range(self.mini_batch_size):
            fl = create_list_fl(mini_batch_f[k], self.N)

            self.list_A[k][self.N - 1] = fl[self.N]
            for l in range(self.N - 2, -1, -1):
                self.list_A[k][l] = np.dot(self.list_A[k][l + 1], np.dot(self.list_U[l + 1], fl[l + 1]))
            self.list_B[k][0] = fl[0]
            for l in range(1, self.N, 1):
                self.list_B[k][l] = np.dot(np.dot(fl[l], self.list_U[l - 1]), self.list_B[k][l - 1])

            u_target = mini_batch_u[k]
            u_result = interferometer(fl, self.list_U, self.N)

            for l in range(self.N):
                for p in range(self.N):
                    for t in range(self.N):
                        a = self.list_A[k][l]
                        b = self.list_B[k][l]
                        d = self.D[p][t]
                        grad_u_x = np.dot(a, np.dot(d, b))
                        grad_u_y = 1j * np.dot(a, np.dot(d, b))
                        self.grad_U[l][p][t] += (2 / self.N) * np.sum((u_result - u_target).conj() * grad_u_x).real + \
                            1j * (2 / self.N) * np.sum((u_result - u_target).conj() * grad_u_y).real

        for l in range(self.N):
            self.grad_U[l] = self.grad_U[l] / self.mini_batch_size  # Average the gradient over the mini-packet
Exemplo n.º 2
0
def func_sst(x, network, mini_batch_f, mini_batch_u, n):
    c = 0.0  # The cost function itself, which must be calculated on the mini-package
    mini_batch_size = len(mini_batch_f)
    list_u = transform_to_matrix(
        x, n)  # Restored our list of trial basis matrices
    for k in range(mini_batch_size):
        fl = create_list_fl(mini_batch_f[k], n)
        c = c + sst(interferometer(fl, list_u, n), mini_batch_u[k])
    c = c / len(mini_batch_f)
    return c  # The function returns a real number
def save_sample_unitary_matrices(n, m, file_name1, file_name2):
    # Generate random phases for the sample (M different matrices, size N by N)
    fm = []
    for k in range(m):
        fm.append(2 * 3.141592 * np.random.rand(n, n))

    # Create a list from U1, ..., UN
    file1 = open(file_name1, 'r')
    list_u = []
    for l in range(n):
        u = np.zeros((n, n), dtype=complex)
        for i in range(n):
            for j in range(n):
                real = float(file1.readline())
                imag = float(file1.readline())
                u[i][j] = real + 1j * imag
        s = file1.readline()  # Read the empty line
        list_u.append(u)
    file1.close()

    um = []  # List of resulting unitary matrices of size N by N

    # We pass through the sample
    for k in range(m):
        um.append(interferometer(create_list_fl(fm[k], n), list_u, n))

    file2 = open(file_name2, 'w')

    for k in range(
            m
    ):  # We go through the selection and write phase matrices to a file
        for i in range(n):
            for j in range(n):
                file2.write(str(fm[k][i][j].real) + '\n')
        file2.write('\n')

    for k in range(
            m
    ):  # We go through the selection and write the resulting selection of unitary matrices to a file
        for i in range(n):
            for j in range(n):
                file2.write(str(um[k][i][j].real) + '\n')
                file2.write(str(um[k][i][j].imag) + '\n')
        file2.write('\n')
    file2.close()
    print('Training dataset successfully loaded to file')
Exemplo n.º 4
0
def trainer(file_name1,
            file_name2,
            file_name3,
            n,
            m,
            mini_batch_size,
            counts_of_epochs,
            func,
            derivative_func,
            functional,
            coeff,
            noisy_f,
            noisy_u,
            network,
            method='L-BFGS-B'):
    fm, um = load_data(n, m, file_name2)  # Got the whole sample
    for u in um:
        fm = fm + noisy_f * np.random.randn(n, n)
        um = um + noisy_u * (np.random.randn(n, n) +
                             1j * np.random.randn(n, n))
    um = polar_correct(um)  # Unitarization of basis matrices

    # network = Network(n, m, mini_batch_size, file_name3)  # Created an object of class Network

    if coeff is not None:
        list_goal_u = load_goal_matrices(n, file_name1)
        # Downloaded the list of correct unitary matrices to facilitate the search
        list_u = get_list_noisy(list_goal_u, coeff, n)
        network.list_U = list_u  # Facilitating the search for a solution with large values of n

    steps = []
    results = []
    cross_validation = []
    norma = []

    x0 = transform_to_1d_list(network.list_U,
                              n)  # Initialized Optimization algorithm
    list_goal_u = load_goal_matrices(n, file_name1)

    if method == 'L-BFGS-B':
        print('Turned on L-BFGS-B')
        for i in range(counts_of_epochs):
            mini_batch_f, mini_batch_u = create_mini_batch(
                n, m, mini_batch_size, fm, um)
            # Formed a mini-package for Learning at one step
            steps.append(i)
            results.append(func(x0, network, mini_batch_f, mini_batch_u, n))
            f = get_random_phase(n)
            cross_validation.append(
                functional(
                    interferometer(create_list_fl(f, n), network.list_U, n),
                    interferometer(create_list_fl(f, n), list_goal_u, n)))
            norma.append(
                norma_square(
                    interferometer(create_list_fl(mini_batch_f[0], n),
                                   network.list_U, n), n))

            res = minimize(func,
                           x0,
                           args=(network, mini_batch_f, mini_batch_u, n),
                           method='L-BFGS-B',
                           jac=derivative_func,
                           options={
                               'disp': False,
                               'maxiter': 1
                           })  # Optimization step 'BFGS'
            network.list_U = transform_to_matrix(
                res.x, n)  # Updated the neural network
            network.polar_correct()
            x0 = res.x
            f = get_random_phase(n)
            print(
                'Epoch: ', i + 1, ' Training set: ', results[i], ' Test set: ',
                functional(
                    interferometer(create_list_fl(f, n), network.list_U, n),
                    interferometer(create_list_fl(f, n), list_goal_u, n)))

    if method == 'SGD':
        print('Turned on SGD')
        # rate_learning = 0.1 # The best
        rate_learning = 0.2
        for i in range(counts_of_epochs):
            mini_batch_f, mini_batch_u = create_mini_batch(
                n, m, mini_batch_size, fm, um)
            # Formed a mini-package for Learning at one step

            steps.append(i)
            results.append(func(x0, network, mini_batch_f, mini_batch_u, n))
            f = get_random_phase(n)
            cross_validation.append(
                functional(
                    interferometer(create_list_fl(f, n), network.list_U, n),
                    interferometer(create_list_fl(f, n), list_goal_u, n)))
            norma.append(
                norma_square(
                    interferometer(create_list_fl(mini_batch_f[0], n),
                                   network.list_U, n), n))

            x0 = x0 - rate_learning * derivative_func(
                x0, network, mini_batch_f, mini_batch_u, n)
            # Optimization step 'SGD'
            network.list_U = transform_to_matrix(
                x0, n)  # Updated the neural network
            network.polar_correct()
            # print(norma_square(network.list_U[0], network.N))
            # print(x0, ' ', results[i])
            f = get_random_phase(n)
            print(
                'epoch: ', i + 1, ' Training set: ', results[i], ' Test set: ',
                functional(
                    interferometer(create_list_fl(f, n), network.list_U, n)))

    # Cross validation
    list_goal_u = load_goal_matrices(n, file_name1)

    for i in range(10):
        f = get_random_phase(n)
        print(
            frobenius_reduced(
                interferometer(create_list_fl(f, n), network.list_U, n),
                interferometer(create_list_fl(f, n), list_goal_u, n)),
            infidelity(interferometer(create_list_fl(f, n), network.list_U, n),
                       interferometer(create_list_fl(f, n), list_goal_u, n)),
            weak_reduced(
                interferometer(create_list_fl(f, n), network.list_U, n),
                interferometer(create_list_fl(f, n), list_goal_u, n)),
            sst(interferometer(create_list_fl(f, n), network.list_U, n),
                interferometer(create_list_fl(f, n), list_goal_u, n)))

    steps = np.array(steps)
    results = np.array(results)
    cross_validation = np.array(cross_validation)
    norma = np.array(norma)

    error = 0.0
    for i in range(1000):
        f = get_random_phase(n)
        error = error + infidelity(
            interferometer(create_list_fl(f, n), network.list_U, n),
            interferometer(create_list_fl(f, n), list_goal_u, n))
    error = error / 1000

    return steps, results, cross_validation, norma, error
Exemplo n.º 5
0
 def forward(self):
     fl = create_list_fl(self.F, self.N)
     _u = interferometer(fl, self.list_U, self.N)
     return _u
Exemplo n.º 6
0
    def grad_sst(self, mini_batch_f, mini_batch_u):
        # This class method calculates the gradient self.grad_U

        for l in range(self.N):
            self.grad_U[l] = np.zeros((self.N, self.N), dtype=complex)
            # We occupy a gradient for the subsequent calculation of the sum

        # Calculate self.list_A and self.list_B
        for k in range(self.mini_batch_size):
            fl = create_list_fl(mini_batch_f[k], self.N)

            self.list_A[k][self.N - 1] = fl[self.N]
            for l in range(self.N - 2, -1, -1):
                self.list_A[k][l] = np.dot(self.list_A[k][l + 1], np.dot(self.list_U[l + 1], fl[l + 1]))
            self.list_B[k][0] = fl[0]
            for l in range(1, self.N, 1):
                self.list_B[k][l] = np.dot(np.dot(fl[l], self.list_U[l - 1]), self.list_B[k][l - 1])

            u_target = mini_batch_u[k]
            u_result = interferometer(fl, self.list_U, self.N)

            r_l, r_r = r_r_r_l(u_result)

            u_1 = transform_sst(u_result)
            target_1 = transform_sst(u_target)

            for l in range(self.N):
                for p in range(self.N):
                    for t in range(self.N):
                        a = self.list_A[k][l]
                        b = self.list_B[k][l]
                        d = self.D[p][t]
                        grad_u_x = np.dot(a, np.dot(d, b))
                        grad_u_y = 1j * np.dot(a, np.dot(d, b))

                        grad_r_l_x = np.eye(self.N, dtype=complex)
                        grad_r_r_x = np.eye(self.N, dtype=complex)
                        grad_r_l_y = np.eye(self.N, dtype=complex)
                        grad_r_r_y = np.eye(self.N, dtype=complex)

                        for i in range(self.N):
                            # grad_r_l_x[i][i] = grad_u_x[i][0].conjugate()
                            # grad_r_l_y[i][i] = grad_u_y[i][0].conjugate()
                            grad_r_l_x[i][i] = (1j * ((u_result[i][0].conjugate() /
                                                       abs(u_result[i][0])) * grad_u_x[i][0]).imag /
                                                u_result[i][0].conjugate()).conjugate()
                            grad_r_l_y[i][i] = (1j * ((u_result[i][0].conjugate() /
                                                       abs(u_result[i][0])) * grad_u_y[i][0]).imag /
                                                u_result[i][0].conjugate()).conjugate()
                            if i == 0:
                                grad_r_r_x[i][i] = 0.0
                                grad_r_r_y[i][i] = 0.0
                            else:
                                # grad_r_r_x[i][i] = grad_u_x[0][i].conjugate()
                                # grad_r_r_y[i][i] = grad_u_y[0][i].conjugate()
                                grad_r_r_x[i][i] = (1j * ((u_result[0][i].conjugate() /
                                                           abs(u_result[0][i])) * grad_u_x[0][i]).imag /
                                                    u_result[0][i].conjugate()).conjugate()
                                grad_r_r_y[i][i] = (1j * ((u_result[0][i].conjugate() /
                                                           abs(u_result[0][i])) * grad_u_y[0][i]).imag /
                                                    u_result[0][i].conjugate()).conjugate()

                        grad_v_x = np.dot(grad_r_l_x, np.dot(u_result, r_r)) + np.dot(r_l, np.dot(grad_u_x, r_r)) + \
                                   np.dot(r_l, np.dot(u_result, grad_r_r_x))

                        grad_v_y = np.dot(grad_r_l_y, np.dot(u_result, r_r)) + np.dot(r_l, np.dot(grad_u_y, r_r)) + \
                                   np.dot(r_l, np.dot(u_result, grad_r_r_y))

                        self.grad_U[l][p][t] += (2 / self.N) * np.sum((u_1 - target_1).conj() * grad_v_x).real + \
                            1j * (2 / self.N) * np.sum((u_1 - target_1).conj() * grad_v_y).real

        for l in range(self.N):
            self.grad_U[l] = self.grad_U[l] / self.mini_batch_size  # Average the gradient over the mini-packet