Exemplo n.º 1
0
def get_historical_volume(historical, company, scaler):
    historical_volume = [] #is a dynamic array (list) for python
    average_volume = []

    for i in range(len(historical)):
        x = float(historical[i]['Volume'])
        historical_volume.append(x)
        average_volume.append(float(company.get_avg_daily_volume()))

    scaled_historical_volume = scale.scale(historical_volume, scaler)

    scaled_average_volume = scale.scale(average_volume, scaler)

    return historical_volume, average_volume, scaled_historical_volume, scaled_average_volume
Exemplo n.º 2
0
def get_historical_volume(historical, company, scaler):
    historical_volume = [] #is a dynamic array (list) for python
    average_volume = []

    for i in range(len(historical)):
        x = float(historical[i]['Volume'])
        historical_volume.append(x)
        average_volume.append(float(company.get_avg_daily_volume()))

    scaled_historical_volume = scale.scale(historical_volume, scaler)

    scaled_average_volume = scale.scale(average_volume, scaler)

    return historical_volume, average_volume, scaled_historical_volume, scaled_average_volume
Exemplo n.º 3
0
def get_change(historical, scaler):
        change = []
        change.append(0)
        for i in range(len(historical)-1):
            x = float(historical[i+1]["Close"]) - float(historical[i]['Close'])
            change.append(x)
        scaled_change = scale.scale(change, scaler)

        return change, scaled_change
Exemplo n.º 4
0
def get_change(historical, scaler):
        change = []
        change.append(0)
        for i in range(len(historical)-1):
            x = float(historical[i+1]["Close"]) - float(historical[i]['Close'])
            change.append(x)
        scaled_change = scale.scale(change, scaler)

        return change, scaled_change
Exemplo n.º 5
0
def get_historical_low(historical, scaler):
    days_low = [] 

    for i in range(len(historical)):
        x = float(historical[i]['Low'])
        days_low.append(x)

    scaled_low = scale.scale(days_low, scaler)
        
    return days_low, scaled_low
Exemplo n.º 6
0
def get_historical_low(historical, scaler):
    days_low = [] 

    for i in range(len(historical)):
        x = float(historical[i]['Low'])
        days_low.append(x)

    scaled_low = scale.scale(days_low, scaler)
        
    return days_low, scaled_low
Exemplo n.º 7
0
def get_historical_high(historical, scaler):

    days_high = []

    for i in range(len(historical)):
        x = float(historical[i]['High'])
        days_high.append(x)

    scaled_high = scale.scale(days_high, scaler)
        
    return days_high, scaled_high
Exemplo n.º 8
0
def get_historical_opening(historical, scaler):

    opening = [] 
    
    for i in range(len(historical)):
        x = float(historical[i]['Open'])
        opening.append(x)

    scaled_opening = scale.scale(opening, scaler)
        
    return opening, scaled_opening
Exemplo n.º 9
0
def get_historical_closing(historical, scaler):

    closing = [] 
    
    for i in range(len(historical)):
        x = float(historical[i]['Adj_Close'])
        closing.append(x)
        
    scaled_closing = scale.scale(closing, scaler)

    return closing, scaled_closing
Exemplo n.º 10
0
def get_historical_high(historical, scaler):

    days_high = []

    for i in range(len(historical)):
        x = float(historical[i]['High'])
        days_high.append(x)

    scaled_high = scale.scale(days_high, scaler)
        
    return days_high, scaled_high
Exemplo n.º 11
0
def get_historical_opening(historical, scaler):

    opening = [] #is a dynamic array (list) for python
    
    for i in range(len(historical)):
        x = float(historical[i]['Open'])
        opening.append(x)

    scaled_opening = scale.scale(opening, scaler)
        
    return opening, scaled_opening
Exemplo n.º 12
0
def get_back_trading_day(historical, index, scaler):
    op = float(historical[-index]["Open"])
    h = float(historical[-index]['High'])
    l = float(historical[-index]['Low'])
    v = float(historical[-index]['Volume'])
    ch = h - l
    ths = np.array((op, h, l, v))

    sc_ths = scale.scale(ths, scaler)
    #print index, ". ", historical[-index]['Date']
    return sc_ths
Exemplo n.º 13
0
def get_historical_opening(historical, scaler):

    opening = []  #is a dynamic array (list) for python

    for i in range(len(historical)):
        x = float(historical[i]['Open'])
        opening.append(x)

    scaled_opening = scale.scale(opening, scaler)

    return opening, scaled_opening
Exemplo n.º 14
0
def get_historical_closing(historical, scaler):

    #same for closing    
    closing = [] 
    
    for i in range(len(historical)):
        x = float(historical[i]['Adj_Close'])
        closing.append(x)
        
    scaled_closing = scale.scale(closing, scaler)

    return closing, scaled_closing
Exemplo n.º 15
0
def get_trading_day(company, scaler, useSpread, useVolume):
	
	opening_price = float(company.get_open())
	todays_volume = float(company.get_volume())
	high = float(company.get_days_high())
	low = float(company.get_days_low())
	avg_volume = float(company.get_avg_daily_volume())
        change = float(company.get_change())
	
	if useSpread is False and useVolume is False:
		today = np.array((opening_price, high, low))
	elif useSpread is True and useVolume is False:
		today = np.array((opening_price, high, low, change))
	elif useSpread is False and useVolume is True:
		today = np.array((opening_price, high, low, todays_volume))
	else:
		today = np.array((opening_price, high, low, change, todays_volume))

	scaled_today = scale.scale(today, scaler)

	return today, scaled_today
Exemplo n.º 16
0
def get_trading_day(company, scaler, useSpread, useVolume):

    opening_price = float(company.get_open())
    todays_volume = float(company.get_volume())
    high = float(company.get_days_high())
    low = float(company.get_days_low())
    avg_volume = float(company.get_avg_daily_volume())
    change = float(company.get_change())

    if useSpread is False and useVolume is False:
        today = np.array((opening_price, high, low))
    elif useSpread is True and useVolume is False:
        today = np.array((opening_price, high, low, change))
    elif useSpread is False and useVolume is True:
        today = np.array((opening_price, high, low, todays_volume))
    else:
        today = np.array((opening_price, high, low, change, todays_volume))

    scaled_today = scale.scale(today, scaler)

    return today, scaled_today
Exemplo n.º 17
0
 def test_normalize_scale(self):  #scales two points about their midpoint
     from normalize import scale
     self.assertEqual(scale(2.4, (64, 34), (36, 34)), ((83, 34), (16, 34)))
Exemplo n.º 18
0
		receivers.append(int(comps[2]))

		if int(comps[1]) > lastNodeID:
			lastNodeID = int(comps[1])
		if int(comps[2]) > lastNodeID: 
			lastNodeID = int(comps[2])


		#Just for test
		#if comps[0] == '10':
		#	break

	
	nodes = list(range(lastNodeID+1))
	# Scale the data
	edges = scale(edges, normMethod)
	
	edges = get_edges_from_list(edges)
	graph = {
	    "nodes": nodes,
	    "edges": edges,
	    "senders": senders,
	    "receivers": receivers
	}

	seed = 2
	rand = np.random.RandomState(seed=seed)
	print("Convert dictionary to graph")
	graph = dict_to_graph(graph)
	print("Shortest path")
	graph = add_shortest_path(rand, graph)