Exemplo n.º 1
0
 def test_oct(self):
     siglen = int(10**np.random.uniform(4, 6))
     sig = np.random.random(siglen)
     fmin = np.random.random() * 200 + 20
     fmax = np.random.random() * (22048 - fmin) + fmin
     obins = np.random.randint(24) + 1
     scale = OctScale(fmin, fmax, obins)
     nsgt = NSGT(scale, fs=44100, Ls=len(sig))
     c = nsgt.forward(sig)
     s_r = nsgt.backward(c)
     self.assertTrue(np.allclose(sig, s_r, atol=1e-07))
Exemplo n.º 2
0
def getiNSGT(C, L, Fs, resol=24):
    """
    Perform an inverse Nonstationary Gabor Transform
    :param C: An NBinsxNFrames CQT array
    :param L: Number of samples in audio file
    :param Fs: Sample rate
    :param resol: Number of CQT bins per octave
    """
    from nsgt import NSGT, OctScale
    scl = OctScale(50, Fs, resol)
    nsgt = NSGT(scl, Fs, L, matrixform=True)
    return nsgt.backward(C)
Exemplo n.º 3
0
def getNSGT(X, Fs, resol=24):
    """
    Perform a Nonstationary Gabor Transform implementation of CQT
    :param X: A 1D array of audio samples
    :param Fs: Sample rate
    :param resol: Number of CQT bins per octave
    """
    from nsgt import NSGT, OctScale
    scl = OctScale(50, Fs, resol)
    nsgt = NSGT(scl, Fs, len(X), matrixform=True)
    C = nsgt.forward(X)
    return np.array(C)
Exemplo n.º 4
0
    def runit(self, siglen, fmin, fmax, obins, sllen, trlen, real):
        sig = rndsig[:siglen]

        scale = OctScale(fmin, fmax, obins)
        nsgt = NSGT_sliced(scale, fs=44100, sl_len=sllen, tr_area=trlen, real=real)

        c = nsgt.forward((sig,))

        rc = nsgt.backward(c)

        s_r = np.concatenate(list(map(list,rc)))[:len(sig)]
        
        close = np.allclose(sig, s_r, atol=1.e-3)
        if not close:
            print("Failing params:", siglen, fmin, fmax, obins, sllen, trlen, real)
            dev = np.abs(s_r-sig)
            print("Error", np.where(dev>1.e-3), np.max(dev))
        self.assertTrue(close)
Exemplo n.º 5
0
def getiNSGTGriffinLim(C, L, Fs, resol=24, randPhase=False, NIters=20):
    from nsgt import NSGT, OctScale
    scl = OctScale(50, Fs, resol)
    nsgt = NSGT(scl, Fs, L, matrixform=True)
    eps = 2.2204e-16
    if randPhase:
        C = np.exp(
            np.complex(0, 1) * np.random.rand(C.shape[0], C.shape[1])) * C
    A = np.array(C, dtype=np.complex)
    for i in range(NIters):
        print("iNSGT Griffin Lim Iteration %i of %i" % (i + 1, NIters))
        Ai = np.array(nsgt.forward(nsgt.backward(C)))
        A = np.zeros_like(C)
        A[:, 0:Ai.shape[1]] = Ai
        Norm = np.sqrt(A * np.conj(A))
        Norm[Norm < eps] = 1
        A = np.abs(C) * (A / Norm)
    X = nsgt.backward(A)
    return np.real(X)
Exemplo n.º 6
0
def main():
    parser = ArgumentParser()

    parser.add_argument(
        "--mask",
        type=str,
        default="soft",
        choices=("hard", "soft"),
        help="mask strategy",
    )
    parser.add_argument("--outdir", type=str, default="./", help="output directory")
    parser.add_argument(
        "--stream-size",
        type=int,
        default=1024,
        help="stream size for simulated realtime from wav (default=%(default)s)",
    )
    parser.add_argument("input", type=str, help="input file")

    args = parser.parse_args()

    prefix = args.input.split("/")[-1].split("_")[0]

    harm_out = os.path.join(args.outdir, prefix + "_harmonic.wav")
    perc_out = os.path.join(args.outdir, prefix + "_percussive.wav")
    print("writing files to {0}, {1}".format(harm_out, perc_out))

    lharm = 17
    lperc = 7

    # calculate transform parameters
    nsgt_scale = OctScale(80, 20000, 12)

    trlen = args.stream_size  # transition length
    sllen = 4 * args.stream_size  # slice length

    x, fs = librosa.load(args.input, sr=None)
    xh = numpy.zeros_like(x)
    xp = numpy.zeros_like(x)

    hop = trlen
    chunk_size = hop
    n_chunks = int(numpy.floor(x.shape[0] // hop))

    eps = numpy.finfo(numpy.float32).eps

    slicq = NSGT_sliced(
        nsgt_scale,
        sllen,
        trlen,
        fs,
        real=True,
        matrixform=True,
    )
    total_time = 0.0

    for chunk in range(n_chunks - 1):
        t1 = cputime()

        start = chunk * hop
        end = start + sllen

        s = x[start:end]
        signal = (s,)

        c = slicq.forward(signal)

        c = list(c)
        C = numpy.asarray(c)

        Cmag = numpy.abs(C)
        H = scipy.ndimage.median_filter(Cmag, size=(1, lharm, 1))
        P = scipy.ndimage.median_filter(Cmag, size=(1, 1, lperc))

        if args.mask == "soft":
            # soft mask first
            tot = numpy.power(H, 2.0) + numpy.power(P, 2.0) + eps
            Mp = numpy.divide(numpy.power(H, 2.0), tot)
            Mh = numpy.divide(numpy.power(P, 2.0), tot)
        else:
            Mh = numpy.divide(H, P + eps) > 2.0
            Mp = numpy.divide(P, H + eps) >= 2.0

        Cp = numpy.multiply(Mp, C)
        Ch = numpy.multiply(Mh, C)

        # generator for backward transformation
        outseq_h = slicq.backward(Ch)
        outseq_p = slicq.backward(Cp)

        # make single output array from iterator
        sh_r = next(reblock(outseq_h, len(s), fulllast=False))
        sh_r = sh_r.real

        sp_r = next(reblock(outseq_p, len(s), fulllast=False))
        sp_r = sp_r.real

        xh[start:end] = sh_r
        xp[start:end] = sp_r

        t2 = cputime()
        total_time += t2 - t1

    print("Calculation time per iter: %fs" % (total_time / n_chunks))

    scipy.io.wavfile.write(harm_out, fs, xh)
    scipy.io.wavfile.write(perc_out, fs, xp)

    return 0