Exemplo n.º 1
0
def main():
    # setup arguments
    parser = utils.ArgParser(description=__doc__)
    arguments.add_default_args(parser)
    arguments.add_trainer_args(parser)
    arguments.add_exp_identifier_args(parser)
    arguments.add_dataset_test_arg(parser)
    args = parser.parse_args()

    # load experiment config
    exp_group, exp_name, config_file = arguments.setup_experiment_identifier_from_args(
        args, EXP_TYPE)
    config = load_yaml_config_file(config_file)

    # update experiment config and dataset path given the script arguments
    config = arguments.update_config_from_args(config, args)
    dataset_path = arguments.update_path_from_args(args)

    # create configuration object
    cfg = MLPMNISTExperimentConfig(config)
    if args.print_config:
        print(cfg)

    # set seed
    if cfg.random_seed is not None:
        print(f"Set seed to {cfg.random_seed}")
        set_seed(
            cfg.random_seed,
            set_deterministic=False)  # set deterministic via config if needed

    # create datasets
    train_set = MNIST(str(dataset_path),
                      train=True,
                      download=True,
                      transform=ToTensor())
    val_set = MNIST(str(dataset_path),
                    train=False,
                    download=True,
                    transform=ToTensor())

    # make datasets smaller if requested in config
    if cfg.dataset_train.max_datapoints > -1:
        train_set.data = train_set.data[:cfg.dataset_train.max_datapoints]
    if cfg.dataset_val.max_datapoints > -1:
        val_set.data = val_set.data[:cfg.dataset_val.max_datapoints]

    # create dataloaders
    train_loader = create_loader(train_set,
                                 cfg.dataset_train,
                                 batch_size=cfg.train.batch_size)
    val_loader = create_loader(val_set,
                               cfg.dataset_val,
                               batch_size=cfg.val.batch_size)

    # create model
    model_mgr = MLPModelManager(cfg)

    if args.test_dataset:
        # run dataset test and exit
        run_mlpmnist_dataset_test(train_set, train_loader)
        return

    # always load best epoch during validation
    load_best = args.load_best or args.validate

    # create trainer
    trainer = MLPMNISTTrainer(cfg,
                              model_mgr,
                              exp_group,
                              exp_name,
                              args.run_name,
                              len(train_loader),
                              log_dir=args.log_dir,
                              log_level=args.log_level,
                              logger=None,
                              print_graph=args.print_graph,
                              reset=args.reset,
                              load_best=load_best,
                              load_epoch=args.load_epoch,
                              inference_only=args.validate)

    if args.validate:
        # run validation
        trainer.validate_epoch(val_loader)
    else:
        # run training
        trainer.train_model(train_loader, val_loader)
Exemplo n.º 2
0
def main():
    parser = utils.ArgParser()
    parser.add_argument("dataset_name", type=str, help="dataset name")
    arguments.add_dataset_path_arg(parser)
    arguments.add_test_arg(parser)
    parser.add_argument("--metadata_name", type=str, default="all", help="change which metadata to load")
    parser.add_argument("--cuda", action="store_true", help="use cuda")
    parser.add_argument("--multi_gpu", action="store_true", help="use multiple gpus")
    parser.add_argument("--model_path", type=str, default=None,
                        help="Cache path for transformers package.")
    parser.add_argument("--model_name", type=str, default="bert-base-uncased", help="Which model to use.")
    parser.add_argument("--model_source", type=str, default="transformers", help="Where to get the models from.")
    parser.add_argument("--layers", type=str, default="-2,-1",
                        help="Read the features from these layers. Careful: Multiple layers must be specified like "
                             "this: --layers=-2,-1 because of argparse handling minus as new argument.")
    parser.add_argument("--batch_size", type=int, default=1, help="Batch size.")
    parser.add_argument("--workers", type=int, default=0, help="Dataloader workers.")
    parser.add_argument("--add_name", type=str, default="", help="Add additional identifier to output files.")
    parser.add_argument("-f", "--force", action="store_true", help="Overwrite embedding if exists.")
    parser.add_argument("--encoder_only", action="store_true",
                        help="Flag for hybrid models (BART: bilinear and unilinear) that return "
                             "both encoder and decoder output, if the decoder output should be discarded.")
    parser.add_argument("--set_tokenizer", type=str, default="",
                        help=f"Manually define the tokenizer instead of determining it from model name. "
                             f"Options: {nntrainer.data_text.TextPreprocessing.values()}")
    parser.add_argument("--add_special_tokens", action="store_true",
                        help=f"Set the tokenizer to add special tokens (like [CLS], [SEP] for BERT).")
    parser.add_argument("--token_stride", action="store_true",
                        help=f"If set, too long texts will be strided over instead of cut to max.")
    parser.add_argument("--token_stride_factor", type=int, default=2,
                        help=f"Default 2 means to stride half the window size. Set to 1 for non-overlapping windows.")
    parser.add_argument("--print_model", action="store_true", help=f"Print model and config")

    args = parser.parse_args()
    data_path = arguments.update_path_from_args(args)
    dataset_path = data_path / args.dataset_name
    model_name = args.model_name
    token_stride = args.token_stride
    model_ident = f"{args.model_source}_{model_name.replace('/', '--')}_{args.layers}"
    full_ident = f"text_feat_{args.dataset_name}_meta_{args.metadata_name}_{model_ident}{args.add_name}"

    # setup paths
    text_features_path = dataset_path
    os.makedirs(text_features_path, exist_ok=True)
    lengths_file = text_features_path / f"{full_ident}_sentence_splits.json"
    data_file_only = f"{full_ident}.h5"
    data_file = text_features_path / data_file_only

    if data_file.exists() and lengths_file.exists() and not args.force:
        print(f"{data_file} already exists. nothing to do.")
        return

    # Load pretrained model
    print("*" * 20, f"Loading model {model_name} from {args.model_source}")
    if args.model_source == "transformers":
        tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=args.model_path)
        model: BertModel = AutoModel.from_pretrained(model_name, cache_dir=args.model_path)
        if args.print_model:
            print("*" * 40, "Model")
            print(f"{model}")
            print("*" * 40, "Config")
            print(model.config)
        # noinspection PyUnresolvedReferences
        max_text_len = model.config.max_position_embeddings
        model.eval()
    else:
        raise NotImplementedError(f"Model source unknown: {args.model_source}")
    if args.cuda:
        if args.multi_gpu:
            model = nn.DataParallel(model).cuda()
        else:
            model = model.cuda()
    print(f"Running model on device {next(model.parameters()).device}")
    print(f"Maximum input length {max_text_len}")

    # define preprocessor
    is_tp = False
    add_special_tokens = args.add_special_tokens
    if args.set_tokenizer != "":
        print(f"Set tokenizer via flag to {args.set_tokenizer}")
        preprocessor = get_text_preprocessor(args.set_tokenizer)
    elif model_name == "bert-base-uncased":
        # paper results
        preprocessor = get_text_preprocessor(nntrainer.data_text.TextPreprocessing.BERT_PAPER)
    elif model_name.startswith(TextModelConst.BERT) or model_name.startswith(TextModelConst.DISTILBERT):
        # new results bert-large-cased
        preprocessor = get_text_preprocessor(nntrainer.data_text.TextPreprocessing.BERT_NEW)
    elif model_name.startswith(TextModelConst.GPT2):
        # new results with gpt2
        preprocessor = get_text_preprocessor(nntrainer.data_text.TextPreprocessing.GPT2)
    else:
        print(f"WARNING: no text preprocessing defined for model {model_name}, using default preprocessing which "
              f"does not add any special tokens.")
        preprocessor = get_text_preprocessor(nntrainer.data_text.TextPreprocessing.SIMPLE)
    # else:
    #     raise NotImplementedError(f"No preprocessing defined for model {model_name}")

    # define feature layers to extract
    layer_list_int = [int(layer.strip()) for layer in args.layers.strip().split(",")]

    # load metadata
    meta_file = dataset_path / f"meta_{args.metadata_name}.json"
    print(f"Loading meta file of {meta_file.stat().st_size // 1024 ** 2:.0f} MB")
    timer_start = timer()
    meta_dict = json.load(meta_file.open("rt", encoding="utf8"))
    print(f"Took {timer() - timer_start:.1f} seconds for {len(meta_dict)}.")
    text_dict: Dict[str, List[str]] = {}
    for key, meta in meta_dict.items():
        text_dict[key] = [seg["text"] for seg in meta["segments"]]
    # get max number of words length
    total_words = 0
    max_words = 0
    for key, val in tqdm(text_dict.items(), desc="Compute total_words and max_words"):
        num_words = sum(len(text.split(" ")) for text in val)
        total_words += num_words
        max_words = max(num_words, max_words)
    print(f"Total {total_words} average {total_words / len(meta_dict):.2f} max {max_words}")

    # create dataset and loader
    print("*" * 20, "Loading and testing dataset.")
    dataset = TextConverterDataset(tokenizer, text_dict, preprocessor, max_text_len=max_text_len,
                                   token_stride=token_stride,
                                   add_special_tokens=add_special_tokens)
    dataloader = data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers,
                                 collate_fn=dataset.collate_fn)

    # print first datapoint
    for key, value in dataset[0].items():
        print(f"{key}: {value}\n")

    if args.test:
        # print first datapoint
        for point in dataset:
            for key, value in dict(point).items():
                print(f"{key}: {value}\n")
        print("Test, stopping here.")
        return

    # loop videos and encode features
    print("*" * 20, "Running the encoding.")
    print(f"Encoding text with model: {model_name}, layers: {layer_list_int}, "
          f"batch size: {args.batch_size}, workers: {args.workers}")
    temp_file = text_features_path / f"TEMP_{utils.get_timestamp_for_filename()}_{data_file_only}"
    data_h5 = h5py.File(temp_file, "w")
    lengths = {}
    total_feat_dim = None
    printed_warning = False
    pbar = tqdm(desc="compute text features", total=maths.ceil(len(dataset) / args.batch_size))
    for i, batch in enumerate(dataloader):  # type: TextDataBatchPoint
        if args.cuda:
            batch.to_cuda(non_blocking=True)
        batch_size = len(batch.key)

        total_max_seq_len = batch.tokens.shape[1]
        if total_max_seq_len <= max_text_len:
            # everything is fine
            # compute model output and read hidden states
            model_outputs = model(input_ids=batch.tokens, attention_mask=batch.mask, output_hidden_states=True)
            hidden_states = model_outputs["hidden_states"]
            # pbar.write(f"tokens {batch.tokens.shape[1]}")
            # pbar.write(f"outputs {list(state.shape[1] for state in hidden_states)}")
            # concatenate the features from the requested layers of the hidden state (-1 is the output layer)
            features = []
            for layer_num in layer_list_int:
                layer_features = hidden_states[layer_num]
                features.append(layer_features.detach().cpu().numpy())
            # concatenate features of individual hidden layers
            features = np.concatenate(features, axis=-1)  # shape (batch_size, max_sent_len, num_layers * feat_dim)
            # pbar.write(f"features {features.shape}")
        else:
            # if batch tokens is too long we need multiple steps depending on stride
            stride = max_text_len // args.token_stride_factor
            positions = list(range(0, total_max_seq_len - stride, stride))
            all_model_outputs = []
            pbar.write(f"Length {total_max_seq_len}! Split with window {max_text_len} stride {stride} "
                       f"into {len(positions)} batches at positions {positions} ")
            for pos in positions:
                end_pos = pos + max_text_len
                these_tokens = batch.tokens[:, pos:end_pos]
                these_masks = batch.mask[:, pos:end_pos]
                these_model_outputs = model(input_ids=these_tokens, attention_mask=these_masks,
                                            output_hidden_states=True)
                these_hidden_states = these_model_outputs["hidden_states"]
                # pbar.write(f"tokens {these_tokens.shape[1]}")
                # pbar.write(f"outputs {list(state.shape[1] for state in these_hidden_states)}")
                # concatenate the features from the requested layers of the hidden state (-1 is the output layer)
                features = []
                for layer_num in layer_list_int:
                    layer_features = these_hidden_states[layer_num]
                    if pos != 0:
                        layer_features = layer_features[:, stride:]
                    features.append(layer_features.detach().cpu().numpy())
                # concatenate features of individual hidden layers
                features = np.concatenate(features, axis=-1)  # shape (batch_size, max_sent_len, num_layers * feat_dim)
                # pbar.write(f"features {features.shape}")
                all_model_outputs.append(features)
            # concatenate outputs back together
            features = np.concatenate(all_model_outputs, axis=1)

        # compute total output size, need to know this for model architecture
        if total_feat_dim is None:
            total_feat_dim = features.shape[-1]

        # extract single datapoint information from the batch
        for batch_num in range(batch_size):
            key = batch.key[batch_num]
            length = batch.lengths[batch_num]

            # given length (number of tokens), cut off the padded tokens
            feature = features[batch_num, :length]

            # store sentence lengths so features can be mapped to sentences later
            sentence_lengths = batch.sentence_lengths[batch_num]

            if is_tp:
                sentence_lengths = [int(np.round(length / 4)) for length in sentence_lengths]

            # make sure correspondence between paragraph features and sentence lengths is still there
            if feature.shape[0] != sum(sentence_lengths) and not printed_warning:
                pbar.write("*" * 40)
                pbar.write(f"WARNING: Feature sequence length {feature.shape[0]} is not equal sum of the sentence "
                           f"lengths: "f"{sum(sentence_lengths)}")
                pbar.write(f"{sentence_lengths}")
                pbar.write(f"It may be hard to get the correspondence between tokens and features back and the "
                           f"correct hierarchical sentence structure back from these features..")
                printed_warning = True

            # write features
            data_h5[key] = feature
            lengths[key] = sentence_lengths
        pbar.update()
    pbar.close()
    data_h5.close()

    print(f"Wrote data to {temp_file}, moving to {data_file}")
    if data_file.is_file():
        os.remove(data_file)
        time.sleep(0.1)
    shutil.move(temp_file, data_file)

    # write lengths file
    json.dump(lengths, lengths_file.open("wt", encoding="utf8"))

    print(f"Wrote sentence splits to {lengths_file}")
    print(f"Total feature dim of {len(layer_list_int)} is {total_feat_dim}")
Exemplo n.º 3
0
def main():
    # ---------- Setup script arguments. ----------
    parser = utils.ArgParser(description=__doc__)
    arguments.add_default_args(parser)  # logging level etc.
    arguments.add_exp_identifier_args(
        parser)  # arguments to identify the experiment to run
    arguments.add_trainer_args(parser)  # general trainer arguments
    arguments.add_dataset_test_arg(parser)  # flag for dataset testing
    arguments_coot.add_dataloader_args(parser)  # feature preloading
    parser.add_argument("--load_model",
                        type=str,
                        default=None,
                        help="Load model from file.")
    parser.add_argument("--save_embeddings",
                        action="store_true",
                        help="Save generated COOT embeddings.")
    args = parser.parse_args()

    if args.save_embeddings:
        assert args.validate, "Saving embeddings only works in validation with --validate"

    # load repository config yaml file to dict
    exp_group, exp_name, config_file = arguments.setup_experiment_identifier_from_args(
        args, EXP_TYPE)
    config = load_yaml_config_file(config_file)

    # update experiment config and dataset path given the script arguments
    path_data = arguments.update_path_from_args(args)
    config = arguments.update_config_from_args(config, args)
    config = arguments_coot.update_coot_config_from_args(config, args)

    # read experiment config dict
    cfg = Config(config, is_train=not args.validate and not args.test_dataset)
    if args.print_config:
        print(cfg)

    # set seed
    if cfg.random_seed is not None:
        print(f"Set seed to {cfg.random_seed}")
        set_seed(
            cfg.random_seed,
            set_deterministic=False)  # set deterministic via config if needed

    # create dataset and dataloader
    if (cfg.dataset_train.preload_vid_feat
            or cfg.dataset_train.preload_text_feat
            or cfg.dataset_val.preload_vid_feat
            or cfg.dataset_val.preload_text_feat):
        cmd = "ulimit -n 100000"
        print(f"Run system command to avoid TooManyFiles error:\n{cmd}")
        os.system(cmd)
    ################## CREATE DATASETS FROM PATH DATA ################
    train_set, val_set, train_loader, val_loader = create_retrieval_datasets_and_loaders(
        cfg, path_data)

    if args.test_dataset:
        # run dataset test and exit
        run_retrieval_dataset_test(train_set, train_loader)
        return
    print("---------- Setup done!")

    for run_number in range(1, args.num_runs + 1):
        run_name = f"{args.run_name}{run_number}"

        # create coot models
        model_mgr = ModelManager(cfg)

        # always load best epoch during validation
        load_best = args.load_best or args.validate

        # create trainer
        trainer = Trainer(cfg,
                          model_mgr,
                          exp_group,
                          exp_name,
                          run_name,
                          len(train_loader),
                          log_dir=args.log_dir,
                          log_level=args.log_level,
                          logger=None,
                          print_graph=args.print_graph,
                          reset=args.reset,
                          load_best=load_best,
                          load_epoch=args.load_epoch,
                          load_model=args.load_model,
                          inference_only=args.validate)

        if args.validate:
            # run validation
            trainer.validate_epoch(val_loader,
                                   val_clips=cfg.val.val_clips,
                                   save_embs=args.save_embeddings)
        else:
            # run training
            train_loss = trainer.train_model(train_loader, val_loader)

        # save train loss
        ipdb.set_trace()
        # done with this round
        trainer.close()
        del model_mgr
        del trainer
Exemplo n.º 4
0
def main():
    # setup arguments
    parser = utils.ArgParser(description=__doc__)
    arguments.add_default_args(parser)
    arguments.add_exp_identifier_args(parser)
    arguments.add_trainer_args(parser)
    arguments.add_dataset_test_arg(parser)
    args = parser.parse_args()

    # load repository config yaml file to dict
    exp_group, exp_name, config_file = arguments.setup_experiment_identifier_from_args(
        args, EXP_TYPE)
    config = load_yaml_config_file(config_file)

    # update experiment config and dataset path given the script arguments
    config = arguments.update_config_from_args(config, args)
    dataset_path = arguments.update_path_from_args(args)

    # read experiment config dict
    cfg = MLPMNISTExperimentConfig(config)
    if args.print_config:
        print(cfg)

    # set seed
    verb = "Set seed"
    if cfg.random_seed is None:
        cfg.random_seed = np.random.randint(0, 2**15, dtype=np.int32)
        verb = "Randomly generated seed"
    print(f"{verb} {cfg.random_seed} deterministic {cfg.cudnn_deterministic} "
          f"benchmark {cfg.cudnn_benchmark}")
    set_seed(cfg.random_seed,
             cudnn_deterministic=cfg.cudnn_deterministic,
             cudnn_benchmark=cfg.cudnn_benchmark)

    # create datasets
    train_set = MNIST(str(dataset_path),
                      train=True,
                      download=True,
                      transform=ToTensor())
    val_set = MNIST(str(dataset_path),
                    train=False,
                    download=True,
                    transform=ToTensor())

    # make datasets smaller if requested in config
    if cfg.dataset_train.max_datapoints > -1:
        train_set.data = train_set.data[:cfg.dataset_train.max_datapoints]
    if cfg.dataset_val.max_datapoints > -1:
        val_set.data = val_set.data[:cfg.dataset_val.max_datapoints]

    # create dataloaders
    train_loader = create_loader(train_set,
                                 cfg.dataset_train,
                                 batch_size=cfg.train.batch_size)
    val_loader = create_loader(val_set,
                               cfg.dataset_val,
                               batch_size=cfg.val.batch_size)

    if args.test_dataset:
        # run dataset test and exit
        run_mlpmnist_dataset_test(train_set, train_loader)
        return
    print("---------- Setup done!")

    for run_number in range(1, args.num_runs + 1):
        run_name = f"{args.run_name}{run_number}"

        # create model
        model_mgr = MLPModelManager(cfg)

        # always load best epoch during validation
        load_best = args.load_best or args.validate

        # create trainer
        trainer = MLPMNISTTrainer(cfg,
                                  model_mgr,
                                  exp_group,
                                  exp_name,
                                  run_name,
                                  len(train_loader),
                                  log_dir=args.log_dir,
                                  log_level=args.log_level,
                                  logger=None,
                                  print_graph=args.print_graph,
                                  reset=args.reset,
                                  load_best=load_best,
                                  load_epoch=args.load_epoch,
                                  inference_only=args.validate)

        if args.validate:
            # run validation
            trainer.validate_epoch(val_loader)
        else:
            # run training
            trainer.train_model(train_loader, val_loader)

        # done with this round
        trainer.close()
        del model_mgr
        del trainer