Exemplo n.º 1
0
def scanline_error(tensor, shape):
    """
    """

    height, width, channels = shape

    value_shape = [height, width, 1]
    error_line = tf.maximum(
        basic([int(height * .75), 1],
              value_shape,
              distrib=ValueDistribution.exp) - .5, 0)
    error_swerve = tf.maximum(
        basic([int(height * .01), 1],
              value_shape,
              distrib=ValueDistribution.exp) - .5, 0)

    error_line *= error_swerve

    error_swerve *= 2

    white_noise = basic([int(height * .75), 1], value_shape)
    white_noise = effects.blend(0, white_noise, error_swerve)

    error = error_line + white_noise

    y_index = effects.column_index(shape)
    x_index = (effects.row_index(shape) - tf.cast(
        effects.value_map(error, value_shape) * width * .025,
        tf.int32)) % width

    return tf.minimum(
        tf.gather_nd(tensor, tf.stack([y_index, x_index], 2)) +
        error_line * white_noise * 4, 1)
Exemplo n.º 2
0
def glitch(tensor, shape, time=0.0, speed=1.0):
    """
    Apply a glitch effect.

    :param Tensor tensor:
    :param list[int] shape:
    :return: Tensor
    """

    height, width, channels = shape

    tensor = effects.normalize(tensor)

    base = multires(2,
                    shape,
                    time=time,
                    speed=speed,
                    distrib=ValueDistribution.simplex,
                    octaves=random.randint(2, 5),
                    spline_order=0,
                    refract_range=random.random())
    stylized = effects.normalize(
        effects.color_map(base,
                          tensor,
                          shape,
                          horizontal=True,
                          displacement=2.5))

    jpegged = effects.color_map(base,
                                stylized,
                                shape,
                                horizontal=True,
                                displacement=2.5)

    if channels in (1, 3):
        jpegged = effects.jpeg_decimate(jpegged, shape)

    # Offset a single color channel
    separated = [stylized[:, :, i] for i in range(channels)]
    x_index = (effects.row_index(shape) + random.randint(1, width)) % width
    index = tf.cast(tf.stack([effects.column_index(shape), x_index], 2),
                    tf.int32)

    channel = random.randint(0, channels - 1)
    separated[channel] = effects.normalize(
        tf.gather_nd(separated[channel], index) % random.random())

    stylized = tf.stack(separated, 2)

    combined = effects.blend(tf.multiply(stylized, 1.0), jpegged, base)
    combined = effects.blend(tensor, combined, tf.maximum(base * 2 - 1, 0))
    combined = effects.blend(combined, effects.pixel_sort(combined, shape),
                             1.0 - base)

    combined = tf.image.adjust_contrast(combined, 1.75)

    return combined
Exemplo n.º 3
0
def glitch(tensor, shape):
    """
    Apply a glitch effect.

    :param Tensor tensor:
    :param list[int] shape:
    :return: Tensor
    """

    height, width, channels = shape

    tensor = effects.normalize(tensor)

    base = multires(2,
                    shape,
                    octaves=random.randint(2, 5),
                    spline_order=0,
                    refract_range=random.random())
    stylized = effects.normalize(
        effects.color_map(base,
                          tensor,
                          shape,
                          horizontal=True,
                          displacement=2.5))

    jpegged = effects.jpeg_decimate(
        effects.color_map(base,
                          stylized,
                          shape,
                          horizontal=True,
                          displacement=2.5), shape)

    # Offset a single color channel
    separated = [stylized[:, :, i] for i in range(channels)]
    x_index = (effects.row_index(shape) + random.randint(1, width)) % width
    index = tf.cast(tf.stack([effects.column_index(shape), x_index], 2),
                    tf.int32)

    channel = random.randint(0, channels - 1)
    separated[channel] = effects.normalize(
        tf.gather_nd(separated[channel], index) % random.random())

    channel = random.randint(0, channels - 1)
    top, _ = tf.nn.top_k(effects.value_map(tensor, shape), k=width)
    separated[channel] += top

    stylized = tf.stack(separated, 2)

    combined = effects.blend(tf.multiply(stylized, 1.0), jpegged, base)
    combined = effects.blend(tensor, combined, tf.maximum(base * 2 - 1, 0))

    return combined
Exemplo n.º 4
0
def vhs(tensor, shape, time=0.0, speed=1.0):
    """
    Apply a bad VHS tracking effect.

    :param Tensor tensor:
    :param list[int] shape:
    :return: Tensor
    """

    height, width, channels = shape

    # Generate scan noise
    scan_noise = basic(
        [int(height * .5) + 1, int(width * .05) + 1], [height, width, 1],
        time=time,
        speed=speed,
        spline_order=1,
        distrib=ValueDistribution.simplex)

    # Create horizontal offsets
    grad = basic([int(random.random() * 10) + 5, 1], [height, width, 1],
                 time=time,
                 speed=speed,
                 distrib=ValueDistribution.simplex)
    grad = tf.maximum(grad - .5, 0)
    grad = tf.minimum(grad * 2, 1)

    x_index = effects.row_index(shape)
    x_index -= tf.squeeze(
        tf.cast(scan_noise * width * tf.square(grad), tf.int32))
    x_index = x_index % width

    tensor = effects.blend(tensor, scan_noise, grad)

    identity = tf.stack([effects.column_index(shape), x_index], 2)

    tensor = tf.gather_nd(tensor, identity)

    return tensor
Exemplo n.º 5
0
def vhs(tensor, shape):
    """
    Apply a bad VHS tracking effect.

    :param Tensor tensor:
    :param list[int] shape:
    :return: Tensor
    """

    height, width, channels = shape

    scan_noise = tf.reshape(
        basic(
            [int(height * .5) + 1, int(width * .01) + 1], [height, width, 1]),
        [height, width])
    white_noise = basic(
        [int(height * .5) + 1, int(width * .1) + 1], [height, width, 1],
        spline_order=0)

    # Create horizontal offsets
    grad = tf.maximum(
        basic([int(random.random() * 10) + 5, 1], [height, width, 1]) - .5, 0)
    grad *= grad
    grad = tf.image.convert_image_dtype(grad, tf.float32, saturate=True)
    grad = effects.normalize(grad)
    grad = tf.reshape(grad, [height, width])

    tensor = effects.blend_cosine(tensor, white_noise,
                                  tf.reshape(grad, [height, width, 1]) * .75)

    x_index = effects.row_index(shape) - tf.cast(
        grad * width * .125 +
        (scan_noise * width * .25 * grad * grad), tf.int32)
    identity = tf.stack([effects.column_index(shape), x_index], 2) % width

    tensor = tf.gather_nd(tensor, identity)
    tensor = tf.image.convert_image_dtype(tensor, tf.float32, saturate=True)

    return tensor
Exemplo n.º 6
0
def values(freq,
           shape,
           distrib=ValueDistribution.normal,
           corners=False,
           mask=None,
           mask_inverse=False,
           spline_order=3,
           wavelet=False,
           time=0.0,
           speed=1.0):
    """
    """

    initial_shape = freq + [shape[-1]]

    if isinstance(distrib, int):
        distrib = ValueDistribution(distrib)

    elif isinstance(distrib, str):
        distrib = ValueDistribution[distrib]

    if isinstance(mask, int):
        mask = ValueMask(mask)

    elif isinstance(mask, str):
        mask = ValueMask[mask]

    if distrib == ValueDistribution.ones:
        tensor = tf.ones(initial_shape)

    elif distrib == ValueDistribution.mids:
        tensor = tf.ones(initial_shape) * .5

    elif distrib == ValueDistribution.normal:
        tensor = tf.random_normal(initial_shape)

    elif distrib == ValueDistribution.uniform:
        tensor = tf.random_uniform(initial_shape)

    elif distrib == ValueDistribution.exp:
        tensor = tf.cast(tf.stack(np.random.exponential(size=initial_shape)),
                         tf.float32)

    elif distrib == ValueDistribution.laplace:
        tensor = tf.cast(tf.stack(np.random.laplace(size=initial_shape)),
                         tf.float32)

    elif distrib == ValueDistribution.lognormal:
        tensor = tf.cast(tf.stack(np.random.lognormal(size=initial_shape)),
                         tf.float32)

    elif distrib == ValueDistribution.column_index:
        tensor = tf.expand_dims(
            tf.cast(effects.normalize(effects.column_index(initial_shape)),
                    tf.float32), -1) * tf.ones(initial_shape, tf.float32)

    elif distrib == ValueDistribution.row_index:
        tensor = tf.expand_dims(
            tf.cast(effects.normalize(effects.row_index(initial_shape)),
                    tf.float32), -1) * tf.ones(initial_shape, tf.float32)

    elif distrib == ValueDistribution.simplex:
        tensor = simplex.simplex(initial_shape, time=time, speed=speed)

    elif distrib == ValueDistribution.simplex_exp:
        tensor = tf.pow(simplex.simplex(initial_shape, time=time, speed=speed),
                        4)

    else:
        raise ValueError("%s (%s) is not a ValueDistribution" %
                         (distrib, type(distrib)))

    if mask:
        atlas = None

        if mask == ValueMask.truetype:
            from noisemaker.glyphs import load_glyphs

            atlas = load_glyphs([15, 15, 1])

            if not atlas:
                mask = ValueMask.numeric  # Fall back to canned values

        channel_shape = freq + [1]

        mask_values, _ = masks.mask_values(mask,
                                           channel_shape,
                                           atlas=atlas,
                                           inverse=mask_inverse,
                                           time=time,
                                           speed=speed)

        tensor *= mask_values

    if wavelet:
        tensor = effects.wavelet(tensor, initial_shape)

    tensor = effects.resample(tensor, shape, spline_order=spline_order)

    if (not corners and (freq[0] % 2) == 0) or (corners and
                                                (freq[0] % 2) == 1):
        tensor = effects.offset(tensor,
                                shape,
                                x=int((shape[1] / freq[1]) * .5),
                                y=int((shape[0] / freq[0]) * .5))

    return tensor