Exemplo n.º 1
0
    def __init__(self, pyfunc, signature):
        self.py_func = pyfunc
        self.signature = signature
        self.name = pyfunc.__name__

        # recreate for each UDF, as linking is destructive to the
        # precompiled module
        impala_typing = impala_typing_context()
        impala_targets = ImpalaTargetContext(impala_typing)

        args, return_type = sigutils.normalize_signature(signature)
        flags = Flags()
        flags.set('no_compile')
        self._cres = compile_extra(typingctx=impala_typing,
                                   targetctx=impala_targets,
                                   func=pyfunc,
                                   args=args,
                                   return_type=return_type,
                                   flags=flags,
                                   locals={})
        llvm_func = impala_targets.finalize(self._cres.llvm_func, return_type,
                                            args)
        self.llvm_func = llvm_func
        # numba_module = llvm_func.module
        self.llvm_module = llvm_func.module
        # link in the precompiled module
        # bc it's destructive, load a fresh version
        precompiled = lc.Module.from_bitcode(
            pkgutil.get_data("impala.udf", "precompiled/impyla.bc"))
        self.llvm_module.link_in(precompiled)
Exemplo n.º 2
0
    def test_array_expr(self):
        flags = Flags()
        flags.set("enable_pyobject")

        global cnd_array_jitted
        scalty = types.float64
        arrty = types.Array(scalty, 1, 'C')
        cr1 = compile_isolated(cnd_array, args=(arrty, ), flags=flags)
        cnd_array_jitted = cr1.entry_point
        cr2 = compile_isolated(blackscholes_arrayexpr_jitted,
                               args=(arrty, arrty, arrty, scalty, scalty),
                               flags=flags)
        jitted_bs = cr2.entry_point

        OPT_N = 400
        iterations = 10

        stockPrice = randfloat(self.random.random_sample(OPT_N), 5.0, 30.0)
        optionStrike = randfloat(self.random.random_sample(OPT_N), 1.0, 100.0)
        optionYears = randfloat(self.random.random_sample(OPT_N), 0.25, 10.0)

        args = stockPrice, optionStrike, optionYears, RISKFREE, VOLATILITY

        callResultGold, putResultGold = blackscholes_arrayexpr(*args)
        callResultNumba, putResultNumba = jitted_bs(*args)

        delta = np.abs(callResultGold - callResultNumba)
        L1norm = delta.sum() / np.abs(callResultGold).sum()
        print("L1 norm: %E" % L1norm)
        print("Max absolute error: %E" % delta.max())
        self.assertEqual(delta.max(), 0)
Exemplo n.º 3
0
    def test_array_expr(self):
        flags = Flags()
        flags.set("enable_pyobject")

        global cnd_array_jitted
        scalty = types.float64
        arrty = types.Array(scalty, 1, 'C')
        cr1 = compile_isolated(cnd_array, args=(arrty,), flags=flags)
        cnd_array_jitted = cr1.entry_point
        cr2 = compile_isolated(blackscholes_arrayexpr_jitted,
                               args=(arrty, arrty, arrty, scalty, scalty),
                               flags=flags)
        jitted_bs = cr2.entry_point

        OPT_N = 400
        iterations = 10


        stockPrice = randfloat(self.random.random_sample(OPT_N), 5.0, 30.0)
        optionStrike = randfloat(self.random.random_sample(OPT_N), 1.0, 100.0)
        optionYears = randfloat(self.random.random_sample(OPT_N), 0.25, 10.0)

        args = stockPrice, optionStrike, optionYears, RISKFREE, VOLATILITY

        callResultGold, putResultGold = blackscholes_arrayexpr(*args)
        callResultNumba, putResultNumba = jitted_bs(*args)

        delta = np.abs(callResultGold - callResultNumba)
        L1norm = delta.sum() / np.abs(callResultGold).sum()
        print("L1 norm: %E" % L1norm)
        print("Max absolute error: %E" % delta.max())
        self.assertEqual(delta.max(), 0)
Exemplo n.º 4
0
    def test_exercise_code_path_with_lifted_loop(self):
        """
        Ensures that lifted loops are handled correctly in obj mode
        """

        # the functions to jit
        def bar(x):
            return x

        def foo(x):
            h = 0.
            for k in range(x):
                h = h + k
            if x:
                h = h - bar(x)
            return h

        # compile into an isolated context
        flags = Flags()
        flags.set('enable_pyobject')
        flags.set('enable_looplift')
        cres = compile_isolated(foo, [types.intp], flags=flags)

        ta = cres.type_annotation

        buf = StringIO()
        ta.html_annotate(buf)
        output = buf.getvalue()
        buf.close()
        self.assertIn("bar", output)
        self.assertIn("foo", output)
        self.assertIn("LiftedLoop", output)
Exemplo n.º 5
0
    def __init__(self, pyfunc, signature):
        self.py_func = pyfunc
        self.signature = signature
        self.name = pyfunc.__name__

        # recreate for each UDF, as linking is destructive to the
        # precompiled module
        impala_typing = impala_typing_context()
        impala_targets = ImpalaTargetContext(impala_typing)

        args, return_type = sigutils.normalize_signature(signature)
        flags = Flags()
        flags.set('no_compile')
        self._cres = compile_extra(typingctx=impala_typing,
                                   targetctx=impala_targets, func=pyfunc,
                                   args=args, return_type=return_type,
                                   flags=flags, locals={})
        llvm_func = impala_targets.finalize(self._cres.llvm_func, return_type,
                                            args)
        self.llvm_func = llvm_func
        # numba_module = llvm_func.module
        self.llvm_module = llvm_func.module
        # link in the precompiled module
        # bc it's destructive, load a fresh version
        precompiled = lc.Module.from_bitcode(
            pkgutil.get_data("impala.udf", "precompiled/impyla.bc"))
        self.llvm_module.link_in(precompiled)
Exemplo n.º 6
0
    def test_exercise_code_path_with_lifted_loop(self):
        """
        Ensures that lifted loops are handled correctly in obj mode
        """
        # the functions to jit
        def bar(x):
            return x

        def foo(x):
            h = 0.
            for k in range(x):
                h = h + k
            if x:
                h = h - bar(x)
            return h

        # compile into an isolated context
        flags = Flags()
        flags.set('enable_pyobject')
        flags.set('enable_looplift')
        cres = compile_isolated(foo, [types.intp], flags=flags)

        ta = cres.type_annotation

        buf = StringIO()
        ta.html_annotate(buf)
        output = buf.getvalue()
        buf.close()
        self.assertIn("bar", output)
        self.assertIn("foo", output)
        self.assertIn("LiftedLoop", output)
Exemplo n.º 7
0
    def _cull_exports(self):
        """Read all the exported functions/modules in the translator
        environment, and join them into a single LLVM module.

        Resets the export environment afterwards.
        """
        self.exported_signatures = export_registry

        # Create new module containing everything
        llvm_module = lc.Module.new(self.module_name)

        # Compile all exported functions
        typing_ctx = CPUTarget.typing_context
        # TODO Use non JIT-ing target
        target_ctx = CPUTarget.target_context
        modules = []
        flags = Flags()
        if not self.export_python_wrap:
            flags.set("no_compile")

        for entry in self.exported_signatures:
            cres = compile_extra(typing_ctx,
                                 target_ctx,
                                 entry.function,
                                 entry.signature.args,
                                 entry.signature.return_type,
                                 flags,
                                 locals={})

            if self.export_python_wrap:
                module = cres.llvm_func.module
                cres.llvm_func.linkage = lc.LINKAGE_INTERNAL
                wrappername = "wrapper." + cres.llvm_func.name
                wrapper = module.get_function_named(wrappername)
                wrapper.name = entry.symbol
            else:
                cres.llvm_func.name = entry.symbol

            modules.append(cres.llvm_module)

        # Link all exported functions
        for mod in modules:
            llvm_module.link_in(mod, preserve=self.export_python_wrap)

        # Optimize
        tm = le.TargetMachine.new(opt=3)
        pms = lp.build_pass_managers(tm=tm,
                                     opt=3,
                                     loop_vectorize=True,
                                     fpm=False)
        pms.pm.run(llvm_module)

        if self.export_python_wrap:
            self._emit_python_wrapper(llvm_module)

        del self.exported_signatures[:]
        print(llvm_module)
        return llvm_module
Exemplo n.º 8
0
 def test_is_this_a_none_objmode(self):
     pyfunc = is_this_a_none
     flags = Flags()
     flags.set('force_pyobject')
     cres = compile_isolated(pyfunc, [types.intp], flags=flags)
     cfunc = cres.entry_point
     self.assertTrue(cres.objectmode)
     for v in [-1, 0, 1, 2]:
         self.assertPreciseEqual(pyfunc(v), cfunc(v))
    def __init__(self, *args):
        self.flags = Flags()
        self.flags.set('nrt')

        # flags for njit(fastmath=True)
        self.fastflags = Flags()
        self.fastflags.set('nrt')
        self.fastflags.set('fastmath')
        super(TestSVML, self).__init__(*args)
Exemplo n.º 10
0
    def __init__(self, *args):
        # flags for njit()
        self.cflags = Flags()
        self.cflags.set('nrt')

        # flags for njit(parallel=True)
        self.pflags = Flags()
        self.pflags.set('auto_parallel', cpu.ParallelOptions(True))
        self.pflags.set('nrt')
        super(TestParforsBase, self).__init__(*args)
Exemplo n.º 11
0
 def autogenerate(cls):
     test_flags = ['fastmath', ]  # TODO: add 'auto_parallel' ?
     # generate all the combinations of the flags
     test_flags = sum([list(combinations(test_flags, x)) for x in range( \
                                                 len(test_flags)+1)], [])
     flag_list = []  # create Flag class instances
     for ft in test_flags:
         flags = Flags()
         flags.set('nrt')
         flags.set('error_model', 'numpy')
         flags.__name__ = '_'.join(ft+('usecase',))
         for f in ft:
             flags.set(f)
         flag_list.append(flags)
     # main loop covering all the modes and use-cases
     for dtype in ('complex64', 'float64', 'float32', 'int32', ):
         for vlen in vlen2cpu:
             for flags in flag_list:
                 for mode in "scalar", "range", "prange", "numpy":
                     cls._inject_test(dtype, mode, vlen, flags)
     # mark important
     if sys.version_info[0] > 2:
         for n in ( "test_int32_range4_usecase",  # issue #3016
                   ):
             setattr(cls, n, tag("important")(getattr(cls, n)))
Exemplo n.º 12
0
 def mk_pipeline(cls, args, return_type=None, flags=None, locals={},
                 library=None, typing_context=None, target_context=None):
     if not flags:
         flags = Flags()
     flags.nrt = True
     if typing_context is None:
         typing_context = registry.cpu_target.typing_context
     if target_context is None:
         target_context =  registry.cpu_target.target_context
     return cls(typing_context, target_context, library, args, return_type,
                flags, locals)
Exemplo n.º 13
0
 def mk_pipeline(cls, args, return_type=None, flags=None, locals={},
                 library=None, typing_context=None, target_context=None):
     if not flags:
         flags = Flags()
     flags.nrt = True
     if typing_context is None:
         typing_context = typing.Context()
     if target_context is None:
         target_context = cpu.CPUContext(typing_context)
     return cls(typing_context, target_context, library, args, return_type,
                flags, locals)
Exemplo n.º 14
0
 def mk_pipeline(cls, args, return_type=None, flags=None, locals={},
                 library=None, typing_context=None, target_context=None):
     if not flags:
         flags = Flags()
     flags.nrt = True
     if typing_context is None:
         typing_context = registry.cpu_target.typing_context
     if target_context is None:
         target_context =  registry.cpu_target.target_context
     return cls(typing_context, target_context, library, args, return_type,
                flags, locals)
Exemplo n.º 15
0
    def test_raise_object(self):
        args = [types.int32]
        flags = Flags()
        flags.set('force_pyobject')
        cres = compile_isolated(pyfunc, args,
                                flags=flags)
        cfunc = cres.entry_point
        cfunc(0)

        with self.assertRaises(MyError):
            cfunc(1)
Exemplo n.º 16
0
 def mk_pipeline(cls, args, return_type=None, flags=None, locals={},
                 library=None, typing_context=None, target_context=None):
     if not flags:
         flags = Flags()
     flags.nrt = True
     if typing_context is None:
         typing_context = typing.Context()
     if target_context is None:
         target_context = cpu.CPUContext(typing_context)
     return cls(typing_context, target_context, library, args, return_type,
                flags, locals)
Exemplo n.º 17
0
    def test_usecase(self):
        n = 10
        obs_got = np.zeros(n)
        obs_expected = obs_got.copy()

        flags = Flags()
        flags.set("enable_pyobject")
        cres = compile_isolated(usecase, (), flags=flags)
        cres.entry_point(obs_got, n, 10.0, 1.0, 2.0, 3.0, 4.0, 5.0)
        usecase(obs_expected, n, 10.0, 1.0, 2.0, 3.0, 4.0, 5.0)

        self.assertTrue(np.allclose(obs_got, obs_expected))
Exemplo n.º 18
0
    def _cull_exports(self):
        """Read all the exported functions/modules in the translator
        environment, and join them into a single LLVM module.

        Resets the export environment afterwards.
        """
        self.exported_signatures = export_registry

        # Create new module containing everything
        llvm_module = lc.Module.new(self.module_name)

        # Compile all exported functions
        typing_ctx = CPUTarget.typing_context
        # TODO Use non JIT-ing target
        target_ctx = CPUTarget.target_context
        modules = []
        flags = Flags()
        if not self.export_python_wrap:
            flags.set("no_compile")

        for entry in self.exported_signatures:
            cres = compile_extra(typing_ctx, target_ctx, entry.function,
                                 entry.signature.args,
                                 entry.signature.return_type, flags,
                                 locals={})

            if self.export_python_wrap:
                module = cres.llvm_func.module
                cres.llvm_func.linkage = lc.LINKAGE_INTERNAL
                wrappername = "wrapper." + cres.llvm_func.name
                wrapper = module.get_function_named(wrappername)
                wrapper.name = entry.symbol
            else:
                cres.llvm_func.name = entry.symbol

            modules.append(cres.llvm_module)

        # Link all exported functions
        for mod in modules:
            llvm_module.link_in(mod, preserve=self.export_python_wrap)

        # Optimize
        tm = le.TargetMachine.new(opt=3)
        pms = lp.build_pass_managers(tm=tm, opt=3, loop_vectorize=True,
                                     fpm=False)
        pms.pm.run(llvm_module)

        if self.export_python_wrap:
            self._emit_python_wrapper(llvm_module)

        #del self.exported_signatures[:]
        print(llvm_module)
        return llvm_module
Exemplo n.º 19
0
 def mk_no_rw_pipeline(cls,
                       args,
                       return_type=None,
                       flags=None,
                       locals={},
                       library=None,
                       **kws):
     if not flags:
         flags = Flags()
     flags.no_rewrites = True
     return cls.mk_pipeline(args, return_type, flags, locals, library,
                            **kws)
Exemplo n.º 20
0
    def test_usecase(self):
        n = 10
        obs_got = np.zeros(n)
        obs_expected = obs_got.copy()

        flags = Flags()
        flags.set("enable_pyobject")
        cres = compile_isolated(usecase, (), flags=flags)
        cres.entry_point(obs_got, n, 10.0, 1.0, 2.0, 3.0, 4.0, 5.0)
        usecase(obs_expected, n, 10.0, 1.0, 2.0, 3.0, 4.0, 5.0)

        self.assertTrue(np.allclose(obs_got, obs_expected))
Exemplo n.º 21
0
    def _cull_exports(self):
        """Read all the exported functions/modules in the translator
        environment, and join them into a single LLVM module.

        Resets the export environment afterwards.
        """
        self.exported_signatures = export_registry
        self.exported_function_types = {}

        typing_ctx = CPUTarget.typing_context
        target_ctx = CPUTarget.target_context.subtarget(aot_mode=True)

        codegen = target_ctx.aot_codegen(self.module_name)
        library = codegen.create_library(self.module_name)

        # Generate IR for all exported functions
        flags = Flags()
        flags.set("no_compile")

        for entry in self.exported_signatures:
            cres = compile_extra(typing_ctx,
                                 target_ctx,
                                 entry.function,
                                 entry.signature.args,
                                 entry.signature.return_type,
                                 flags,
                                 locals={},
                                 library=library)

            func_name = cres.fndesc.llvm_func_name
            llvm_func = cres.library.get_function(func_name)

            if self.export_python_wrap:
                # XXX: unsupported (necessary?)
                llvm_func.linkage = lc.LINKAGE_INTERNAL
                wrappername = cres.fndesc.llvm_cpython_wrapper_name
                wrapper = cres.library.get_function(wrappername)
                wrapper.name = entry.symbol
                wrapper.linkage = lc.LINKAGE_EXTERNAL
                fnty = cres.target_context.call_conv.get_function_type(
                    cres.fndesc.restype, cres.fndesc.argtypes)
                self.exported_function_types[entry] = fnty
            else:
                llvm_func.linkage = lc.LINKAGE_EXTERNAL
                llvm_func.name = entry.symbol

        if self.export_python_wrap:
            wrapper_module = library.create_ir_module("wrapper")
            self._emit_python_wrapper(wrapper_module)
            library.add_ir_module(wrapper_module)

        return library
Exemplo n.º 22
0
    def test_usecase(self):
        n = 10
        obs_got = np.zeros(n)
        obs_expected = obs_got.copy()

        flags = Flags()
        flags.set("enable_pyobject")
        cres = compile_isolated(usecase, (types.float64[:], types.intp),
                                flags=flags)
        cres.entry_point(obs_got, n)
        usecase(obs_expected, n)

        self.assertTrue(np.allclose(obs_got, obs_expected))
Exemplo n.º 23
0
    def test_usecase(self):
        n = 10
        obs_got = np.zeros(n)
        obs_expected = obs_got.copy()

        flags = Flags()
        flags.set("nrt")
        cres = compile_isolated(usecase, (types.float64[:], types.intp),
                                flags=flags)
        cres.entry_point(obs_got, n)
        usecase(obs_expected, n)

        self.assertPreciseEqual(obs_got, obs_expected)
Exemplo n.º 24
0
    def test_usecase(self):
        n = 10
        obs_got = np.zeros(n)
        obs_expected = obs_got.copy()

        flags = Flags()
        flags.set("enable_pyobject")
        cres = compile_isolated(usecase, (types.float64[:], types.intp),
                                flags=flags)
        cres.entry_point(obs_got, n)
        usecase(obs_expected, n)

        self.assertTrue(np.allclose(obs_got, obs_expected))
Exemplo n.º 25
0
    def _cull_exports(self):
        """Read all the exported functions/modules in the translator
        environment, and join them into a single LLVM module.
        """
        self.exported_function_types = {}
        self.function_environments = {}

        codegen = self.context.codegen()
        library = codegen.create_library(self.module_name)

        # Generate IR for all exported functions
        flags = Flags()
        flags.set("no_compile")
        if not self.export_python_wrap:
            flags.set("no_cpython_wrapper")
        if self.use_nrt:
            flags.set("nrt")
            # Compile NRT helpers
            nrt_module, _ = atomicops.create_nrt_module(self.context)
            library.add_ir_module(nrt_module)

        for entry in self.export_entries:
            cres = compile_extra(self.typing_context,
                                 self.context,
                                 entry.function,
                                 entry.signature.args,
                                 entry.signature.return_type,
                                 flags,
                                 locals={},
                                 library=library)

            func_name = cres.fndesc.llvm_func_name
            llvm_func = cres.library.get_function(func_name)

            if self.export_python_wrap:
                llvm_func.linkage = lc.LINKAGE_INTERNAL
                wrappername = cres.fndesc.llvm_cpython_wrapper_name
                wrapper = cres.library.get_function(wrappername)
                wrapper.name = self._mangle_method_symbol(entry.symbol)
                wrapper.linkage = lc.LINKAGE_EXTERNAL
                fnty = cres.target_context.call_conv.get_function_type(
                    cres.fndesc.restype, cres.fndesc.argtypes)
                self.exported_function_types[entry] = fnty
                self.function_environments[entry] = cres.environment
            else:
                llvm_func.name = entry.symbol
                self.dll_exports.append(entry.symbol)

        if self.export_python_wrap:
            wrapper_module = library.create_ir_module("wrapper")
            self._emit_python_wrapper(wrapper_module)
            library.add_ir_module(wrapper_module)

        # Hide all functions in the DLL except those explicitly exported
        library.finalize()
        for fn in library.get_defined_functions():
            if fn.name not in self.dll_exports:
                fn.visibility = "hidden"

        return library
Exemplo n.º 26
0
    def _cull_exports(self):
        """Read all the exported functions/modules in the translator
        environment, and join them into a single LLVM module.

        Resets the export environment afterwards.
        """
        self.exported_signatures = export_registry
        self.exported_function_types = {}

        typing_ctx = CPUTarget.typing_context
        target_ctx = CPUTarget.target_context

        codegen = target_ctx.aot_codegen(self.module_name)
        library = codegen.create_library(self.module_name)

        # Generate IR for all exported functions
        flags = Flags()
        flags.set("no_compile")

        for entry in self.exported_signatures:
            cres = compile_extra(typing_ctx, target_ctx, entry.function,
                                 entry.signature.args,
                                 entry.signature.return_type, flags,
                                 locals={}, library=library)

            func_name = cres.fndesc.llvm_func_name
            llvm_func = cres.library.get_function(func_name)

            if self.export_python_wrap:
                # XXX: unsupported (necessary?)
                llvm_func.linkage = lc.LINKAGE_INTERNAL
                wrappername = cres.fndesc.llvm_cpython_wrapper_name
                wrapper = cres.library.get_function(wrappername)
                wrapper.name = entry.symbol
                wrapper.linkage = lc.LINKAGE_EXTERNAL
                fnty = cres.target_context.call_conv.get_function_type(
                    cres.fndesc.restype, cres.fndesc.argtypes)
                self.exported_function_types[entry] = fnty
            else:
                llvm_func.linkage = lc.LINKAGE_EXTERNAL
                llvm_func.name = entry.symbol

        if self.export_python_wrap:
            wrapper_module = library.create_ir_module("wrapper")
            self._emit_python_wrapper(wrapper_module)
            library.add_ir_module(wrapper_module)

        return library
Exemplo n.º 27
0
    def __init__(self, pyfunc, signature):
        self.py_func = pyfunc
        self.signature = signature
        self.name = pyfunc.__name__

        args, return_type = sigutils.normalize_signature(signature)
        flags = Flags()
        flags.set('no_compile')
        self._cres = compile_extra(typingctx=impala_typing,
                                   targetctx=impala_targets, func=pyfunc,
                                   args=args, return_type=return_type,
                                   flags=flags, locals={})
        llvm_func = impala_targets.finalize(self._cres.llvm_func, return_type,
                                            args)
        self.llvm_func = llvm_func
        self.llvm_module = llvm_func.module
Exemplo n.º 28
0
    def test_scalar(self):
        flags = Flags()

        global cnd_jitted
        cr1 = compile_isolated(cnd, (types.float64, ))
        cnd_jitted = cr1.entry_point
        tyctx = cr1.typing_context
        ctx = cr1.target_context
        ctx.dynamic_map_function(cnd_jitted)
        tyctx.insert_user_function(cnd_jitted,
                                   ctx.get_user_function(cnd_jitted))

        array = types.Array(types.float64, 1, 'C')
        argtys = (array, ) * 5 + (types.float64, types.float64)
        cr2 = compile_extra(tyctx,
                            ctx,
                            blackscholes_scalar_jitted,
                            args=argtys,
                            return_type=None,
                            flags=flags,
                            locals={})
        jitted_bs = cr2.entry_point

        OPT_N = 400
        iterations = 10

        callResultGold = np.zeros(OPT_N)
        putResultGold = np.zeros(OPT_N)

        callResultNumba = np.zeros(OPT_N)
        putResultNumba = np.zeros(OPT_N)

        stockPrice = randfloat(np.random.random(OPT_N), 5.0, 30.0)
        optionStrike = randfloat(np.random.random(OPT_N), 1.0, 100.0)
        optionYears = randfloat(np.random.random(OPT_N), 0.25, 10.0)

        args = stockPrice, optionStrike, optionYears, RISKFREE, VOLATILITY

        ts = timer()
        for i in range(iterations):
            blackscholes_scalar(callResultGold, putResultGold, *args)
        te = timer()
        pytime = te - ts

        ts = timer()
        for i in range(iterations):
            jitted_bs(callResultNumba, putResultNumba, *args)
        te = timer()
        jittime = te - ts

        print("Python", pytime)
        print("Numba", jittime)
        print("Speedup: %s" % (pytime / jittime))

        delta = np.abs(callResultGold - callResultNumba)
        L1norm = delta.sum() / np.abs(callResultGold).sum()
        print("L1 norm: %E" % L1norm)
        print("Max absolute error: %E" % delta.max())
        self.assertAlmostEqual(delta.max(), 0)
Exemplo n.º 29
0
    def _cull_exports(self):
        """Read all the exported functions/modules in the translator
        environment, and join them into a single LLVM module.
        """
        self.exported_function_types = {}
        self.function_environments = {}
        self.environment_gvs = {}

        codegen = self.context.codegen()
        library = codegen.create_library(self.module_name)

        # Generate IR for all exported functions
        flags = Flags()
        flags.set("no_compile")
        if not self.export_python_wrap:
            flags.set("no_cpython_wrapper")
        if self.use_nrt:
            flags.set("nrt")
            # Compile NRT helpers
            nrt_module, _ = nrtdynmod.create_nrt_module(self.context)
            library.add_ir_module(nrt_module)

        for entry in self.export_entries:
            cres = compile_extra(self.typing_context, self.context,
                                 entry.function,
                                 entry.signature.args,
                                 entry.signature.return_type, flags,
                                 locals={}, library=library)

            func_name = cres.fndesc.llvm_func_name
            llvm_func = cres.library.get_function(func_name)

            if self.export_python_wrap:
                llvm_func.linkage = lc.LINKAGE_INTERNAL
                wrappername = cres.fndesc.llvm_cpython_wrapper_name
                wrapper = cres.library.get_function(wrappername)
                wrapper.name = self._mangle_method_symbol(entry.symbol)
                wrapper.linkage = lc.LINKAGE_EXTERNAL
                fnty = cres.target_context.call_conv.get_function_type(
                    cres.fndesc.restype, cres.fndesc.argtypes)
                self.exported_function_types[entry] = fnty
                self.function_environments[entry] = cres.environment
                self.environment_gvs[entry] = cres.fndesc.env_name
            else:
                llvm_func.name = entry.symbol
                self.dll_exports.append(entry.symbol)

        if self.export_python_wrap:
            wrapper_module = library.create_ir_module("wrapper")
            self._emit_python_wrapper(wrapper_module)
            library.add_ir_module(wrapper_module)

        # Hide all functions in the DLL except those explicitly exported
        library.finalize()
        for fn in library.get_defined_functions():
            if fn.name not in self.dll_exports:
                fn.visibility = "hidden"

        return library
Exemplo n.º 30
0
    def __init__(self, pyfunc, signature):
        self.py_func = pyfunc
        self.signature = signature
        self.name = pyfunc.__name__

        args, return_type = sigutils.normalize_signature(signature)
        flags = Flags()
        flags.set('no_compile')
        self._cres = compile_extra(typingctx=impala_typing,
                                   targetctx=impala_targets,
                                   func=pyfunc,
                                   args=args,
                                   return_type=return_type,
                                   flags=flags,
                                   locals={})
        llvm_func = impala_targets.finalize(self._cres.llvm_func, return_type,
                                            args)
        self.llvm_func = llvm_func
        self.llvm_module = llvm_func.module
Exemplo n.º 31
0
    def test_array_expr(self):
        flags = Flags()
        flags.set("enable_pyobject")

        global cnd_array_jitted
        cr1 = compile_isolated(cnd_array, args=(), flags=flags)
        cnd_array_jitted = cr1.entry_point
        cr2 = compile_isolated(blackscholes_arrayexpr_jitted, args=(),
                                     flags=flags)
        jitted_bs = cr2.entry_point

        OPT_N = 400
        iterations = 10


        stockPrice = randfloat(self.random.random_sample(OPT_N), 5.0, 30.0)
        optionStrike = randfloat(self.random.random_sample(OPT_N), 1.0, 100.0)
        optionYears = randfloat(self.random.random_sample(OPT_N), 0.25, 10.0)

        args = stockPrice, optionStrike, optionYears, RISKFREE, VOLATILITY

        ts = timer()
        for i in range(iterations):
            callResultGold, putResultGold = blackscholes_arrayexpr(*args)
        te = timer()
        pytime = te - ts

        ts = timer()
        for i in range(iterations):
            callResultNumba, putResultNumba = jitted_bs(*args)
        te = timer()
        jittime = te - ts

        print("Python", pytime)
        print("Numba", jittime)
        print("Speedup: %s" % (pytime / jittime))

        delta = np.abs(callResultGold - callResultNumba)
        L1norm = delta.sum() / np.abs(callResultGold).sum()
        print("L1 norm: %E" % L1norm)
        print("Max absolute error: %E" % delta.max())
        self.assertEqual(delta.max(), 0)
Exemplo n.º 32
0
    def test_array_expr(self):
        flags = Flags()
        flags.set("enable_pyobject")

        global cnd_array_jitted
        cr1 = compile_isolated(cnd_array, args=(), flags=flags)
        cnd_array_jitted = cr1.entry_point
        cr2 = compile_isolated(blackscholes_arrayexpr_jitted,
                               args=(),
                               flags=flags)
        jitted_bs = cr2.entry_point

        OPT_N = 400
        iterations = 10

        stockPrice = randfloat(np.random.random(OPT_N), 5.0, 30.0)
        optionStrike = randfloat(np.random.random(OPT_N), 1.0, 100.0)
        optionYears = randfloat(np.random.random(OPT_N), 0.25, 10.0)

        args = stockPrice, optionStrike, optionYears, RISKFREE, VOLATILITY

        ts = timer()
        for i in range(iterations):
            callResultGold, putResultGold = blackscholes_arrayexpr(*args)
        te = timer()
        pytime = te - ts

        ts = timer()
        for i in range(iterations):
            callResultNumba, putResultNumba = jitted_bs(*args)
        te = timer()
        jittime = te - ts

        print("Python", pytime)
        print("Numba", jittime)
        print("Speedup: %s" % (pytime / jittime))

        delta = np.abs(callResultGold - callResultNumba)
        L1norm = delta.sum() / np.abs(callResultGold).sum()
        print("L1 norm: %E" % L1norm)
        print("Max absolute error: %E" % delta.max())
        self.assertEqual(delta.max(), 0)
Exemplo n.º 33
0
    def test_scalar(self):
        flags = Flags()

        # Compile the inner function
        global cnd_jitted
        cr1 = compile_isolated(cnd, (types.float64, ))
        cnd_jitted = cr1.entry_point
        # Manually type the compiled function for calling into
        tyctx = cr1.typing_context
        ctx = cr1.target_context
        signature = typing.make_concrete_template("cnd_jitted", cnd_jitted,
                                                  [cr1.signature])
        tyctx.insert_user_function(cnd_jitted, signature)

        # Compile the outer function
        array = types.Array(types.float64, 1, 'C')
        argtys = (array, ) * 5 + (types.float64, types.float64)
        cr2 = compile_extra(tyctx,
                            ctx,
                            blackscholes_scalar_jitted,
                            args=argtys,
                            return_type=None,
                            flags=flags,
                            locals={})
        jitted_bs = cr2.entry_point

        OPT_N = 400
        iterations = 10

        callResultGold = np.zeros(OPT_N)
        putResultGold = np.zeros(OPT_N)

        callResultNumba = np.zeros(OPT_N)
        putResultNumba = np.zeros(OPT_N)

        stockPrice = randfloat(self.random.random_sample(OPT_N), 5.0, 30.0)
        optionStrike = randfloat(self.random.random_sample(OPT_N), 1.0, 100.0)
        optionYears = randfloat(self.random.random_sample(OPT_N), 0.25, 10.0)

        args = stockPrice, optionStrike, optionYears, RISKFREE, VOLATILITY

        blackscholes_scalar(callResultGold, putResultGold, *args)
        jitted_bs(callResultNumba, putResultNumba, *args)

        delta = np.abs(callResultGold - callResultNumba)
        L1norm = delta.sum() / np.abs(callResultGold).sum()
        print("L1 norm: %E" % L1norm)
        print("Max absolute error: %E" % delta.max())
        self.assertAlmostEqual(delta.max(), 0)
Exemplo n.º 34
0
 def autogenerate(cls):
     test_flags = ['fastmath', ]  # TODO: add 'auto_parallel' ?
     # generate all the combinations of the flags
     test_flags = sum([list(combinations(test_flags, x)) for x in range( \
                                                 len(test_flags)+1)], [])
     flag_list = []  # create Flag class instances
     for ft in test_flags:
         flags = Flags()
         flags.set('nrt')
         flags.set('error_model', 'numpy')
         flags.__name__ = '_'.join(ft+('usecase',))
         for f in ft:
             flags.set(f)
         flag_list.append(flags)
     # main loop covering all the modes and use-cases
     for dtype in ('float64', 'float32'):
         for vlen in vlen2cpu:
             for flags in flag_list:
                 for mode in "scalar", "range", "prange", "numpy":
                     cls._inject_test(dtype, mode, vlen, flags)
Exemplo n.º 35
0
# Tests numpy methods of <class 'function'>
from __future__ import print_function, absolute_import, division

import itertools
import math
import sys

import numpy as np

from numba import unittest_support as unittest
from numba.compiler import compile_isolated, Flags, utils
from numba import types
from .support import TestCase, CompilationCache

no_pyobj_flags = Flags()
no_pyobj_flags.set("nrt")
no_pyobj_flags = [no_pyobj_flags]

def sinc(x):
    return np.sinc(x)

def angle(x, deg):
    return np.angle(x, deg)

class TestNPFunctions(TestCase):
    """
    Contains tests and test helpers for numpy methods the are of type
    "class< 'function' >.
    """

    def setUp(self):
Exemplo n.º 36
0
from __future__ import print_function

import numpy as np

import numba.unittest_support as unittest
from numba.compiler import compile_isolated, Flags
from numba import errors, types, typeof
from .support import TestCase, MemoryLeakMixin, tag

enable_pyobj_flags = Flags()
enable_pyobj_flags.set("enable_pyobject")

force_pyobj_flags = Flags()
force_pyobj_flags.set("force_pyobject")

no_pyobj_flags = Flags()
no_pyobj_flags.set("nrt")


def unpack_list(l):
    a, b, c = l
    return (a, b, c)


def unpack_shape(a):
    x, y, z = a.shape
    return x + y + z


def unpack_range():
    a, b, c = range(3)
Exemplo n.º 37
0
from __future__ import print_function

import numpy as np

import numba.unittest_support as unittest
from numba.compiler import compile_isolated, Flags
from numba import types, utils, njit, errors
from numba.tests import usecases
from .support import TestCase

import decimal


enable_pyobj_flags = Flags()
enable_pyobj_flags.set("enable_pyobject")

Noflags = Flags()


def slicing_1d_usecase(a, start, stop, step):
    return a[start:stop:step]

def slicing_1d_usecase2(a, start, stop, step):
    b = a[start:stop:step]
    total = 0
    for i in range(b.shape[0]):
        total += b[i] * (i + 1)
    return total

def slicing_1d_usecase3(a, start, stop):
    b = a[start:stop]
Exemplo n.º 38
0
import itertools
import operator
import warnings

import numpy as np

from numba.compiler import compile_isolated, Flags
from numba import types, typeinfer, utils
from numba.config import PYVERSION
from .support import TestCase
from numba.tests.true_div_usecase import truediv_usecase, itruediv_usecase
import numba.unittest_support as unittest

Noflags = Flags()

force_pyobj_flags = Flags()
force_pyobj_flags.set("enable_pyobject")

force_pyobj_flags = Flags()
force_pyobj_flags.set("force_pyobject")


class LiteralOperatorImpl(object):

    @staticmethod
    def add_usecase(x, y):
        return x + y

    @staticmethod
    def iadd_usecase(x, y):
        x += y
Exemplo n.º 39
0
import numba.unittest_support as unittest
from numba.compiler import compile_isolated, Flags
from numba import types, utils

enable_pyobj_flags = Flags()
enable_pyobj_flags.set("enable_pyobject")

force_pyobj_flags = Flags()
force_pyobj_flags.set("force_pyobject")


def is_in_mandelbrot(c):
    i = 0
    z = 0.0j
    for i in range(100):
        z = z**2 + c
        if (z.real * z.real + z.imag * z.imag) >= 4:
            return False
    return True


class TestMandelbrot(unittest.TestCase):
    def test_mandelbrot(self):
        pyfunc = is_in_mandelbrot
        cr = compile_isolated(pyfunc, (types.complex64, ))
        cfunc = cr.entry_point

        points = [0 + 0j, 1 + 0j, 0 + 1j, 1 + 1j, 0.1 + 0.1j]
        for p in points:
            self.assertEqual(cfunc(p), pyfunc(p))
Exemplo n.º 40
0
import numpy as np
import sys

from numba.compiler import compile_isolated, Flags
from numba import jit, types
from numba import unittest_support as unittest
from .support import TestCase

force_pyobj_flags = Flags()
force_pyobj_flags.set("force_pyobject")

no_pyobj_flags = Flags()


class MyError(Exception):
    pass


class OtherError(Exception):
    pass


def raise_class(exc):
    def raiser(i):
        if i == 1:
            raise exc
        elif i == 2:
            raise ValueError
        return i

    return raiser
Exemplo n.º 41
0
from __future__ import absolute_import, division, print_function

import math
import os
import sys

import numpy as np

from numba import unittest_support as unittest
from numba import njit
from numba.compiler import compile_isolated, Flags, types
from numba.runtime import rtsys
from .support import MemoryLeakMixin, TestCase

enable_nrt_flags = Flags()
enable_nrt_flags.set("nrt")


class Dummy(object):
    alive = 0

    def __init__(self):
        type(self).alive += 1

    def __del__(self):
        type(self).alive -= 1


class TestNrtMemInfo(unittest.TestCase):
    """
    Unitest for core MemInfo functionality
Exemplo n.º 42
0
from __future__ import print_function
import numba.unittest_support as unittest
import numpy as np
from numba.compiler import compile_isolated, Flags
from numba import types, utils
from numba.tests import usecases
from .support import TestCase

import decimal

enable_pyobj_flags = Flags()
enable_pyobj_flags.set("enable_pyobject")

Noflags = Flags()


def slicing_1d_usecase(a, start, stop, step):
    return a[start:stop:step]


def slicing_1d_usecase2(a, start, stop, step):
    b = a[start:stop:step]
    total = 0
    for i in range(b.shape[0]):
        total += b[i] * (i + 1)
    return total


def slicing_1d_usecase3(a, start, stop):
    b = a[start:stop]
    total = 0
Exemplo n.º 43
0
from __future__ import print_function

import decimal
import itertools

import numpy as np

import numba.unittest_support as unittest
from numba.compiler import compile_isolated, Flags
from numba import types, utils, njit, errors, typeof
from .support import TestCase


enable_pyobj_flags = Flags()
enable_pyobj_flags.set("enable_pyobject")

Noflags = Flags()
Noflags.set("nrt")


def slicing_1d_usecase(a, start, stop, step):
    return a[start:stop:step]


def slicing_1d_usecase2(a, start, stop, step):
    b = a[start:stop:step]
    total = 0
    for i in range(b.shape[0]):
        total += b[i] * (i + 1)
    return total
Exemplo n.º 44
0
import numba.unittest_support as unittest
from numba.compiler import compile_isolated, Flags
from numba import utils, jit
from .support import TestCase


def complex_constant(n):
    tmp = n + 4
    return tmp + 3j

def long_constant(n):
    return n + 100000000000000000000000000000000000000000000000


forceobj = Flags()
forceobj.set("force_pyobject")


def loop_nest_3(x, y):
    n = 0
    for i in range(x):
        for j in range(y):
            for k in range(x+y):
                n += i * j

    return n


def array_of_object(x):
    return x
Exemplo n.º 45
0
simple_class_spec = [('h', types.int32)]

def simple_class_user(obj):
    return obj.h

def unsupported_parfor(a, b):
    return np.dot(a, b) # dot as gemm unsupported

def supported_parfor(n):
    a = np.ones(n)
    for i in prange(n):
        a[i] = a[i] + np.sin(i)
    return a

force_parallel_flags = Flags()
force_parallel_flags.set("auto_parallel", ParallelOptions(True))
force_parallel_flags.set('nrt')

class DebugTestBase(TestCase):

    all_dumps = set(['bytecode', 'cfg', 'ir', 'typeinfer', 'llvm',
                     'func_opt_llvm', 'optimized_llvm', 'assembly'])

    def assert_fails(self, *args, **kwargs):
        self.assertRaises(AssertionError, *args, **kwargs)

    def check_debug_output(self, out, dump_names):
        enabled_dumps = dict.fromkeys(self.all_dumps, False)
        for name in dump_names:
            assert name in enabled_dumps
Exemplo n.º 46
0
class TestSVML(TestCase):
    """ Tests SVML behaves as expected """

    # env mutating, must not run in parallel
    _numba_parallel_test_ = False

    def __init__(self, *args):
        self.flags = Flags()
        self.flags.set('nrt')

        # flags for njit(fastmath=True)
        self.fastflags = Flags()
        self.fastflags.set('nrt')
        self.fastflags.set('fastmath')
        super(TestSVML, self).__init__(*args)

    def compile(self, func, *args, **kwargs):
        assert not kwargs
        sig = tuple([numba.typeof(x) for x in args])

        std = compile_isolated(func, sig, flags=self.flags)
        fast = compile_isolated(func, sig, flags=self.fastflags)

        return std, fast

    def copy_args(self, *args):
        if not args:
            return tuple()
        new_args = []
        for x in args:
            if isinstance(x, np.ndarray):
                new_args.append(x.copy('k'))
            elif isinstance(x, np.number):
                new_args.append(x.copy())
            elif isinstance(x, numbers.Number):
                new_args.append(x)
            else:
                raise ValueError('Unsupported argument type encountered')
        return tuple(new_args)

    def check(self, pyfunc, *args, **kwargs):

        jitstd, jitfast = self.compile(pyfunc, *args)

        std_pattern = kwargs.pop('std_pattern', None)
        fast_pattern = kwargs.pop('fast_pattern', None)
        cpu_name = kwargs.pop('cpu_name', 'skylake-avx512')

        # python result
        py_expected = pyfunc(*self.copy_args(*args))

        # jit result
        jitstd_result = jitstd.entry_point(*self.copy_args(*args))

        # fastmath result
        jitfast_result = jitfast.entry_point(*self.copy_args(*args))

        # assert numerical equality
        np.testing.assert_almost_equal(jitstd_result, py_expected, **kwargs)
        np.testing.assert_almost_equal(jitfast_result, py_expected, **kwargs)

        # look for specific patters in the asm for a given target
        with override_env_config('NUMBA_CPU_NAME', cpu_name), \
             override_env_config('NUMBA_CPU_FEATURES', ''):
            # recompile for overridden CPU
            jitstd, jitfast = self.compile(pyfunc, *args)
            if std_pattern:
                self.check_svml_presence(jitstd, std_pattern)
            if fast_pattern:
                self.check_svml_presence(jitfast, fast_pattern)

    def check_svml_presence(self, func, pattern):
        asm = func.library.get_asm_str()
        self.assertIn(pattern, asm)

    def test_scalar_context(self):
        # SVML will not be used.
        pat = '$_sin' if numba.config.IS_OSX else '$sin'
        self.check(math_sin_scalar, 7., std_pattern=pat)
        self.check(math_sin_scalar, 7., fast_pattern=pat)

    @tag('important')
    def test_svml(self):
        # loops both with and without fastmath should use SVML.
        # The high accuracy routines are dropped if `fastmath` is set
        std = "__svml_sin8_ha,"
        fast = "__svml_sin8,"  # No `_ha`!
        self.check(math_sin_loop, 10, std_pattern=std, fast_pattern=fast)

    def test_svml_disabled(self):
        code = """if 1:
            import os
            import numpy as np
            import math

            def math_sin_loop(n):
                ret = np.empty(n, dtype=np.float64)
                for x in range(n):
                    ret[x] = math.sin(np.float64(x))
                return ret

            def check_no_svml():
                try:
                    # ban the use of SVML
                    os.environ['NUMBA_DISABLE_INTEL_SVML'] = '1'

                    # delay numba imports to account for env change as
                    # numba.__init__ picks up SVML and it is too late by
                    # then to override using `numba.config`
                    import numba
                    from numba import config
                    from numba.tests.support import override_env_config
                    from numba.compiler import compile_isolated, Flags

                    # compile for overridden CPU, with and without fastmath
                    with override_env_config('NUMBA_CPU_NAME', 'skylake-avx512'), \
                         override_env_config('NUMBA_CPU_FEATURES', ''):
                        sig = (numba.int32,)
                        f = Flags()
                        f.set('nrt')
                        std = compile_isolated(math_sin_loop, sig, flags=f)
                        f.set('fastmath')
                        fast = compile_isolated(math_sin_loop, sig, flags=f)
                        fns = std, fast

                        # assert no SVML call is present in the asm
                        for fn in fns:
                            asm = fn.library.get_asm_str()
                            assert '__svml_sin' not in asm
                finally:
                    # not really needed as process is separate
                    os.environ['NUMBA_DISABLE_INTEL_SVML'] = '0'
                    config.reload_config()
            check_no_svml()
            """
        popen = subprocess.Popen(
            [sys.executable, "-c", code],
            stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        out, err = popen.communicate()
        if popen.returncode != 0:
            raise AssertionError(
                "process failed with code %s: stderr follows\n%s\n" %
                (popen.returncode, err.decode()))
Exemplo n.º 47
0
from __future__ import print_function, division, absolute_import
import numpy as np

from numba import types
from numba import unittest_support as unittest
from numba.compiler import compile_isolated, Flags
from .support import TestCase, tag


looplift_flags = Flags()
looplift_flags.set("enable_pyobject")
looplift_flags.set("enable_looplift")

pyobject_looplift_flags = looplift_flags.copy()
pyobject_looplift_flags.set("enable_pyobject_looplift")


def lift1(x):
    # Outer needs object mode because of np.empty()
    a = np.empty(3)
    for i in range(a.size):
        # Inner is nopython-compliant
        a[i] = x
    return a


def lift2(x):
    # Outer needs object mode because of np.empty()
    a = np.empty((3, 4))
    for i in range(a.shape[0]):
        for j in range(a.shape[1]):
Exemplo n.º 48
0
import time
import io
import ctypes
import multiprocessing as mp
from contextlib import contextmanager

import numpy as np

from numba import config, errors, typing, utils, numpy_support, testing
from numba.compiler import compile_extra, compile_isolated, Flags, DEFAULT_FLAGS
from numba.targets import cpu
import numba.unittest_support as unittest
from numba.runtime import rtsys
from numba.six import PY2

enable_pyobj_flags = Flags()
enable_pyobj_flags.set("enable_pyobject")

force_pyobj_flags = Flags()
force_pyobj_flags.set("force_pyobject")

no_pyobj_flags = Flags()

nrt_flags = Flags()
nrt_flags.set("nrt")

tag = testing.make_tag_decorator(['important', 'long_running'])

_windows_py27 = (sys.platform.startswith('win32')
                 and sys.version_info[:2] == (2, 7))
_32bit = sys.maxsize <= 2**32
Exemplo n.º 49
0
from __future__ import print_function

from functools import partial
from itertools import permutations
import numba.unittest_support as unittest

import numpy as np

from numba.compiler import compile_isolated, Flags
from numba import jit, types, from_dtype, errors, typeof
from numba.errors import TypingError
from .support import TestCase, MemoryLeakMixin, CompilationCache, tag

enable_pyobj_flags = Flags()
enable_pyobj_flags.set("enable_pyobject")

no_pyobj_flags = Flags()
no_pyobj_flags.set('nrt')


def from_generic(pyfuncs_to_use):
    """Decorator for generic check functions.
        Iterates over 'pyfuncs_to_use', calling 'func' with the iterated
        item as first argument. Example:

        @from_generic(numpy_array_reshape, array_reshape)
        def check_only_shape(pyfunc, arr, shape, expected_shape):
            # Only check Numba result to avoid Numpy bugs
            self.memory_leak_setup()
            got = generic_run(pyfunc, arr, shape)
            self.assertEqual(got.shape, expected_shape)
Exemplo n.º 50
0
 def mk_no_rw_pipeline(cls, args, return_type=None, flags=None, locals={},
                       library=None, **kws):
     if not flags:
         flags = Flags()
     flags.no_rewrites = True
     return cls.mk_pipeline(args, return_type, flags, locals, library, **kws)
Exemplo n.º 51
0
simple_class_spec = [('h', types.int32)]

def simple_class_user(obj):
    return obj.h

def unsupported_parfor(a, b):
    return np.dot(a, b) # dot as gemm unsupported

def supported_parfor(n):
    a = np.ones(n)
    for i in prange(n):
        a[i] = a[i] + np.sin(i)
    return a

force_parallel_flags = Flags()
force_parallel_flags.set("auto_parallel", ParallelOptions(True))
force_parallel_flags.set('nrt')

class DebugTestBase(TestCase):

    all_dumps = set(['bytecode', 'cfg', 'ir', 'typeinfer', 'llvm',
                     'func_opt_llvm', 'optimized_llvm', 'assembly'])

    def assert_fails(self, *args, **kwargs):
        self.assertRaises(AssertionError, *args, **kwargs)

    def check_debug_output(self, out, dump_names):
        enabled_dumps = dict.fromkeys(self.all_dumps, False)
        for name in dump_names:
            assert name in enabled_dumps
Exemplo n.º 52
0
from __future__ import print_function, division, absolute_import

import numpy as np

from numba import types, utils
from numba import unittest_support as unittest
from numba.compiler import compile_isolated, Flags
from .support import TestCase, tag, MemoryLeakMixin

looplift_flags = Flags()
looplift_flags.set("enable_pyobject")
looplift_flags.set("enable_looplift")

pyobject_looplift_flags = looplift_flags.copy()
pyobject_looplift_flags.set("enable_pyobject_looplift")


def lift1(x):
    # Outer needs object mode because of np.empty()
    a = np.empty(3)
    for i in range(a.size):
        # Inner is nopython-compliant
        a[i] = x
    return a


def lift2(x):
    # Outer needs object mode because of np.empty()
    a = np.empty((3, 4))
    for i in range(a.shape[0]):
        for j in range(a.shape[1]):
Exemplo n.º 53
0
 def compile_parallel(self, func, arg_types):
     fast_pflags = Flags()
     fast_pflags.set('auto_parallel', cpu.ParallelOptions(True))
     fast_pflags.set('nrt')
     fast_pflags.set('fastmath', cpu.FastMathOptions(True))
     return compile_isolated(func, arg_types, flags=fast_pflags).entry_point