Exemplo n.º 1
0
def runAgent(x_train, x_test):
    # checkpoint run model folder
    ckpt_dir_run = FLAGS.ckpt_dir + 'model_' + FLAGS.model
    log_dir_run = FLAGS.logging_dir + 'model_' + FLAGS.model

    if not (tf.gfile.Exists(ckpt_dir_run)):
        tf.gfile.MakeDirs(ckpt_dir_run)

    if not (tf.gfile.Exists(log_dir_run)):
        tf.gfile.MakeDirs(log_dir_run)

    with tf.Session() as sess:

        if FLAGS.do_training:
            # create new model instance
            nnet = NNet(
                lr=FLAGS.learning_rate,
                optimizer=FLAGS.optimizer,
                nonlinearity=FLAGS.nonlinearity,
                n_hidden=FLAGS.n_hidden,
                n_latent=FLAGS.n_latent,
                beta=FLAGS.beta,
            )
            # initialize all variables
            nnet.init_graph_vars(sess, log_dir=log_dir_run)

            # tell researcher what's going on ...
            print("{} Now training my model, LR: {} , EPs: {}, BS: {}".format(
                datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                FLAGS.learning_rate, FLAGS.n_training_episodes,
                FLAGS.batch_size))
            # .. and begin with training
            results = trainModel(sess,
                                 nnet,
                                 x_train,
                                 x_test,
                                 n_episodes=FLAGS.n_training_episodes,
                                 n_batches=FLAGS.n_training_batches,
                                 batch_size=FLAGS.batch_size,
                                 model_dir=ckpt_dir_run)
            evalModel(sess, nnet, x_train)

        else:
            nnet = myModel(is_trained=True)
            print("Now evaluating my model")
            ops = loadMyModel(sess, ['nnet', 'input'], ckpt_dir_run)
            print(ops)
            nnet.session = sess
            nnet.y_hat = ops[0]
            nnet.x = ops[1]

            results = evalModel(sess, nnet, x_train)

        return results
Exemplo n.º 2
0
def runAgent(data_train,data_test):
    # checkpoint run model folder
    ckpt_dir_run = FLAGS.ckpt_dir 
    log_dir_run  = FLAGS.log_dir  

    if not(tf.gfile.Exists(ckpt_dir_run)):
        tf.gfile.MakeDirs(ckpt_dir_run) 

    if not(tf.gfile.Exists(log_dir_run)):
        tf.gfile.MakeDirs(log_dir_run) 

    with tf.Session() as sess:      

        if FLAGS.do_training:
            
            # import graph from trained model
            # ckpt = tf.train.get_checkpoint_state(FLAGS.import_dir)
            # if ckpt and ckpt.model_checkpoint_path:
            #     saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path + '.meta')
            #     myGraph = tf.get_default_graph()
            myGraph = importModelGraph(FLAGS.import_dir)
            for ii in myGraph.get_operations():
                print(ii.name)
            

            nnet = myModel(lr           = FLAGS.learning_rate,
                           optimizer    =     FLAGS.optimizer,
                           nonlinearity =  FLAGS.nonlinearity,
                           imported_graph = myGraph
                           )
            print("Now training the Trees Agent, " + FLAGS.model + ', ' + FLAGS.exp_curriculum + ', ' + FLAGS.exp_boundary + ', ' + FLAGS.exp_taskorder + ', ' + FLAGS.exp_rewards)
            
            # initialize all variables
            nnet.init_graph_vars(sess,log_dir=log_dir_run)

            # train model
            results = trainModel(sess,nnet,data_train,data_test,
                model_dir   =   ckpt_dir_run)

        else:           
            nnet = myModel(is_trained=True)
            print("Now evaluating Trees Agent")
            ops = loadMyModel(sess,['nnet','input'],ckpt_dir_run)
            print(ops)
            nnet.session = sess
            nnet.y_hat = ops[0]
            nnet.x     = ops[1]

            results = evalModel(sess,nnet)

        return results
Exemplo n.º 3
0
def runCAE(x_train, x_test):
    # checkpoint run model folder
    ckpt_dir_run = FLAGS.ckpt_dir + 'model_' + FLAGS.model
    log_dir_run = FLAGS.log_dir + 'model_' + FLAGS.model

    if not (tf.gfile.Exists(ckpt_dir_run)):
        tf.gfile.MakeDirs(ckpt_dir_run)

    if not (tf.gfile.Exists(log_dir_run)):
        tf.gfile.MakeDirs(log_dir_run)

    with tf.Session() as sess:

        if FLAGS.do_training:
            nnet = myModel(
                lr=FLAGS.learning_rate,
                optimizer=FLAGS.optimizer,
                nonlinearity=FLAGS.nonlinearity,
            )
            print(
                "{} Now training Convolutional Autoencoder, LR: {} , EPs: {}, BS: {}"
                .format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                        FLAGS.learning_rate, FLAGS.n_training_episodes,
                        FLAGS.batch_size))
            # initialize all variables
            nnet.init_graph_vars(sess, log_dir=log_dir_run)
            # train model
            results = trainModel(sess,
                                 nnet,
                                 x_train,
                                 x_test,
                                 n_episodes=FLAGS.n_training_episodes,
                                 n_batches=FLAGS.n_training_batches,
                                 batch_size=FLAGS.batch_size,
                                 model_dir=ckpt_dir_run)

            evalModel(sess, nnet, x_train)

        else:
            nnet = myModel(is_trained=True)
            print("Now evaluating Convolutional Autoencoder")
            ops = loadMyModel(sess, ['nnet'], ckpt_dir_run)
            print(ops)
            nnet.y_hat = ops[0]

            results = evalModel(sess, nnet, x_train)

        return results
Exemplo n.º 4
0
def runAgent(data_train, data_test):
    # checkpoint run model folder
    ckpt_dir_run = FLAGS.ckpt_dir
    log_dir_run = FLAGS.log_dir

    if not (tf.gfile.Exists(ckpt_dir_run)):
        tf.gfile.MakeDirs(ckpt_dir_run)

    if not (tf.gfile.Exists(log_dir_run)):
        tf.gfile.MakeDirs(log_dir_run)

    with tf.Session() as sess:

        if FLAGS.do_training:
            nnet = myModel(
                lr=FLAGS.learning_rate,
                optimizer=FLAGS.optimizer,
                nonlinearity=FLAGS.nonlinearity,
            )
            print("Now training the Trees Agent, " + FLAGS.model + ', ' +
                  FLAGS.exp_curriculum + ', ' + FLAGS.exp_boundary + ', ' +
                  FLAGS.exp_taskorder + ', ' + FLAGS.exp_rewards)
            # initialize all variables
            nnet.init_graph_vars(sess, log_dir=log_dir_run)
            # train model
            results = trainModel(sess,
                                 nnet,
                                 data_train,
                                 data_test,
                                 model_dir=ckpt_dir_run)

        else:
            nnet = myModel(is_trained=True)
            print("Now evaluating Trees Agent")
            ops = loadMyModel(sess, ['nnet', 'input'], ckpt_dir_run)
            print(ops)
            nnet.session = sess
            nnet.y_hat = ops[0]
            nnet.x = ops[1]

            results = evalModel(sess, nnet)

        return results