Exemplo n.º 1
0
 def test_bbox_batches_for_number_0(self):
     test_helper.get_test_metadata()
     # separated bboxes of 25.png(601): [[60, 11, 24, 50], [87, 9, 24, 50], [113, 7, 21, 50]], size of 1.png: 190 x 75
     self._test_bbox_batches(
         'number_0',
         [87 * 100 / 190, 9 * 100 / 75, 24 * 100 / 190, 50 * 100 / 75],
         test_helper.test_data_file_number_0)
Exemplo n.º 2
0
    def test_batches(self):
        data_file_path = test_helper.get_test_metadata()
        batch_size, size, B, H, W, C = 2, (416, 416), 5, 13, 13, 10
        first_loss_batch = self._calculate_loss_feed_batches(0)
        second_loss_batch = self._calculate_loss_feed_batches(1)
        third_loss_batch = self._calculate_loss_feed_batches(2)
        with self.test_session() as sess:
            data_batches, origin_image_shape_batch, image_shape_batch, label_batch, label_bboxes_batch = \
              yolo.batches(data_file_path, 5, batch_size, size, num_preprocess_threads=1, channels=3, is_training=False)
            loss_feed_batches = yolo.prepare_for_loss(B, batch_size,
                                                      label_bboxes_batch,
                                                      image_shape_batch,
                                                      label_batch)

            self.assertEqual(data_batches.get_shape(), (2, 416, 416, 3))
            self.assertEqual(loss_feed_batches['probs'].get_shape(),
                             (2, H * W, B, C))
            self.assertEqual(loss_feed_batches['confs'].get_shape(),
                             (2, H * W, B))
            self.assertEqual(loss_feed_batches['coord'].get_shape(),
                             (2, H * W, B, 4))
            self.assertEqual(loss_feed_batches['proid'].get_shape(),
                             (2, H * W, B, C))
            self.assertEqual(loss_feed_batches['areas'].get_shape().as_list(),
                             [2, H * W, B])
            self.assertEqual(loss_feed_batches['upleft'].get_shape(),
                             (2, H * W, B, 2))
            self.assertEqual(loss_feed_batches['botright'].get_shape(),
                             (2, H * W, B, 2))

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            sess.run(tf.local_variables_initializer())
            _, lfb = sess.run([data_batches, loss_feed_batches])

            all_keys = [
                'probs', 'confs', 'coord', 'proid', 'areas', 'upleft',
                'botright'
            ]

            for k in all_keys:
                print(second_loss_batch)
                self.assertAllClose(lfb[k][0], first_loss_batch[k])
                self.assertAllClose(lfb[k][1], second_loss_batch[k])

            _, lfb = sess.run([data_batches, loss_feed_batches])
            for k in all_keys:
                self.assertAllClose(lfb[k][0], third_loss_batch[k])

            coord.request_stop()
            coord.join(threads)
            sess.close()
    def test_train_length_model(self):
        data_file_path = test_helper.get_test_metadata()
        config = CNNNSRModelConfig(data_file_path=data_file_path, batch_size=2)

        with self.test_session():
            model = CNNLengthTrainModel(config)
            model.build()

            train_op = tf.contrib.layers.optimize_loss(
                loss=model.total_loss,
                global_step=model.global_step,
                learning_rate=0.1,
                optimizer=tf.train.MomentumOptimizer(0.5, momentum=0.5))
            tf.contrib.slim.learning.train(train_op, None, number_of_steps=2)
Exemplo n.º 4
0
    def test_bbox_batches(self):
        batch_size, size = 2, (28, 28)
        with self.test_session() as sess:
            data_file_path = test_helper.get_test_metadata()
            data_batches, bbox_batches = \
              inputs.bbox_batches(data_file_path, batch_size, size, num_preprocess_threads=1, channels=3)

            self.assertEqual(data_batches.get_shape(), (2, 28, 28, 3))
            self.assertEqual(bbox_batches.get_shape(), (2, 4))

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            # bbox of 1.png: 246, 77, 173, 223, size of 1.png: 741 x 350
            _, bb = sess.run([data_batches, bbox_batches])
            self.assertAllClose(bb[0],
                                [246 / 741, 77 / 350, 173 / 741, 223 / 350])

            coord.request_stop()
            coord.join(threads)
            sess.close()
Exemplo n.º 5
0
    def test_batches(self):
        numbers_labels = lambda numbers: np.concatenate([
            one_hot(np.array(numbers) + 1, 11),
            np.array([one_hot(11, 11) for _ in range(5 - len(numbers))])
        ])
        max_number_length, expected_length_labels, expected_numbers_labels, expected_numbers_labels_1 = \
            5, one_hot(np.array([2, 2]), 5), numbers_labels([1, 9]), numbers_labels([2, 3])

        data_file_path = test_helper.get_test_metadata()
        batch_size, size = 2, (28, 28)
        with self.test_session() as sess:
            data_batches, length_label_batches, numbers_label_batches = \
              inputs.batches(data_file_path, max_number_length, batch_size, size, num_preprocess_threads=1, channels=3)

            self.assertEqual(data_batches.get_shape(), (2, 28, 28, 3))
            self.assertEqual(length_label_batches.get_shape(),
                             (2, max_number_length))
            self.assertEqual(numbers_label_batches.get_shape(),
                             (2, max_number_length, 11))

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            batches = []
            for i in range(5):
                batches.append(
                    sess.run([
                        data_batches, length_label_batches,
                        numbers_label_batches
                    ]))

            db, llb, nlb = batches[0]
            self.assertAllEqual(llb, expected_length_labels)
            self.assertNDArrayNear(nlb[0], expected_numbers_labels, 1e-5)
            self.assertNDArrayNear(nlb[1], expected_numbers_labels_1, 1e-5)

            coord.request_stop()
            coord.join(threads)
            sess.close()
Exemplo n.º 6
0
    def test_evaluation_correct_count(self):
        data_file_path = test_helper.get_test_metadata()
        config = CNNNSRModelConfig(data_file_path=data_file_path, batch_size=2)

        with self.test_session() as sess:
            model = CNNNSREvalModel(config)
            model.build()

            sess.run([
                tf.global_variables_initializer(),
                tf.local_variables_initializer()
            ])

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)

            for i in range(10):
                print('batch %s correct count: %s' %
                      (i, model.correct_count(sess)))

            coord.request_stop()
            coord.join(threads, stop_grace_period_secs=10)
Exemplo n.º 7
0
    def _test_bbox_batches(self,
                           target_bbox,
                           first_expected_bbox,
                           data_file_path=None):
        data_file_path = test_helper.get_test_metadata(
        ) if data_file_path is None else data_file_path
        batch_size, size = 2, (28, 28)
        with self.test_session() as sess:
            data_batches, bbox_batches = \
              inputs.bbox_batches(data_file_path, batch_size, size, 5,
                                  num_preprocess_threads=1, channels=3, target_bbox=target_bbox)

            self.assertEqual(data_batches.get_shape(), (2, 28, 28, 3))
            self.assertEqual(bbox_batches.get_shape(), (2, 4))

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            _, bb = sess.run([data_batches, bbox_batches])
            self.assertAllClose(bb[0], first_expected_bbox)

            coord.request_stop()
            coord.join(threads)
            sess.close()
Exemplo n.º 8
0
 def create_test_config(self):
     data_file_path = test_helper.get_test_metadata()
     config = YOLOModelConfig(data_file_path=data_file_path,
                              net_type='yolo',
                              batch_size=2)
     return config