Exemplo n.º 1
0
def interpolate(points, t):
    """points=(x,y), list of x's and y's. "t" ... list of x, for which we want
    to evaluate the dependence "y". returns a list of "y" evaluated at the grid
    "t".
    Assumes t is sorted in ascending order
    Assumes points x axis are sorted in ascending order
    """
    xx, yy = points
    x = t

    t0 = numarray.compress(x <= min(xx), x)
    #   t1 = numarray.compress( (x>min(xx)) & (x<max(xx)), x )
    t1 = numarray.compress((x > min(xx)) & (x < xx[-1]), x)
    #   t2 = numarray.compress(x>=max(xx), x)
    t2 = numarray.compress(x >= xx[-1], x)
    if (xx[1] - xx[0] == 0):
        slope0 = sign(yy[1] - yy[0]) * 1e20
    else:
        slope0 = (yy[1] - yy[0]) / (xx[1] - xx[0])
    slope2 = (yy[-1] - yy[-2]) / (xx[-1] - xx[-2])
    indices = numarray.searchsorted(xx, t1)
    x0 = xx[indices - 1]
    x1 = xx[indices]
    y0 = yy[indices - 1]
    y1 = yy[indices]
    slope = (y1 - y0) / (x1 - x0)

    y1 = slope * (t1 - x0) + y0
    y0 = slope0 * (t0 - xx[0]) + yy[0]  # extrapolate
    y2 = slope2 * (t2 - xx[-1]) + yy[-1]  # extrapolate

    y = numarray.concatenate((y0, y1, y2))
    return y
Exemplo n.º 2
0
def interpolate(points,t):
    """points=(x,y), list of x's and y's. "t" ... list of x, for which we want
    to evaluate the dependence "y". returns a list of "y" evaluated at the grid
    "t".
    Assumes t is sorted in ascending order
    Assumes points x axis are sorted in ascending order
    """
    xx,yy=points
    x=t

    t0 = numarray.compress(x<=min(xx), x)
#   t1 = numarray.compress( (x>min(xx)) & (x<max(xx)), x )
    t1 = numarray.compress( (x>min(xx)) & (x<xx[-1]), x )
#   t2 = numarray.compress(x>=max(xx), x)
    t2 = numarray.compress(x>=xx[-1], x)
    if (xx[1]-xx[0] == 0):
        slope0 = sign(yy[1]-yy[0])*1e20
    else:
        slope0 = (yy[1]-yy[0])/(xx[1]-xx[0])
    slope2 = (yy[-1]-yy[-2])/(xx[-1]-xx[-2])
    indices = numarray.searchsorted(xx,t1)
    x0 = xx[indices-1]
    x1 = xx[indices]
    y0 = yy[indices-1]
    y1 = yy[indices]
    slope = (y1-y0)/(x1-x0)

    y1 = slope*(t1-x0)+y0
    y0 = slope0*(t0-xx[0])+yy[0]    # extrapolate
    y2 = slope2*(t2-xx[-1])+yy[-1]    # extrapolate

    y = numarray.concatenate((y0,y1,y2))
    return y
Exemplo n.º 3
0
def binitbins(xmin, xmax, nbin, x, y):  #use equally spaced bins
    dx = float((xmax - xmin) / (nbin))
    xbin = N.arange(xmin, (xmax), dx) + dx / 2.
    #print "within binitbins"
    #print "xbin = ",xbin
    #print "dx = ",dx
    #print "xmax = ",xmax
    #print "xmin = ",xmin
    ybin = N.zeros(len(xbin), 'd')
    ybinerr = N.zeros(len(xbin), 'd')
    xbinnumb = N.array(len(x), 'd')
    x1 = N.compress((x >= xmin) & (x <= xmax), x)
    y1 = N.compress((x >= xmin) & (x <= xmax), y)
    x = x1
    y = y1
    xbinnumb = ((x - xmin) * nbin / (xmax - xmin)
                )  #calculate x  bin number for each point
    j = -1
    for i in range(len(xbin)):
        ydata = N.compress(abs(xbinnumb - float(i)) < .5, y)
        try:
            ybin[i] = N.average(ydata)
            #ybin[i]=pylab.median(ydata)
            ybinerr[i] = pylab.std(ydata) / N.sqrt(float(len(ydata)))
        except ZeroDivisionError:
            ybin[i] = 0.
            ybinerr[i] = 0.
    return xbin, ybin, ybinerr
Exemplo n.º 4
0
 def plot_source_info(self,event):
 
     ra = event.xdata
     dec = event.ydata
     #print (event.key,ra,dec)
     if event.key == 's':
         #print self.constructed_pos[:,0]
         #print self.constructed_pos[:,1]
         dist = numarray.sqrt( (self.constructed_pos[:,0] - ra)**2 + (self.constructed_pos[:,1] - dec)**2)
         
         #print dist
         #print "min distance = %f " % min(dist)
         the_source_ind = numarray.compress(dist == min(dist), numarray.fromlist(range(len(self.constructed_source_list))))
         #print the_source_ind
         #the_source_ind = numarray.compress(dist == min(dist),numarray.arange(len(self.constructed_source_list)))
         the_source = self.constructed_source_list[the_source_ind[0]]
         print the_source
         dist = numarray.sqrt( (the_source.current_pos[0] - self.real_pos[:,0])**2 + (the_source.current_pos[1] - self.real_pos[:,1])**2)
         print "min distances to nearest real source = %f arcsec" % min(dist)
         the_source_ind = numarray.compress(dist == min(dist), numarray.fromlist(range(len(self.real_list))))
         the_source = self.real_list[the_source_ind[0]]
         print "That real source is at ra=%f dec=%f" % (the_source.start_pos[0],the_source.start_pos[1])
     if event.key == 'r':
         dist = numarray.sqrt( (self.real_pos[:,0] - ra)**2 + (self.real_pos[:,1] - dec)**2)
         
         #print dist
         #print "min distance = %f " % min(dist)
         the_source_ind = numarray.compress(dist == min(dist), numarray.fromlist(range(len(self.real_list))))
         #print the_source_ind
         #the_source_ind = numarray.compress(dist == min(dist),numarray.arange(len(self.constructed_source_list)))
         the_source = self.real_list[the_source_ind[0]]
         print the_source
Exemplo n.º 5
0
    def drawmeridians(self,ax,meridians,color='k',linewidth=1., \
                      linestyle='--',dashes=[1,1]):
        """
 draw meridians (longitude lines).

 ax - current axis instance.
 meridians - list containing longitude values to draw (in degrees).
 color - color to draw meridians (default black).
 linewidth - line width for meridians (default 1.)
 linestyle - line style for meridians (default '--', i.e. dashed).
 dashes - dash pattern for meridians (default [1,1], i.e. 1 pixel on,
  1 pixel off).
        """
        if self.projection not in ['merc','cyl']:
            lats = N.arange(-80,81).astype('f')
        else:
            lats = N.arange(-90,91).astype('f')
        xdelta = 0.1*(self.xmax-self.xmin)
        ydelta = 0.1*(self.ymax-self.ymin)
        for merid in meridians:
            lons = merid*N.ones(len(lats),'f')
            x,y = self(lons,lats)
            # remove points outside domain.
            testx = N.logical_and(x>=self.xmin-xdelta,x<=self.xmax+xdelta)
            x = N.compress(testx, x)
            y = N.compress(testx, y)
            testy = N.logical_and(y>=self.ymin-ydelta,y<=self.ymax+ydelta)
            x = N.compress(testy, x)
            y = N.compress(testy, y)
            if len(x) > 1 and len(y) > 1:
                # split into separate line segments if necessary.
                # (not necessary for mercator or cylindrical).
                xd = (x[1:]-x[0:-1])**2
                yd = (y[1:]-y[0:-1])**2
                dist = N.sqrt(xd+yd)
                split = dist > 500000.
                if N.sum(split) and self.projection not in ['merc','cyl']:
                   ind = (N.compress(split,MLab.squeeze(split*N.indices(xd.shape)))+1).tolist()
                   xl = []
                   yl = []
                   iprev = 0
                   ind.append(len(xd))
                   for i in ind:
                       xl.append(x[iprev:i])
                       yl.append(y[iprev:i])
                       iprev = i
                else:
                    xl = [x]
                    yl = [y]
                # draw each line segment.
                for x,y in zip(xl,yl):
                    # skip if only a point.
                    if len(x) > 1 and len(y) > 1:
                        l = Line2D(x,y,linewidth=linewidth,linestyle=linestyle)
                        l.set_color(color)
                        l.set_dashes(dashes)
                        ax.add_line(l)
Exemplo n.º 6
0
def lsq_clipped(x, y, sig, int_scat=None, clip=3.0, astart=None, bstart=None,
                siga_in=0.0, sigb_in=0.0):
    olda = oldb = None
    if sig is None:
        sig = N.ones(x.shape)
        mwt = 0
    else:
        sig = N.array(sig)
        mwt = 1
    a = astart
    b = bstart
    while 1:
        if astart is None and bstart is None:
            if int_scat is None:
                results = nr.fit(x, y, sig)
            else:
                results = nr.fit_i(x, y, sig, int_scat)
            a, b, siga, sigb, chi2 = results
            scatter = calc_scatter(x, y, sig, int_scat, a, b)
        elif astart is not None and bstart is None:
            if int_scat is None:
                results = nr.fit_slope(x, y, sig, mwt, astart, siga_in)
            else:
                results = nr.fit_slope_i(x, y, sig, int_scat, astart, siga_in)
            b, sigb, chi2 = results
            siga = 0.0
            scatter = calc_scatter(x, y, sig, int_scat, astart, b)
        elif astart is None and bstart is not None:
            if int_scat is None:
                results = nr.fit_intercept(x, y, sig, mwt, bstart, sigb_in)
            else:
                results = nr.fit_intercept_i(x, y, sig, int_scat, bstart, sigb_in)
            a, siga, chi2 = results
            sigb = 0.0
            scatter = calc_scatter(x, y, sig, int_scat, a, bstart)
        if not (olda is None or oldb is None):
            if abs(a) < conv_limit:
                atest = conv_limit
            else:
                atest = abs(a)
            if abs(b) < conv_limit:
                btest = conv_limit
            else:
                btest = abs(b)
            if (abs(olda - a) < conv_limit*atest and
                abs(oldb - b) < conv_limit*btest):
                break
        keep = abs(y - a - b*x) < clip*scatter
        xnew = N.compress(keep, x)
        ynew = N.compress(keep, y)
        signew = N.compress(keep, sig)
        x = xnew
        y = ynew
        sig = signew
        olda, oldb = (a, b)
        n = len(x)
    return (a, b, siga, sigb, chi2, scatter, n)
Exemplo n.º 7
0
def calcavesky():
    input = open("noise.dat", 'r')
    aperture = []
    counts = []
    area = []
    j = 0
    for line in input:
        if line.find('#') > -1:  #skip lines with '#' in them
            continue
        if line.find('mosaic_minus') > -1:  #skip lines with '#' in them
            j = 0
            continue
        j = j + 1
        if (j > 3):
            #print j, line
            t = line.split()
            aperture.append(float(t[0]))
            counts.append(float(t[1]))
            area.append(float(t[2]))
    input.close()
    aperture = N.array(aperture, 'f')
    counts = N.array(counts, 'f')
    area = N.array(area, 'f')
    ap = N.zeros(npoints, 'f')

    aparea = N.zeros(nap, 'f')
    aveap = N.zeros(nap, 'f')
    aveaperr = N.zeros(nap, 'f')
    avearea = N.zeros(nap, 'f')
    aveareaerr = N.zeros(nap, 'f')
    #for i in range(len(ap)):
    for i in range(nap):
        #print i, len(ap),aperture[i],aperture[i+1]
        if (i < (nap - 1)):
            ap = N.compress(
                (aperture >= aperture[i]) & (aperture < aperture[i + 1]),
                counts)
            aparea = N.compress(
                (aperture >= aperture[i]) & (aperture < aperture[i + 1]), area)
        else:
            ap = N.compress((aperture >= aperture[i]) & (aperture < 20.),
                            counts)
            aparea = N.compress((aperture >= aperture[i]) & (aperture < 20.),
                                area)

        #print ap
        #aparea=N.compress((aperture >= aperture[i]) & (aperture < aperture[i+1]),area)
        aveap[i] = N.average(ap)
        aveaperr[i] = scipy.stats.std(ap)
        avearea[i] = N.average(aparea)
        aveareaerr[i] = scipy.stats.std(aparea)
        print "ave sky = %8.4f +/- %8.4f" % (N.average(ap),
                                             scipy.stats.std(ap))
        print "ave area = %8.4f +/- %8.4f" % (N.average(aparea),
                                              scipy.stats.std(aparea))
    return aveap, aveaperr, avearea, aveareaerr
Exemplo n.º 8
0
def fig5b(t,m,p): # Metallicity vs. time
    """ Plot SFR vs age """
    tt = numarray.compress(t>p.s0x,t)
    mm = numarray.compress(t>p.s0x,m)
    tt = numarray.compress(tt<p.s2x,tt)
    mm = numarray.compress(tt<p.s2x,mm)
    pylab.plot(tt,mm)
    metallicity_bezier(p)
    pylab.xlabel("Age (Gyr)")
    pylab.ylabel("Metallicity") 
Exemplo n.º 9
0
def fig5(t, m):  # Metallicity vs. time
    """ Plot SFR vs age """
    tt = numarray.compress(t > p.s0x, t)
    mm = numarray.compress(t > p.s0x, m)
    tt = numarray.compress(tt < p.s2x, tt)
    mm = numarray.compress(tt < p.s2x, mm)
    pylab.plot(10.**tt / 1.e9, mm)
    pylab.xlim(0.1, 15)
    pylab.xlabel("Age (Gyr)")
    pylab.ylabel("Metallicity")
Exemplo n.º 10
0
def fig5b(t, m, p):  # Metallicity vs. time
    """ Plot SFR vs age """
    tt = numarray.compress(t > p.s0x, t)
    mm = numarray.compress(t > p.s0x, m)
    tt = numarray.compress(tt < p.s2x, tt)
    mm = numarray.compress(tt < p.s2x, mm)
    pylab.plot(tt, mm)
    metallicity_bezier(p)
    pylab.xlabel("Age (Gyr)")
    pylab.ylabel("Metallicity")
Exemplo n.º 11
0
def fig5(t,m): # Metallicity vs. time
    """ Plot SFR vs age """
    tt = numarray.compress(t>p.s0x,t)
    mm = numarray.compress(t>p.s0x,m)
    tt = numarray.compress(tt<p.s2x,tt)
    mm = numarray.compress(tt<p.s2x,mm)
    pylab.plot(10.**tt/1.e9,mm)
    pylab.xlim(0.1,15)
    pylab.xlabel("Age (Gyr)")
    pylab.ylabel("Metallicity") 
Exemplo n.º 12
0
def med_func(x, y, sig, b):
    small = 1.0e-8
    aa = median(y - b*x)
    d = (y - aa - b*x)
    mad = median(N.absolute(d))
    s = mad  / 0.6745
    d /= sig
    sign = N.compress(N.absolute(d) > small, d)
    sign = sign / N.absolute(sign)
    x = N.compress(N.absolute(d) > small, x)
    sum = N.sum(sign * x)
    return sum, s, aa
Exemplo n.º 13
0
def contour(x, y, xmin, xmax, ymin, ymax):
    ncontbin = 20.
    dx = float(abs((xmax - xmin) / ncontbin))
    dy = float(abs((ymax - ymin) / ncontbin))
    xcontour = N.arange(xmin, (xmax), dx)
    ycontour = N.arange(ymin, (ymax), dy)
    A = N.zeros((int(ncontbin), int(ncontbin)), 'f')
    xbinnumb = N.array(len(x), 'f')
    ybinnumb = N.array(len(x), 'f')
    x1 = N.compress((x >= xmin) & (x <= xmax) & (y >= ymin) & (y <= ymax), x)
    y1 = N.compress((x >= xmin) & (x <= xmax) & (y >= ymin) & (y <= ymax), y)
    x = x1
    y = y1
    xbinnumb = ((x - xmin) * ncontbin / (xmax - xmin)
                )  #calculate x  bin number for each point
    ybinnumb = ((y - ymin) * ncontbin / (ymax - ymin)
                )  #calculate x  bin number for each point
    binID = zip(xbinnumb, ybinnumb)
    Amax = 0
    for (i1, j1) in binID:
        i = int(i1)
        j = int(j1)
        if i > (ncontbin - 1):
            continue
        if j > (ncontbin - 1):
            continue

#print i,j,A
        A[j,
          i] = A[j,
                 i] + 1  #have to switch i,j in A[] to make contours look right
    #pylab.figure()
    #print A
    for i in range(int(ncontbin)):
        for j in range(int(ncontbin)):
            if A[j, i] > Amax:
                Amax = A[j, i]
    #Amax=max(max(A))
    print "max of A = ", Amax
    V = N.array([.025, .1, .25, .5, .75, .95], 'f')
    V = V * Amax
    con = pylab.contour((xcontour + dx), (ycontour),
                        A,
                        V,
                        alpha=5.,
                        colors='r',
                        linewidth=5.,
                        hold='on')
Exemplo n.º 14
0
    def azhistsub(self,x,y,m1,color):
	m2=m1-2.
	y1=N.compress((x< m1) & (x > m2),y)
	(n,bin,patches)=pylab.hist(y1,bins=10,normed=1,fill=False,ec=color,fc='w',alpha=1.,visible=False)
	s=color+'-'
	s1=str(m1)+'> M > '+str(m2)
	pylab.plot(bin,n,s,label=s1)
Exemplo n.º 15
0
def plotsighaall(sig, psig, o2b, file, nbin):
    o2b = N.array(o2b, 'f')
    sig = N.array(sig, 'f')
    psig = N.array(psig, 'f')
    #o2b=o2b+4.
    o2 = N.compress(o2b > -500., o2b)
    sig = N.compress(o2b > -500., sig)
    psig = N.compress(o2b > -500., psig)

    psplot = file + ".ps"
    psplotinit(psplot)
    #ppgplot.pgsch(0.7)
    ppgplot.pgslw(7)
    (sigbin, o2bin) = my.binit(sig, o2, nbin)
    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgswin(-2., 2., -5., 20.)
    ppgplot.pgbox('blcnst', 0.0, 0.0, 'bcvnst', 0.0,
                  0.0)  #tickmarks and labeling
    ppgplot.pgsch(1.0)
    ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u (gal/Mpc\u2\d)")  #xlabel
    ppgplot.pgsch(1.2)
    ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'EW(H\ga) (\(2078))')

    ppgplot.pgsls(1)  #dotted
    ppgplot.pgslw(4)  #line width

    ppgplot.pgpt(sigbin, o2bin, 17)
    ppgplot.pgpt(N.log10(sig), o2, 1)
    #my.errory(sigbin,o2bin,yerr)
    #print 'dude2', sigbin, o2bin
    ppgplot.pgsci(2)
    ppgplot.pgline(sigbin, o2bin)
    (sigbin, o2bin) = my.binit(psig, o2, nbin)

    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgsci(1)
    ppgplot.pgpt(sigbin, o2bin, 21)
    #my.errory(sigbin,o2bin,yerr)
    ppgplot.pgsci(4)
    ppgplot.pgline(sigbin, o2bin)
    ppgplot.pgsci(1)
    ppgplot.pgend()
Exemplo n.º 16
0
    def plot_source_info(self, event):

        ra = event.xdata
        dec = event.ydata
        #print (event.key,ra,dec)
        if event.key == 's':
            #print self.constructed_pos[:,0]
            #print self.constructed_pos[:,1]
            dist = numarray.sqrt((self.constructed_pos[:, 0] - ra)**2 +
                                 (self.constructed_pos[:, 1] - dec)**2)

            #print dist
            #print "min distance = %f " % min(dist)
            the_source_ind = numarray.compress(
                dist == min(dist),
                numarray.fromlist(range(len(self.constructed_source_list))))
            #print the_source_ind
            #the_source_ind = numarray.compress(dist == min(dist),numarray.arange(len(self.constructed_source_list)))
            the_source = self.constructed_source_list[the_source_ind[0]]
            print the_source
            dist = numarray.sqrt(
                (the_source.current_pos[0] - self.real_pos[:, 0])**2 +
                (the_source.current_pos[1] - self.real_pos[:, 1])**2)
            print "min distances to nearest real source = %f arcsec" % min(
                dist)
            the_source_ind = numarray.compress(
                dist == min(dist),
                numarray.fromlist(range(len(self.real_list))))
            the_source = self.real_list[the_source_ind[0]]
            print "That real source is at ra=%f dec=%f" % (
                the_source.start_pos[0], the_source.start_pos[1])
        if event.key == 'r':
            dist = numarray.sqrt((self.real_pos[:, 0] - ra)**2 +
                                 (self.real_pos[:, 1] - dec)**2)

            #print dist
            #print "min distance = %f " % min(dist)
            the_source_ind = numarray.compress(
                dist == min(dist),
                numarray.fromlist(range(len(self.real_list))))
            #print the_source_ind
            #the_source_ind = numarray.compress(dist == min(dist),numarray.arange(len(self.constructed_source_list)))
            the_source = self.real_list[the_source_ind[0]]
            print the_source
Exemplo n.º 17
0
def itmean(arr,darr,thresh):
   arr=numarray.array(arr)
   darr=numarray.array(darr)
   print len(arr),len(darr)
   arr=numarray.compress(darr>0.,arr)
   darr=numarray.compress(darr>0.,darr)
   arr2=arr
   darr2=darr
   m=numarray.sum(arr/darr)/numarray.sum(1./darr)
   lold=0
   l=len(arr)
   while(l!=lold):
      arr2=numarray.compress(abs(arr-m)<thresh,arr)
      darr2=numarray.compress(abs(arr-m)<thresh,darr)
      m=numarray.sum(arr2/darr2)/numarray.sum(1./darr2)
      lold=l
      l=len(arr2)
   print numarray.sum(arr/darr)/numarray.sum(1./darr), numarray.sum(arr2/darr2)/numarray.sum(1./darr2),len(arr2),len(arr)
   return numarray.sum(arr2/darr2)/numarray.sum(1./darr2)
Exemplo n.º 18
0
def itmean(arr, darr, thresh):
    arr = numarray.array(arr)
    darr = numarray.array(darr)
    print len(arr), len(darr)
    arr = numarray.compress(darr > 0., arr)
    darr = numarray.compress(darr > 0., darr)
    arr2 = arr
    darr2 = darr
    m = numarray.sum(arr / darr) / numarray.sum(1. / darr)
    lold = 0
    l = len(arr)
    while (l != lold):
        arr2 = numarray.compress(abs(arr - m) < thresh, arr)
        darr2 = numarray.compress(abs(arr - m) < thresh, darr)
        m = numarray.sum(arr2 / darr2) / numarray.sum(1. / darr2)
        lold = l
        l = len(arr2)
    print numarray.sum(arr / darr) / numarray.sum(1. / darr), numarray.sum(
        arr2 / darr2) / numarray.sum(1. / darr2), len(arr2), len(arr)
    return numarray.sum(arr2 / darr2) / numarray.sum(1. / darr2)
Exemplo n.º 19
0
    def azmr(self):
	x=N.compress((self.mpaflag > 0.1) & (self.ew > 4.) & (self.Mabs < -18.),self.Mabs)
	y=N.compress((self.mpaflag > 0.1) & (self.ew > 4.) & (self.Mabs < -18.),self.ar)
	x1=N.compress((self.mpaflag > 0.1) & (self.ew > 4.) & (self.Mabs < -20.38),self.Mabs)
	y1=N.compress((self.mpaflag > 0.1) & (self.ew > 4.) & (self.Mabs < -20.38),self.ar)
	y=2.5*N.log10(y)
	#pylab.plot(x,y,'k.',markersize=0.1,zorder=1)

	print "average Ar for Mr < -20.38 = %5.2f +/- %5.2f"%(N.average(y1),pylab.std(y1))
	(xbin,ybin)=my.binit(x1,y1,20)
	#(xbin,ybin,ybinerr)=my.biniterr(x,y,20)
	for i in range(len(xbin)):
	    print i,xbin[i],ybin[i]
	print "Average of binned values = ",N.average(ybin)
	print "average Ar for Mr < -20.38 = %5.2f +/- %5.2f"%(N.average(N.log10(y1)),pylab.std(N.log10(y1)))
	#pylab.axis([-26.,-12.,0.1,30.])
	pylab.xlabel(r'$\rm{M_r}$',fontsize=28.)
	pylab.ylabel(r'$\rm{A_r}$',fontsize=28.)
	(xbin,ybin)=my.binit(x,y,20)
	#(xbin,ybin,ybinerr)=my.biniterr(x,y,20)
	for i in range(len(xbin)):
	    print i,xbin[i],ybin[i]

	pylab.plot(xbin,ybin,'r-',lw=5)
	ax=pylab.gca()
	xmin=-24.
	xmax=-18.
	ymin=-1.
	ymax=3.
	my.contourf(x,y,xmin,xmax,ymin,ymax)
	pylab.axvline(x=-20.6,linewidth=3,ls='--',c='g')
	xl=N.arange(-23.,-20.5,.2)
	yl=0.76*N.ones(len(xl),'f')
	pylab.plot(xl,yl,'b-',lw=3)


	pylab.axis([-24.,-18,-1.,2.4])
	#ax.set_yscale('log')
	#pylab.show()
	pylab.savefig('armr.eps')
	print "fraction w/MPA stellar mass and Az = ",N.sum(self.mpaflag)/(1.*len(self.mpaflag))
Exemplo n.º 20
0
    def azhist(self):
	x=N.compress((self.mpaflag > 0.1) & (self.ew > 4.),self.Mabs)
	y=N.compress((self.mpaflag > 0.1) & (self.ew > 4.),self.ar)
	y=2.5*N.log10(y)
	m1=-18.
	self.azhistsub(x,y,m1,'b')
	#m1=-19.
	#self.azhistsub(x,y,m1,'r')
	m1=-20.
	self.azhistsub(x,y,m1,'g')
	#m1=-21.
	#self.azhistsub(x,y,m1,'k')
	m1=-22.
	self.azhistsub(x,y,m1,'y')
	#m1=-23.
	#self.azhistsub(x,y,m1,'c')
	#pylab.show()
	#ax=pylab.gca()
	#ax.set_xscale('log')
	pylab.legend(loc='upper right')
	pylab.savefig('azhist.eps')
Exemplo n.º 21
0
def itmed(arr,thresh):
   arr=numarray.array(arr)
   arr2=arr
   m=numarray.mlab.median(arr)
   lold=0
   l=len(arr)
   while(l!=lold):
      arr2=numarray.compress(abs(arr-m)<thresh,arr)
      m=numarray.mlab.median(arr2)
      lold=l
      l=len(arr2)
   print numarray.mlab.median(arr), numarray.mlab.median(arr2),len(arr2),len(arr)
   return numarray.mlab.median(arr2)
Exemplo n.º 22
0
def itmed(arr, thresh):
    arr = numarray.array(arr)
    arr2 = arr
    m = numarray.mlab.median(arr)
    lold = 0
    l = len(arr)
    while (l != lold):
        arr2 = numarray.compress(abs(arr - m) < thresh, arr)
        m = numarray.mlab.median(arr2)
        lold = l
        l = len(arr2)
    print numarray.mlab.median(arr), numarray.mlab.median(arr2), len(
        arr2), len(arr)
    return numarray.mlab.median(arr2)
Exemplo n.º 23
0
def biwt_func(x, y, sig, b): # Problems?!?
    aa = median(y - b*x)
    d = (y - aa - b*x)
    mad = median(N.absolute(d))
    s = mad  / 0.6745
    d /= sig
    # biweight
    c = 6.0
    f = d*(1-d**2/c**2)**2
    sum = N.sum(N.compress(N.absolute(d) <= c, x*f))
    # lorentzian
    #f = d/(1+0.5*d**2)
    #sum = N.sum(x*f)
    # MAD
    #small = 1.0e-8
    #sign = N.compress(N.absolute(d) > small, d)
    #sign = sign / N.absolute(sign)
    #sum = N.sum(N.compress(N.absolute(d) > small, x)*sign)
    return sum, s, aa
Exemplo n.º 24
0
def find_closest(input_array, target_array, tol):
    """

    Find the set of elements in input_array that are closest to
    elements in target_array.  Record the indices of the elements in
    target_array that are within tolerance, tol, of their closest
    match. Also record the indices of the elements in target_array
    that are outside tolerance, tol, of their match.

    For example, given an array of observations with irregular
    observation times along with an array of times of interest, this
    routine can be used to find those observations that are closest to
    the times of interest that are within a given time tolerance.

    NOTE: input_array must be sorted! The array, target_array, does not have to be sorted.

    Inputs:
      input_array:  a sorted Float64 numarray
      target_array: a Float64 numarray
      tol:          a tolerance

    Returns:
      closest_indices:  the array of indices of elements in input_array that are closest to elements in target_array
      accept_indices:  the indices of elements in target_array that have a match in input_array within tolerance
      reject_indices:  the indices of elements in target_array that do not have a match in input_array within tolerance
    """

    input_array_len = len(input_array)
    closest_indices = numarray.searchsorted(input_array, target_array) # determine the locations of target_array in input_array
    acc_rej_indices = [-1] * len(target_array)
    curr_tol = [tol] * len(target_array)

    est_tol = 0.0
    for i in xrange(len(target_array)):
        best_off = 0          # used to adjust closest_indices[i] for best approximating element in input_array

        if closest_indices[i] >= input_array_len:
            # the value target_array[i] is >= all elements in input_array so check whether it is within tolerance of the last element
            closest_indices[i] = input_array_len - 1
            est_tol = target_array[i] - input_array[closest_indices[i]]
            if est_tol < curr_tol[i]:
                curr_tol[i] = est_tol
                acc_rej_indices[i] = i
        elif target_array[i] == input_array[closest_indices[i]]:
            # target_array[i] is in input_array
            est_tol = 0.0
            curr_tol[i] = 0.0
            acc_rej_indices[i] = i
        elif closest_indices[i] == 0:
            # target_array[i] is <= all elements in input_array
            est_tol = input_array[0] - target_array[i]
            if est_tol < curr_tol[i]:
                curr_tol[i] = est_tol
                acc_rej_indices[i] = i
        else:
            # target_array[i] is between input_array[closest_indices[i]-1] and input_array[closest_indices[i]]
            # and closest_indices[i] must be > 0
            top_tol = input_array[closest_indices[i]] - target_array[i]
            bot_tol = target_array[i] - input_array[closest_indices[i]-1]
            if bot_tol <= top_tol:
                est_tol = bot_tol
                best_off = -1           # this is the only place where best_off != 0
            else:
                est_tol = top_tol

            if est_tol < curr_tol[i]:
                curr_tol[i] = est_tol
                acc_rej_indices[i] = i

        if est_tol <= tol:
            closest_indices[i] += best_off

    accept_indices = numarray.compress(numarray.greater(acc_rej_indices, -1), acc_rej_indices)
    reject_indices = numarray.compress(numarray.equal(acc_rej_indices, -1), numarray.arange(len(acc_rej_indices)))
    return (closest_indices, accept_indices, reject_indices)
Exemplo n.º 25
0
    def drawmeridians(self,ax,meridians,color='k',linewidth=1., \
                      linestyle='--',dashes=[1,1],labels=[0,0,0,0],\
                      font='rm',fontsize=12):
        """
 draw meridians (longitude lines).

 ax - current axis instance.
 meridians - list containing longitude values to draw (in degrees).
 color - color to draw meridians (default black).
 linewidth - line width for meridians (default 1.)
 linestyle - line style for meridians (default '--', i.e. dashed).
 dashes - dash pattern for meridians (default [1,1], i.e. 1 pixel on,
  1 pixel off).
 labels - list of 4 values (default [0,0,0,0]) that control whether
  meridians are labelled where they intersect the left, right, top or 
  bottom of the plot. For example labels=[1,0,0,1] will cause meridians
  to be labelled where they intersect the left and bottom of the plot,
  but not the right and top. Labels are located with a precision of 0.1
  degrees and are drawn using mathtext.
 font - mathtext font used for labels ('rm','tt','it' or 'cal', default 'rm'.
 fontsize - font size in points for labels (default 12).
        """
        # don't draw meridians past latmax, always draw parallel at latmax.
        latmax = 80. # not used for cyl, merc projections.
        # offset for labels.
	yoffset = (self.urcrnry-self.llcrnry)/100./self.aspect
	xoffset = (self.urcrnrx-self.llcrnrx)/100.

        if self.projection not in ['merc','cyl']:
            lats = N.arange(-latmax,latmax+1).astype('f')
        else:
            lats = N.arange(-90,91).astype('f')
        xdelta = 0.1*(self.xmax-self.xmin)
        ydelta = 0.1*(self.ymax-self.ymin)
        for merid in meridians:
            lons = merid*N.ones(len(lats),'f')
            x,y = self(lons,lats)
            # remove points outside domain.
            testx = N.logical_and(x>=self.xmin-xdelta,x<=self.xmax+xdelta)
            x = N.compress(testx, x)
            y = N.compress(testx, y)
            testy = N.logical_and(y>=self.ymin-ydelta,y<=self.ymax+ydelta)
            x = N.compress(testy, x)
            y = N.compress(testy, y)
            if len(x) > 1 and len(y) > 1:
                # split into separate line segments if necessary.
                # (not necessary for mercator or cylindrical).
                xd = (x[1:]-x[0:-1])**2
                yd = (y[1:]-y[0:-1])**2
                dist = N.sqrt(xd+yd)
                split = dist > 500000.
                if N.sum(split) and self.projection not in ['merc','cyl']:
                   ind = (N.compress(split,pylab.squeeze(split*N.indices(xd.shape)))+1).tolist()
                   xl = []
                   yl = []
                   iprev = 0
                   ind.append(len(xd))
                   for i in ind:
                       xl.append(x[iprev:i])
                       yl.append(y[iprev:i])
                       iprev = i
                else:
                    xl = [x]
                    yl = [y]
                # draw each line segment.
                for x,y in zip(xl,yl):
                    # skip if only a point.
                    if len(x) > 1 and len(y) > 1:
                        l = Line2D(x,y,linewidth=linewidth,linestyle=linestyle)
                        l.set_color(color)
                        l.set_dashes(dashes)
                        ax.add_line(l)
        # draw labels for meridians.
        # search along edges of map to see if parallels intersect.
        # if so, find x,y location of intersection and draw a label there.
        if self.projection == 'cyl':
            dx = 0.01; dy = 0.01
        elif self.projection == 'merc':
            dx = 0.01; dy = 1000
        else:
            dx = 1000; dy = 1000
        for dolab,side in zip(labels,['l','r','t','b']):
            if not dolab: continue
            # for cyl or merc, don't draw meridians on left or right.
            if self.projection in ['cyl','merc'] and side in ['l','r']: continue
            if side in ['l','r']:
	        nmax = int((self.ymax-self.ymin)/dy+1)
                if self.urcrnry < self.llcrnry:
	            yy = self.llcrnry-dy*N.arange(nmax)
                else:
	            yy = self.llcrnry+dy*N.arange(nmax)
                if side == 'l':
	            lons,lats = self(self.llcrnrx*N.ones(yy.shape,'f'),yy,inverse=True)
                else:
	            lons,lats = self(self.urcrnrx*N.ones(yy.shape,'f'),yy,inverse=True)
                lons = N.where(lons < 0, lons+360, lons)
                lons = [int(lon*10) for lon in lons.tolist()]
                lats = [int(lat*10) for lat in lats.tolist()]
            else:
	        nmax = int((self.xmax-self.xmin)/dx+1)
                if self.urcrnrx < self.llcrnrx:
	            xx = self.llcrnrx-dx*N.arange(nmax)
                else:
	            xx = self.llcrnrx+dx*N.arange(nmax)
                if side == 'b':
	            lons,lats = self(xx,self.llcrnry*N.ones(xx.shape,'f'),inverse=True)
                else:
	            lons,lats = self(xx,self.urcrnry*N.ones(xx.shape,'f'),inverse=True)
                lons = N.where(lons < 0, lons+360, lons)
                lons = [int(lon*10) for lon in lons.tolist()]
                lats = [int(lat*10) for lat in lats.tolist()]
            for lon in meridians:
                if lon<0: lon=lon+360.
                # find index of meridian (there may be two, so
                # search from left and right).
                try:
                    nl = lons.index(int(lon*10))
                except:
                    nl = -1
                try:
                    nr = len(lons)-lons[::-1].index(int(lon*10))-1
                except:
                    nr = -1
        	if lon>180:
        	    lonlab = r'$\%s{%g\/^{\circ}\/W}$'%(font,N.fabs(lon-360))
        	elif lon<180 and lon != 0:
        	    lonlab = r'$\%s{%g\/^{\circ}\/E}$'%(font,lon)
        	else:
        	    lonlab = r'$\%s{%g\/^{\circ}}$'%(font,lon)
                # meridians can intersect each map edge twice.
                for i,n in enumerate([nl,nr]):
                    lat = lats[n]/10.
                    # no meridians > latmax for projections other than merc,cyl.
                    if self.projection not in ['merc','cyl'] and lat > latmax: continue
                    # don't bother if close to the first label.
                    if i and abs(nr-nl) < 100: continue
                    if n > 0:
                        if side == 'l':
        	            pylab.text(self.llcrnrx-xoffset,yy[n],lonlab,horizontalalignment='right',verticalalignment='center',fontsize=fontsize)
                        elif side == 'r':
        	            pylab.text(self.urcrnrx+xoffset,yy[n],lonlab,horizontalalignment='left',verticalalignment='center',fontsize=fontsize)
                        elif side == 'b':
        	            pylab.text(xx[n],self.llcrnry-yoffset,lonlab,horizontalalignment='center',verticalalignment='top',fontsize=fontsize)
                        else:
        	            pylab.text(xx[n],self.urcrnry+yoffset,lonlab,horizontalalignment='center',verticalalignment='bottom',fontsize=fontsize)

        # make sure axis ticks are turned off
        ax.set_xticks([]) 
        ax.set_yticks([])
Exemplo n.º 26
0
    def drawmeridians(self,ax,meridians,color='k',linewidth=1., \
                      linestyle='--',dashes=[1,1],labels=[0,0,0,0],\
                      font='rm',fontsize=12):
        """
 draw meridians (longitude lines).

 ax - current axis instance.
 meridians - list containing longitude values to draw (in degrees).
 color - color to draw meridians (default black).
 linewidth - line width for meridians (default 1.)
 linestyle - line style for meridians (default '--', i.e. dashed).
 dashes - dash pattern for meridians (default [1,1], i.e. 1 pixel on,
  1 pixel off).
 labels - list of 4 values (default [0,0,0,0]) that control whether
  meridians are labelled where they intersect the left, right, top or 
  bottom of the plot. For example labels=[1,0,0,1] will cause meridians
  to be labelled where they intersect the left and bottom of the plot,
  but not the right and top. Labels are located with a precision of 0.1
  degrees and are drawn using mathtext.
 font - mathtext font used for labels ('rm','tt','it' or 'cal', default 'rm'.
 fontsize - font size in points for labels (default 12).
        """
        # don't draw meridians past latmax, always draw parallel at latmax.
        latmax = 80.  # not used for cyl, merc projections.
        # offset for labels.
        yoffset = (self.urcrnry - self.llcrnry) / 100. / self.aspect
        xoffset = (self.urcrnrx - self.llcrnrx) / 100.

        if self.projection not in ['merc', 'cyl']:
            lats = N.arange(-latmax, latmax + 1).astype('f')
        else:
            lats = N.arange(-90, 91).astype('f')
        xdelta = 0.1 * (self.xmax - self.xmin)
        ydelta = 0.1 * (self.ymax - self.ymin)
        for merid in meridians:
            lons = merid * N.ones(len(lats), 'f')
            x, y = self(lons, lats)
            # remove points outside domain.
            testx = N.logical_and(x >= self.xmin - xdelta,
                                  x <= self.xmax + xdelta)
            x = N.compress(testx, x)
            y = N.compress(testx, y)
            testy = N.logical_and(y >= self.ymin - ydelta,
                                  y <= self.ymax + ydelta)
            x = N.compress(testy, x)
            y = N.compress(testy, y)
            if len(x) > 1 and len(y) > 1:
                # split into separate line segments if necessary.
                # (not necessary for mercator or cylindrical).
                xd = (x[1:] - x[0:-1])**2
                yd = (y[1:] - y[0:-1])**2
                dist = N.sqrt(xd + yd)
                split = dist > 500000.
                if N.sum(split) and self.projection not in ['merc', 'cyl']:
                    ind = (N.compress(
                        split, pylab.squeeze(split * N.indices(xd.shape))) +
                           1).tolist()
                    xl = []
                    yl = []
                    iprev = 0
                    ind.append(len(xd))
                    for i in ind:
                        xl.append(x[iprev:i])
                        yl.append(y[iprev:i])
                        iprev = i
                else:
                    xl = [x]
                    yl = [y]
                # draw each line segment.
                for x, y in zip(xl, yl):
                    # skip if only a point.
                    if len(x) > 1 and len(y) > 1:
                        l = Line2D(x,
                                   y,
                                   linewidth=linewidth,
                                   linestyle=linestyle)
                        l.set_color(color)
                        l.set_dashes(dashes)
                        ax.add_line(l)
        # draw labels for meridians.
        # search along edges of map to see if parallels intersect.
        # if so, find x,y location of intersection and draw a label there.
        if self.projection == 'cyl':
            dx = 0.01
            dy = 0.01
        elif self.projection == 'merc':
            dx = 0.01
            dy = 1000
        else:
            dx = 1000
            dy = 1000
        for dolab, side in zip(labels, ['l', 'r', 't', 'b']):
            if not dolab: continue
            # for cyl or merc, don't draw meridians on left or right.
            if self.projection in ['cyl', 'merc'] and side in ['l', 'r']:
                continue
            if side in ['l', 'r']:
                nmax = int((self.ymax - self.ymin) / dy + 1)
                if self.urcrnry < self.llcrnry:
                    yy = self.llcrnry - dy * N.arange(nmax)
                else:
                    yy = self.llcrnry + dy * N.arange(nmax)
                if side == 'l':
                    lons, lats = self(self.llcrnrx * N.ones(yy.shape, 'f'),
                                      yy,
                                      inverse=True)
                else:
                    lons, lats = self(self.urcrnrx * N.ones(yy.shape, 'f'),
                                      yy,
                                      inverse=True)
                lons = N.where(lons < 0, lons + 360, lons)
                lons = [int(lon * 10) for lon in lons.tolist()]
                lats = [int(lat * 10) for lat in lats.tolist()]
            else:
                nmax = int((self.xmax - self.xmin) / dx + 1)
                if self.urcrnrx < self.llcrnrx:
                    xx = self.llcrnrx - dx * N.arange(nmax)
                else:
                    xx = self.llcrnrx + dx * N.arange(nmax)
                if side == 'b':
                    lons, lats = self(xx,
                                      self.llcrnry * N.ones(xx.shape, 'f'),
                                      inverse=True)
                else:
                    lons, lats = self(xx,
                                      self.urcrnry * N.ones(xx.shape, 'f'),
                                      inverse=True)
                lons = N.where(lons < 0, lons + 360, lons)
                lons = [int(lon * 10) for lon in lons.tolist()]
                lats = [int(lat * 10) for lat in lats.tolist()]
            for lon in meridians:
                if lon < 0: lon = lon + 360.
                # find index of meridian (there may be two, so
                # search from left and right).
                try:
                    nl = lons.index(int(lon * 10))
                except:
                    nl = -1
                try:
                    nr = len(lons) - lons[::-1].index(int(lon * 10)) - 1
                except:
                    nr = -1
                if lon > 180:
                    lonlab = r'$\%s{%g\/^{\circ}\/W}$' % (font,
                                                          N.fabs(lon - 360))
                elif lon < 180 and lon != 0:
                    lonlab = r'$\%s{%g\/^{\circ}\/E}$' % (font, lon)
                else:
                    lonlab = r'$\%s{%g\/^{\circ}}$' % (font, lon)
                # meridians can intersect each map edge twice.
                for i, n in enumerate([nl, nr]):
                    lat = lats[n] / 10.
                    # no meridians > latmax for projections other than merc,cyl.
                    if self.projection not in ['merc', 'cyl'] and lat > latmax:
                        continue
                    # don't bother if close to the first label.
                    if i and abs(nr - nl) < 100: continue
                    if n > 0:
                        if side == 'l':
                            pylab.text(self.llcrnrx - xoffset,
                                       yy[n],
                                       lonlab,
                                       horizontalalignment='right',
                                       verticalalignment='center',
                                       fontsize=fontsize)
                        elif side == 'r':
                            pylab.text(self.urcrnrx + xoffset,
                                       yy[n],
                                       lonlab,
                                       horizontalalignment='left',
                                       verticalalignment='center',
                                       fontsize=fontsize)
                        elif side == 'b':
                            pylab.text(xx[n],
                                       self.llcrnry - yoffset,
                                       lonlab,
                                       horizontalalignment='center',
                                       verticalalignment='top',
                                       fontsize=fontsize)
                        else:
                            pylab.text(xx[n],
                                       self.urcrnry + yoffset,
                                       lonlab,
                                       horizontalalignment='center',
                                       verticalalignment='bottom',
                                       fontsize=fontsize)

        # make sure axis ticks are turned off
        ax.set_xticks([])
        ax.set_yticks([])
Exemplo n.º 27
0
def find_closest(input_array, target_array, tol):
    """

    Find the set of elements in input_array that are closest to
    elements in target_array.  Record the indices of the elements in
    target_array that are within tolerance, tol, of their closest
    match. Also record the indices of the elements in target_array
    that are outside tolerance, tol, of their match.

    For example, given an array of observations with irregular
    observation times along with an array of times of interest, this
    routine can be used to find those observations that are closest to
    the times of interest that are within a given time tolerance.

    NOTE: input_array must be sorted! The array, target_array, does not have to be sorted.

    Inputs:
      input_array:  a sorted Float64 numarray
      target_array: a Float64 numarray
      tol:          a tolerance

    Returns:
      closest_indices:  the array of indices of elements in input_array that are closest to elements in target_array
      accept_indices:  the indices of elements in target_array that have a match in input_array within tolerance
      reject_indices:  the indices of elements in target_array that do not have a match in input_array within tolerance
    """

    input_array_len = len(input_array)
    closest_indices = numarray.searchsorted(
        input_array,
        target_array)  # determine the locations of target_array in input_array
    acc_rej_indices = [-1] * len(target_array)
    curr_tol = [tol] * len(target_array)

    est_tol = 0.0
    for i in xrange(len(target_array)):
        best_off = 0  # used to adjust closest_indices[i] for best approximating element in input_array

        if closest_indices[i] >= input_array_len:
            # the value target_array[i] is >= all elements in input_array so check whether it is within tolerance of the last element
            closest_indices[i] = input_array_len - 1
            est_tol = target_array[i] - input_array[closest_indices[i]]
            if est_tol < curr_tol[i]:
                curr_tol[i] = est_tol
                acc_rej_indices[i] = i
        elif target_array[i] == input_array[closest_indices[i]]:
            # target_array[i] is in input_array
            est_tol = 0.0
            curr_tol[i] = 0.0
            acc_rej_indices[i] = i
        elif closest_indices[i] == 0:
            # target_array[i] is <= all elements in input_array
            est_tol = input_array[0] - target_array[i]
            if est_tol < curr_tol[i]:
                curr_tol[i] = est_tol
                acc_rej_indices[i] = i
        else:
            # target_array[i] is between input_array[closest_indices[i]-1] and input_array[closest_indices[i]]
            # and closest_indices[i] must be > 0
            top_tol = input_array[closest_indices[i]] - target_array[i]
            bot_tol = target_array[i] - input_array[closest_indices[i] - 1]
            if bot_tol <= top_tol:
                est_tol = bot_tol
                best_off = -1  # this is the only place where best_off != 0
            else:
                est_tol = top_tol

            if est_tol < curr_tol[i]:
                curr_tol[i] = est_tol
                acc_rej_indices[i] = i

        if est_tol <= tol:
            closest_indices[i] += best_off

    accept_indices = numarray.compress(numarray.greater(acc_rej_indices, -1),
                                       acc_rej_indices)
    reject_indices = numarray.compress(numarray.equal(acc_rej_indices, -1),
                                       numarray.arange(len(acc_rej_indices)))
    return (closest_indices, accept_indices, reject_indices)
Exemplo n.º 28
0
      To avoid repeated sqrt calculations the discard is based on an
      enclosing square.
      '''
   global lengthRemaining, trial
   lengthRemaining+= [[P.shape[0]]]
   Pz= P - p                             # zero based neighbourhood
   while len(Pz):
     Pt= Pz[0]                           # trial value
     Pta= N.abs(Pt)
     Pz= Pz[1:]
     pd= math.sqrt(N.dot(Pta, Pta))      # distance of p from the trial 
value
     goodCases= N.logical_and((Pz < pd),
                              (Pz > -pd))# use the enclosing square
     goodCases= N.logical_and.reduce(goodCases, 1)
     Pz= N.compress(goodCases, Pz)  # discard points outside the square
     if len(Pz) == 1:
       Pt= Pz[0]                         # We have found the closest
       Pz= []
     lengthRemaining[trial]+= [len(Pz)]
     z= 100
   trial+= 1
   return Pt + p

if __name__ == '__main__':
   for sampleSize in range(100, 5000, 100):
     P= R.random(shape= (sampleSize, 2))
     for i in range(20):
       p= R.random((1, 2))                   # point
       a= find(P, p)
##      print 'Closest neighbour:', a[0]
Exemplo n.º 29
0
    def cullmembers(self):
        self.z = N.compress(self.memb > 0, self.z)
        self.ra = N.compress(self.memb > 0, self.ra)
        self.dec = N.compress(self.memb > 0, self.dec)
        self.distBCG = N.compress(self.memb > 0, self.distBCG)
        self.distBCGR200 = N.compress(self.memb > 0, self.distBCGR200)
        self.dz = N.compress(self.memb > 0, self.dz)
        self.o2 = N.compress(self.memb > 0, self.o2)
        self.erro2 = N.compress(self.memb > 0, self.erro2)
        self.u = N.compress(self.memb > 0, self.u)
        self.g = N.compress(self.memb > 0, self.g)
        self.r = N.compress(self.memb > 0, self.r)
        self.i = N.compress(self.memb > 0, self.i)
        self.zm = N.compress(self.memb > 0, self.zm)

        self.sf = N.compress(self.memb > 0, self.sf)
        self.tot = N.compress(self.memb > 0, self.tot)
        self.memb = N.compress(self.memb > 0, self.memb)
Exemplo n.º 30
0
def gotoit():
    nbin = 10
    #c=Cluster()
    #g=Galaxy()
    clusterfile = "clusters.spec.dat"
    print "reading in cluster file to get cluster parameters"
    c.creadfiles(clusterfile)
    print "got ", len(c.z), " clusters"
    c.convarray()
    c.Kcorr()

    go2 = []  #combined arrays containing all galaxies
    gsf = []  #combined arrays containing all galaxies
    gsig5 = []
    gsig10 = []
    gsig52r200 = []  #spec catalogs extended out to 2xR200
    gsig102r200 = []  #spec catalogs extended out to 2xR200
    gsig5phot = []
    gsig10phot = []
    sgo2 = []  #combined arrays containing all galaxies
    sgha = []  #combined arrays containing all galaxies
    sgsf = []  #combined arrays containing all galaxies
    sgsig5 = []
    sgsig10 = []
    sgsig52r200 = []  #spec catalogs extended out to 2xR200
    sgsig102r200 = []  #spec catalogs extended out to 2xR200
    sgsig5phot = []
    sgsig10phot = []

    if (mode < 1):
        c.getsdssphotcats()
        c.getsdssspeccats()

    gr = []  #list of median g-r colors
    psplotinit('summary.ps')
    x1 = .1
    x2 = .45
    x3 = .6
    x4 = .95
    y1 = .15
    y2 = .45
    y3 = .55
    y4 = .85
    ppgplot.pgsch(1.2)  #font size
    ppgplot.pgslw(2)
    #for i in range(len(c.z)):
    cl = [10]
    (xl, xu, yl, yu) = ppgplot.pgqvp(0)
    print "viewport = ", xl, xu, yl, yu
    complall = []
    for i in range(len(c.z)):
        #for i in cl:
        gname = "g" + str(i)
        gname = Galaxy()
        gspecfile = "abell" + str(c.id[i]) + ".spec.dat"
        gname.greadfiles(gspecfile, i)
        print "number of members = ", len(gname.z)
        if len(gname.z) < 10:
            print "less than 10 members", len(gname.z)
            continue
        gname.convarray()
        #gname.cullmembers()
        #gname.getmemb()#get members w/in R200
        #gr.append(N.average(gname.g-gname.r))

        gspec2r200file = "abell" + str(c.id[i]) + ".spec2r200.dat"
        gname.greadspecfiles(gspec2r200file, c.dL[i], c.kcorr[i], i)
        print i, c.id[i], " getnearest, first call", len(gname.ra), len(
            gname.sra), sum(gname.smemb)
        #gname.getnearest(i)
        (gname.sig52r200, gname.sig102r200) = gname.getnearestgen(
            gname.ra, gname.dec, gname.sra, gname.sdec, i
        )  #measure distances from ra1, dec1 to members in catalog ra2, dec2
        sig52r200 = N.compress(gname.memb > 0, gname.sig52r200)
        gsig52r200[len(gsig5phot):] = sig52r200
        sig102r200 = N.compress(gname.memb > 0, gname.sig102r200)
        gsig102r200[len(gsig10phot):] = sig102r200

        gphotfile = "abell" + str(c.id[i]) + ".phot.dat"
        gname.greadphotfiles(gphotfile, c.dL[i], c.kcorr[i])
        gname.getnearest(i)
        #print "len of local density arrays = ",len(gname.sig5),len(gname.sig5phot)
        #print gspecfile, c.z[i],c.kcorr[i]
        (ds5, ds10) = gname.gwritefiles(gspecfile, i)
        o2 = N.compress(gname.memb > 0, gname.o2)
        go2[len(go2):] = o2
        sf = N.compress(gname.memb > 0, gname.sf)
        gsf[len(gsf):] = sf
        sig5 = N.compress(gname.memb > 0, gname.sig5)
        gsig5[len(gsig5):] = sig5
        sig10 = N.compress(gname.memb > 0, gname.sig10)
        gsig10[len(gsig10):] = sig10
        sig5phot = N.compress(gname.memb > 0, gname.sig5phot)
        gsig5phot[len(gsig5phot):] = sig5phot
        sig10phot = N.compress(gname.memb > 0, gname.sig10phot)
        gsig10phot[len(gsig10phot):] = sig10phot

        ds5 = N.array(ds5, 'f')
        ds10 = N.array(ds10, 'f')
        #print len(ds5),len(ds10)
        #ppgplot.pgsvp(xl,xu,yl,yu)
        ppgplot.pgsvp(0.1, .9, .08, .92)
        ppgplot.pgslw(7)
        label = 'Abell ' + str(
            c.id[i]) + ' (z=%5.2f, \gs=%3.0f km/s)' % (c.z[i], c.sigma[i])
        ppgplot.pgtext(0., 1., label)
        ppgplot.pgslw(2)
        ppgplot.pgsvp(x1, x2, y1, y2)  #sets viewport
        #ppgplot.pgbox("",0.0,0,"",0.0)
        ppgplot.pgswin(-1., 3., -1., 3.)  #axes limits
        ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 2)  #tickmarks and labeling
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5,
                       "\gS\d10\u(phot) (gal/Mpc\u2\d)")  #xlabel
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "\gS\d10\u(spec) (gal/Mpc\u2\d)")

        x = N.arange(-5., 10., .1)
        y = x
        ppgplot.pgsls(1)  #dotted
        ppgplot.pgslw(4)  #line width
        ppgplot.pgline(x, y)
        x = N.log10(sig10phot)
        y = N.log10(sig10)
        ppgplot.pgsch(.7)
        ppgplot.pgpt(x, y, 17)
        xp = N.array([-0.5], 'f')
        yp = N.array([2.5], 'f')
        ppgplot.pgpt(xp, yp, 17)
        ppgplot.pgtext((xp + .1), yp, 'spec(1.2xR200) vs phot')
        ppgplot.pgsci(4)
        xp = N.array([-0.5], 'f')
        yp = N.array([2.2], 'f')
        ppgplot.pgpt(xp, yp, 21)
        ppgplot.pgtext((xp + .1), yp, 'spec(2xR200) vs phot')

        y = N.log10(sig102r200)

        ppgplot.pgsch(.9)
        ppgplot.pgpt(x, y, 21)
        ppgplot.pgsch(1.2)
        ppgplot.pgslw(2)  #line width
        ppgplot.pgsci(1)

        #ppgplot.pgenv(-200.,200.,-1.,20.,0,0)
        #ppgplot.pgsci(2)
        #ppgplot.pghist(len(ds5),ds5,-200.,200.,30,1)
        #ppgplot.pgsci(4)
        #ppgplot.pghist(len(ds10),ds10,-200.,200.,30,1)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("\gD\gS","Ngal",gspecfile)
        #ppgplot.pgpanl(1,2)
        g = N.compress(gname.memb > 0, gname.g)
        r = N.compress(gname.memb > 0, gname.r)
        V = N.compress(gname.memb > 0, gname.V)
        dmag = N.compress(gname.memb > 0, gname.dmagnearest)
        dnearest = N.compress(gname.memb > 0, gname.nearest)
        dz = N.compress(gname.memb > 0, gname.dz)
        #ppgplot.pgsvp(x3,x4,y1,y2)  #sets viewport
        #ppgplot.pgenv(-.5,3.,-1.,5.,0,0)
        #ppgplot.pgpt((g-V),(g-r),17)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("g - M\dV\u",'g-r',gspecfile)
        ppgplot.pgsvp(x1, x2, y3, y4)  #sets viewport
        #ppgplot.pgbox("",0.0,0,"",0.0)
        ppgplot.pgswin(
            (c.ra[i] + 2. * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)),
            (c.ra[i] - 2 * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)),
            (c.dec[i] - 2. * c.r200deg[i]), (c.dec[i] + 2. * c.r200deg[i]))
        ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0,
                      0.0)  #tickmarks and labeling
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "RA")  #xlabel
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "Dec")

        #ppgplot.pglab("RA",'Dec',gspecfile)
        ppgplot.pgsfs(2)
        ppgplot.pgcirc(c.ra[i], c.dec[i], c.r200deg[i])
        ppgplot.pgsls(4)
        ppgplot.pgcirc(c.ra[i], c.dec[i], 1.2 * c.r200deg[i])
        ppgplot.pgsls(1)
        #ppgplot.pgcirc(c.ra[i],c.dec[i],c.r200deg[i]/N.cos(c.dec[i]*N.pi/180.))
        ppgplot.pgsci(2)
        ppgplot.pgpt(gname.ra, gname.dec, 17)
        ppgplot.pgsci(4)
        ppgplot.pgpt(gname.photra, gname.photdec, 21)
        ppgplot.pgsci(1)

        #calculate completeness w/in R200

        dspec = N.sqrt((gname.ra - c.ra[i])**2 + (gname.dec - c.dec[i])**2)
        dphot = N.sqrt((gname.photra - c.ra[i])**2 +
                       (gname.photdec - c.dec[i])**2)
        nphot = 1. * len(N.compress(dphot < c.r200deg[i], dphot))
        nspec = 1. * len(N.compress(dspec < c.r200deg[i], dspec))
        s = "Completeness for cluster Abell %s = %6.2f (nspec=%6.1f,nphot= %6.1f)" % (
            str(c.id[i]), float(nspec / nphot), nspec, nphot)
        print s
        complall.append(float(nspec / nphot))
        ppgplot.pgsvp(x3, x4, y3, y4)  #sets viewport
        #ppgplot.pgsvp(x1,x2,y3,y4)  #sets viewport
        #ppgplot.pgbox("",0.0,0,"",0.0)
        ppgplot.pgswin(-0.005, .05, -1., 1.)
        ppgplot.pgbox('bcnst', .02, 2, 'bcvnst', 1, 4)  #tickmarks and labeling
        ppgplot.pgsch(1.0)
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5,
                       "Dist to nearest phot neighbor (deg)")  #xlabel
        ppgplot.pgsch(1.2)
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)')
        ppgplot.pgsci(2)
        ppgplot.pgpt(dnearest, dmag, 17)
        ppgplot.pgsci(1)
        x = N.arange(-30., 30., 1.)
        y = 0 * x
        ppgplot.pgsci(1)
        ppgplot.pgsls(2)
        ppgplot.pgline(x, y)
        ppgplot.pgsls(1)
        ppgplot.pgsci(1)
        dm = N.compress(dnearest < 0.01, dmag)
        std = '%5.3f (%5.3f)' % (pylab.mean(dm), pylab.std(dm))
        #ppgplot.pgslw(7)
        #label='Abell '+str(c.id[i])
        #ppgplot.pgtext(0.,1.,label)
        ppgplot.pgslw(2)
        label = '\gDM\dV\u(err) = ' + std
        ppgplot.pgsch(.9)
        ppgplot.pgtext(0., .8, label)
        #label = "z = %5.2f"%(c.z[i])
        #ppgplot.pgtext(0.,.8,label)
        ppgplot.pgsch(1.2)
        #ppgplot.pgsvp(x3,x4,y3,y4)  #sets viewport
        #ppgplot.pgenv(-.15,.15,-3.,3.,0,0)
        #ppgplot.pgsci(2)
        #ppgplot.pgpt(dz,dmag,17)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("z-z\dcl\u",'\gD Mag',gspecfile)
        ppgplot.pgsvp(x3, x4, y1, y2)  #sets viewport
        ppgplot.pgswin(-3., 3., -1., 1.)
        ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 4)  #tickmarks and labeling
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gDv/\gs")  #xlabel
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)')

        ppgplot.pgsci(2)
        dv = dz / (1 + c.z[i]) * 3.e5 / c.sigma[i]
        ppgplot.pgpt(dv, dmag, 17)
        ppgplot.pgsci(1)
        x = N.arange(-30., 30., 1.)
        y = 0 * x
        ppgplot.pgsci(1)
        ppgplot.pgsls(2)
        ppgplot.pgline(x, y)
        ppgplot.pgsls(1)
        ppgplot.pgsci(1)
        #ppgplot.pgsvp(x1,x2,y1,y2)  #sets viewport
        #ppgplot.pgenv(0.,3.5,-3.,3.,0,0)
        #ppgplot.pgsci(4)
        #ppgplot.pgpt((g-r),dmag,17)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("g-r",'\gD Mag',gspecfile)

        #ppgplot.pgsvp(x1,x2,y1,y2)  #sets viewport
        #ppgplot.pgenv(-25.,-18.,-1.,1.,0,0)
        #ppgplot.pgsci(4)
        #ppgplot.pgpt((V),dmag,17)
        #x=N.arange(-30.,30.,1.)
        #y=0*x
        #ppgplot.pgsci(1)
        #ppgplot.pgsls(2)
        #ppgplot.pgline(x,y)
        #ppgplot.pgsls(1)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("M\dV\u(spec)",'M\dV\u(phot) - M\dV\u(spec)',gspecfile)
        #ppgplot.pgpage()
        #ppgplot.pgpage()
        #combine galaxy data
        ppgplot.pgpage()

        (sssig5,
         sssig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.sra,
                                        gname.sdec,
                                        i)  #get spec-spec local density
        (spsig5,
         spsig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.photra,
                                        gname.photdec,
                                        i)  #get spec-phot local density

        o2 = N.compress(gname.smemb > 0, gname.so2)
        sgo2[len(sgo2):] = o2
        ha = N.compress(gname.smemb > 0, gname.sha)
        sgha[len(sgha):] = ha
        sf = N.compress(gname.smemb > 0, gname.ssf)
        sgsf[len(sgsf):] = sf
        sig5 = N.compress(gname.smemb > 0, sssig5)
        sgsig5[len(sgsig5):] = sig5
        sig10 = N.compress(gname.smemb > 0, sssig10)
        sgsig10[len(sgsig10):] = sig10
        sig5phot = N.compress(gname.smemb > 0, spsig5)
        sgsig5phot[len(sgsig5phot):] = sig5phot
        sig10phot = N.compress(gname.smemb > 0, spsig10)
        sgsig10phot[len(sgsig10phot):] = sig10phot

    #gr=N.array(gr,'f')
    #c.assigncolor(gr)

    #for i in range(len(c.z)):
    #    print c.id[i],c.z[i],c.r200[i],c.r200deg[i]

    print "Average Completeness w/in R200 = ", N.average(N.array(
        complall, 'f'))
    print "sig o2", len(gsig10), len(gsig10phot), len(go2)
    print "sig o2 large", len(sgsig10), len(sgsig10phot), len(sgo2)
    plotsigo2all(gsig10, gsig10phot, go2, 'o2vsig10spec', nbin)
    #plotsigo2(gsig5phot,-1*go2,'o2vsig5phot',nbin)
    plotsigsff(gsig5, gsf, 'sffvsig5spec', nbin)  #sf frac versus sigma
    plotsigsff(gsig5phot, gsf, 'sffvsig5phot', nbin)  #sf frac versus sigma
    plotsigsffall(gsig5, gsig5phot, gsf, 'sffvsig5all',
                  nbin)  #sf frac versus sigma
    plotsig10sffall(gsig10, gsig10phot, gsf, 'sffvsig10all',
                    nbin)  #sf frac versus sigma
    #plotsighaall(gsig10,gsig10phot,gha,'havsig10spec',20)
    #plotsigo2all(sgsig10,sgsig10phot,sgo2,'o2vsig10spec.large',30)
    plotsighaall(sgsig10, sgsig10phot, sgha, 'havsig10spec.large', 10)
    #plotsigsffall(sgsig5,sgsig5phot,sgsf,'sffvsig5.large',nbin)#sf frac versus sigma
    #plotsig10sffall(sgsig10,sgsig10phot,sgsf,'sffvsig10.large',nbin)#sf frac versus sigma
    psplotinit('one2one.ps')
    ppgplot.pgenv(-1.5, 2.5, -1.5, 2.5, 0)
    ppgplot.pglab("\gS\d10\u(phot) (gal/Mpc\u2\d)",
                  "\gS\d10\u(spec) (gal/Mpc\u2\d)", "")
    x = N.arange(-5., 10., .1)
    y = x
    ppgplot.pgsls(1)  #dotted
    ppgplot.pgslw(4)  #line width
    ppgplot.pgline(x, y)
    x = N.log10(gsig10phot)
    y = N.log10(gsig10)
    ppgplot.pgsch(.7)
    ppgplot.pgpt(x, y, 17)
    ppgplot.pgsch(1.)
    ppgplot.pgsci(1)
    ppgplot.pgend()
Exemplo n.º 31
0
def matchum(file1,
            file2,
            tol=10,
            perr=4,
            aerr=1.0,
            nmax=40,
            im_masks1=[],
            im_masks2=[],
            debug=0,
            domags=0,
            xrange=None,
            yrange=None,
            sigma=4,
            aoffset=0):
    '''Take the output of two sextractor runs and match up the objects with
   each other (find out which objects in the first file match up with
   objects in the second file.  The routine considers a 'match' to be any 
   two objects that are closer than tol pixels (after applying the shift).  
   Returns a 6-tuple:  (x1,y1,x2,y2,o1,o2).  o1 and o2 are the ojbects
   numbers such that o1[i] in file 1 corresponds to o2[i] in file 2.'''
    NA = num.NewAxis

    sexdata1 = readsex(file1)
    sexdata2 = readsex(file2)

    # Use the readsex data to get arrays of the (x,y) positions
    x1 = num.asarray(sexdata1[0]['X_IMAGE'])
    y1 = num.asarray(sexdata1[0]['Y_IMAGE'])
    x2 = num.asarray(sexdata2[0]['X_IMAGE'])
    y2 = num.asarray(sexdata2[0]['Y_IMAGE'])
    m1 = num.asarray(sexdata1[0]['MAG_BEST'])
    m2 = num.asarray(sexdata2[0]['MAG_BEST'])
    o1 = num.asarray(sexdata1[0]['NUMBER'])
    o2 = num.asarray(sexdata2[0]['NUMBER'])
    f1 = num.asarray(sexdata1[0]['FLAGS'])
    f2 = num.asarray(sexdata2[0]['FLAGS'])

    # First, make a cut on the flags:
    gids = num.where(f1 < 4)
    x1 = x1[gids]
    y1 = y1[gids]
    m1 = m1[gids]
    o1 = o1[gids]
    gids = num.where(f2 < 4)
    x2 = x2[gids]
    y2 = y2[gids]
    m2 = m2[gids]
    o2 = o2[gids]

    # next, if there is a range to use:
    if xrange is not None and yrange is not None:
        cond = num.greater(x1, xrange[0])*num.less(x1,xrange[1])*\
              num.greater(y1, yrange[0])*num.less(y1,yrange[1])
        gids = num.where(cond)
        x1 = x1[gids]
        y1 = y1[gids]
        m1 = m1[gids]
        o1 = o1[gids]
        cond = num.greater(x2, xrange[0])*num.less(x2,xrange[1])*\
              num.greater(y2, yrange[0])*num.less(y2,yrange[1])
        gids = num.where(cond)
        x2 = x2[gids]
        y2 = y2[gids]
        m2 = m2[gids]
        o2 = o2[gids]

    # Use the user masks
    for m in im_masks1:
        print "applying mask (%d,%d,%d,%d)" % tuple(m)
        condx = num.less(x1, m[0]) + num.greater(x1, m[1])
        condy = num.less(y1, m[2]) + num.greater(y1, m[3])
        gids = num.where(condx + condy)
        x1 = x1[gids]
        y1 = y1[gids]
        m1 = m1[gids]
        o1 = o1[gids]

    for m in im_masks2:
        print "applying mask (%d,%d,%d,%d)" % tuple(m)
        condx = num.less(x2, m[0]) + num.greater(x2, m[1])
        condy = num.less(y2, m[2]) + num.greater(y2, m[3])
        gids = num.where(condx + condy)
        x2 = x2[gids]
        y2 = y2[gids]
        m2 = m2[gids]
        o2 = o2[gids]

    if nmax:
        if len(x1) > nmax:
            ids = num.argsort(m1)[0:nmax]
            x1 = x1[ids]
            y1 = y1[ids]
            m1 = m1[ids]
            o1 = o1[ids]
        if len(x2) > nmax:
            ids = num.argsort(m2)[0:nmax]
            x2 = x2[ids]
            y2 = y2[ids]
            m2 = m2[ids]
            o2 = o2[ids]
    if debug:
        print "objects in frame 1:"
        print o1
        print "objects in frame 2:"
        print o2
        mp = pygplot.MPlot(2, 1, device='/XWIN')
        p = pygplot.Plot()
        p.point(x1, y1)
        [p.label(x1[i], y1[i], "%d" % o1[i]) for i in range(len(x1))]
        mp.add(p)
        p = pygplot.Plot()
        p.point(x2, y2)
        [p.label(x2[i], y2[i], "%d" % o2[i]) for i in range(len(x2))]
        mp.add(p)
        mp.plot()
        mp.close()

    # Now, we make 2-D arrays of all the differences in x and y between each pair
    #  of objects.  e.g., dx1[n,m] is the delta-x between object n and m in file 1 and
    #  dy2[n,m] is the y-distance between object n and m in file 2.
    dx1 = x1[NA, :] - x1[:, NA]
    dx2 = x2[NA, :] - x2[:, NA]
    dy1 = y1[NA, :] - y1[:, NA]
    dy2 = y2[NA, :] - y2[:, NA]
    # Same, but with angles
    da1 = num.arctan2(dy1, dx1) * 180 / num.pi
    da2 = num.arctan2(dy2, dx2) * 180 / num.pi
    # Same, but with absolute distances
    ds1 = num.sqrt(num.power(dx1, 2) + num.power(dy1, 2))
    ds2 = num.sqrt(num.power(dx2, 2) + num.power(dy2, 2))

    # Here's the real magic:  this is a matrix of matrices (4-D).  Consider 4 objects:
    #  objects i and j in file 1 and objects m and n in file 2.  dx[i,j,m,n] is the
    #  difference between delta-xs for objects i,j in file 1 and m,n in file 2.  If object
    #  i corresponds to object m and object j corresponds to object n, this should be a small
    #  number, irregardless of an overall shift in coordinate systems between file 1 and 2.
    dx = dx1[::, ::, NA, NA] - dx2[NA, NA, ::, ::]
    dy = dy1[::, ::, NA, NA] - dy2[NA, NA, ::, ::]
    da = da1[::, ::, NA, NA] - da2[NA, NA, ::, ::] + aoffset
    ds = ds1[::, ::, NA, NA] - ds2[NA, NA, ::, ::]
    # pick out close pairs.
    #use = num.less(dy,perr)*num.less(dx,perr)*num.less(num.abs(da),aerr)
    use = num.less(ds, perr) * num.less(num.abs(da), aerr)
    use = use.astype(num.Int32)

    #use = num.less(num.abs(da),perr)
    suse = num.add.reduce(num.add.reduce(use, 3), 1)
    print suse[0]

    guse = num.greater(suse, suse.flat.max() / 2)
    i = [j for j in range(x1.shape[0]) if num.sum(guse[j])]
    m = [num.argmax(guse[j]) for j in range(x1.shape[0]) if num.sum(guse[j])]
    xx0, yy0, oo0, mm0 = num.take([x1, y1, o1, m1], i, 1)
    xx1, yy1, oo1, mm1 = num.take([x2, y2, o2, m2], m, 1)
    if debug:
        mp = pygplot.MPlot(2, 1, device='/XWIN')
        p = pygplot.Plot()
        p.point(xx0, yy0)
        [p.label(xx0[i], yy0[i], "%d" % oo0[i]) for i in range(len(xx0))]
        mp.add(p)
        p = pygplot.Plot()
        p.point(xx1, yy1)
        [p.label(xx1[i], yy1[i], "%d" % oo1[i]) for i in range(len(xx1))]
        mp.add(p)
        mp.plot()
        mp.close()
    xshift, xscat = stats.bwt(xx0 - xx1)
    xscat = max([1.0, xscat])
    yshift, yscat = stats.bwt(yy0 - yy1)
    yscat = max([1.0, yscat])
    mshift, mscat = stats.bwt(mm0 - mm1)
    print "xscat = ", xscat
    print "yscat = ", yscat
    print "xshift = ", xshift
    print "yshift = ", yshift
    print "mshift = ", mshift
    print "mscat = ", mscat
    keep = num.less(num.abs(xx0-xx1-xshift),sigma*xscat)*\
          num.less(num.abs(yy0-yy1-yshift),sigma*yscat)
    # This is a list of x,y,object# in each file.
    xx0, yy0, oo0, xx1, yy1, oo1 = num.compress(keep,
                                                [xx0, yy0, oo0, xx1, yy1, oo1],
                                                1)

    if debug:
        print file1, oo0
        print file2, oo1
        mp = pygplot.MPlot(2, 1, device='temp.ps/CPS')
        p1 = pygplot.Plot()
        p1.point(xx0, yy0, symbol=25, color='red')
        for i in range(len(xx0)):
            p1.label(xx0[i], yy0[i], " %d" % oo0[i], color='red')
        mp.add(p1)
        p2 = pygplot.Plot()
        p2.point(xx1, yy1, symbol=25, color='green')
        for i in range(len(xx1)):
            p2.label(xx1[i], yy1[i], " %d" % oo1[i], color='green')
        mp.add(p2)
        mp.plot()
        mp.close()

    if domags:
        return (xx0, yy0, mm0, xx1, yy1, mm1, mshift, mscat, oo0, oo1)
    else:
        return (xx0, yy0, xx1, yy1, oo0, oo1)
Exemplo n.º 32
0
    def stellarmr(self):
	pylab.cla()
	x=N.compress((self.mpaflag > 0.1),self.Mabs)
	y=N.compress((self.mpaflag > 0.1),self.stellarmass)
	print "len x,y,Mabs = ",len(x),len(y),len(self.Mabs)
	#x=[]
	#y=[]
	#for i in range(len(self.Mabs)):
	#    if self.mpaflag[i] > 0.1:
	#	x.append(self.Mabs[i])
	#	y.append(self.stellarmass[i])
	#print "len x,y,Mabs =",len(x),len(y),len(self.Mabs)
	#x=N.array(x,'d')
	#y=N.array(y,'d')
	y=N.log10(y/1.e11)
	xmin=-24.
	xmax=-18.
	ymin=-3.
	ymax=2.

	#my.contour(x,y,xmin,xmax,ymin,ymax)
	#pylab.plot(x,y,'k.',markersize=.01,zorder=1)

	pylab.xlabel(r'$\rm{M_r}$',fontsize=28.)
	pylab.ylabel(r'$\rm{log_{10}(M_* / 10^{11} \ M_\odot)}$',fontsize=28.)
	#(a,b)=fitpowerlaw(x,y)

	xtrans=-21.5
	b=-13.8                                          
	m=-.63
	xl=N.arange(xtrans,-18.,.05)
	xl=N.array(xl,'f')
	yl=N.zeros(len(xl),'f')
	yl=m*(xl)+b
	#xl=-1.*xl
	#print xl
	#print yl
	pylab.plot(xl,yl,'b-',lw=4,label='_nolegend_')


	m2=-.47
	b2=(m-m2)*xtrans+b
	print "b2 = ",b2
	xl=N.arange(-24.,(xtrans+.05),.05)
	xl=N.array(xl,'f')
	yl=N.zeros(len(xl),'f')
	yl=m2*(xl)+b2
	#xl=-1.*xl
	#print xl
	#print yl
	pylab.plot(xl,yl,'c-',lw=4,label='_nolegend_')
	pylab.axvline(x=-20.6,linewidth=3,ls='--',c='g')
	#(xbin,ybin,ybinerr)=my.binitbinsfix(xl,(xl+0.5),x,y)
	#pylab.plot(xbin,ybin,'b-',linewidth=4.)
	pylab.hold()
	my.contourf(x,y,xmin,xmax,ymin,ymax)
	ax=pylab.gca()
	#ax.set_yscale('log')

	pylab.axis([-24.5,-17.5,-3.,1.2])
	pylab.savefig('stellarmr.eps')