Exemplo n.º 1
0
 def __init__(self, dmm, fe_type):
     members = [
         ('index_offsets', types.CPointer(offset_typ)),
         ('data_offsets', types.CPointer(offset_typ)),
         #('null_bitmap', types.CPointer(char_typ)),
     ]
     models.StructModel.__init__(self, dmm, fe_type, members)
Exemplo n.º 2
0
Arquivo: cv_ext.py Projeto: rowhit/sdc
def resize_overload(A_t, resize_shape_t):
    n_channels = 3
    if not (isinstance(A_t, types.Array) and A_t.ndim == n_channels
            and A_t.dtype == types.uint8
            and resize_shape_t == types.UniTuple(types.int64, 2)):
        raise ValueError("Unsupported cv2.resize() with types {} {}".format(
            A_t, resize_shape_t))

    dtype = A_t.dtype
    sig = types.void(
        types.intp,  # new num rows
        types.intp,  # new num cols
        types.CPointer(dtype),  # output data
        types.CPointer(dtype),  # input data
        types.intp,  # num rows
        types.intp,  # num cols
    )
    cv_resize = types.ExternalFunction("cv_resize", sig)

    def resize_imp(in_arr, resize_shape):
        A = np.ascontiguousarray(in_arr)
        n_channels = A.shape[2]
        # cv Size object has column first
        B = np.empty((resize_shape[1], resize_shape[0], n_channels), A.dtype)

        cv_resize(resize_shape[1], resize_shape[0], B.ctypes, A.ctypes,
                  A.shape[0], A.shape[1])
        return B

    return resize_imp
Exemplo n.º 3
0
def make_signature(f, td=False, return_complex=False, shape=None):
    sig = inspect.signature(f)
    pp = sig.parameters

    from numba import types

    if shape is None:
        if return_complex:
            m = types.complex128
        else:
            m = types.float64
        l = len(pp)
    else:
        m = types.void
        l = len(pp)-1
    if td:
        l = l=1

    args = [types.double]*l
    if td:
        args.append(types.double)
    if shape is not None:
        if return_complex:
            args.append(types.CPointer(types.complex128))
        else:
            args.append(types.CPointer(types.float64))

    return l, m(*args)
Exemplo n.º 4
0
def _populate_setup_args(args_no, is_input_args=False):
    ret = []
    for _ in range(args_no):
        ret.append(types.CPointer(types.int64))
        ret.append(types.int32)
        ret.append(
            types.int32 if is_input_args else types.CPointer(types.int32))
    return ret
Exemplo n.º 5
0
    class NdIndexIter(cgutils.Structure):
        """
        .ndindex() implementation.
        """
        _fields = [
            ('shape', types.UniTuple(types.intp, ndim)),
            ('indices', types.CPointer(types.intp)),
            ('exhausted', types.CPointer(types.boolean)),
        ]

        def init_specific(self, context, builder, shapes):
            zero = context.get_constant(types.intp, 0)
            indices = cgutils.alloca_once(builder,
                                          zero.type,
                                          size=context.get_constant(
                                              types.intp, ndim))
            exhausted = cgutils.alloca_once_value(builder, cgutils.false_byte)

            for dim in range(ndim):
                idxptr = cgutils.gep(builder, indices, dim)
                builder.store(zero, idxptr)
                # 0-sized dimensions really indicate an empty array,
                # but we have to catch that condition early to avoid
                # a bug inside the iteration logic.
                dim_size = shapes[dim]
                dim_is_empty = builder.icmp(lc.ICMP_EQ, dim_size, zero)
                with cgutils.if_unlikely(builder, dim_is_empty):
                    builder.store(cgutils.true_byte, exhausted)

            self.indices = indices
            self.exhausted = exhausted
            self.shape = cgutils.pack_array(builder, shapes)

        def iternext_specific(self, context, builder, result):
            zero = context.get_constant(types.intp, 0)
            one = context.get_constant(types.intp, 1)

            bbend = cgutils.append_basic_block(builder, 'end')

            exhausted = cgutils.as_bool_bit(builder,
                                            builder.load(self.exhausted))
            with cgutils.if_unlikely(builder, exhausted):
                result.set_valid(False)
                builder.branch(bbend)

            indices = [
                builder.load(cgutils.gep(builder, self.indices, dim))
                for dim in range(ndim)
            ]
            result.yield_(cgutils.pack_array(builder, indices))
            result.set_valid(True)

            shape = cgutils.unpack_tuple(builder, self.shape, ndim)
            _increment_indices(context, builder, ndim, shape, self.indices,
                               self.exhausted)

            builder.branch(bbend)
            builder.position_at_end(bbend)
Exemplo n.º 6
0
def _populate_run_args(types_list):
    ret = []
    types_list = [types_list
                  ] if not isinstance(types_list, list) else types_list
    for type in types_list:
        ret.append(types.CPointer(type))
        ret.append(types.CPointer(types.int64))
        ret.append(types.int32)
    return ret
Exemplo n.º 7
0
 def __init__(self, dmm, fe_type):
     members = [
         ('num_items', types.uint64),
         ('num_total_chars', types.uint64),
         ('offsets', types.CPointer(offset_typ)),
         ('data', types.CPointer(char_typ)),
         ('meminfo', types.MemInfoPointer(str_arr_payload_type)),
     ]
     models.StructModel.__init__(self, dmm, fe_type, members)
Exemplo n.º 8
0
 def __init__(self, dmm, fe_type):
     array_type = fe_type.array_type
     dtype = array_type.dtype
     members = [('array', types.CPointer(array_type)),
                # NOTE: pointers and indices are arrays
                ('pointers', types.EphemeralPointer(types.CPointer(dtype))),
                ('indices', types.EphemeralPointer(types.intp)),
                ('exhausted', types.EphemeralPointer(types.boolean)),
     ]
     super(FlatIter, self).__init__(dmm, fe_type, members)
Exemplo n.º 9
0
 def __init__(self, dmm, fe_type):
     assert fe_type.array_type.layout == 'C'
     array_type = fe_type.array_type
     dtype = array_type.dtype
     members = [('array', types.CPointer(array_type)),
                ('stride', types.intp),
                ('pointer', types.EphemeralPointer(types.CPointer(dtype))),
                ('index', types.EphemeralPointer(types.intp)),
                # NOTE: indices is an array
                ('indices', types.EphemeralPointer(types.intp)),
     ]
     super(CContiguousFlatIter, self).__init__(dmm, fe_type, members)
Exemplo n.º 10
0
    def _conversion_tests(self, check):
        check(c_double, types.float64)
        check(c_int, types.intc)
        check(c_uint16, types.uint16)
        check(c_size_t, types.uintp)
        check(c_ssize_t, types.intp)

        check(c_void_p, types.voidptr)
        check(POINTER(c_float), types.CPointer(types.float32))
        check(POINTER(POINTER(c_float)),
              types.CPointer(types.CPointer(types.float32)))

        check(None, types.void)
Exemplo n.º 11
0
def map_type(cffi_type):
    """
    Map CFFI type to numba type.
    """
    kind = getattr(cffi_type, 'kind', '')
    if kind == 'union':
        raise TypeError("No support for CFFI union")
    elif kind == 'function':
        if cffi_type.ellipsis:
            raise TypeError("vararg function is not supported")
        restype = map_type(cffi_type.result)
        argtypes = [map_type(arg) for arg in cffi_type.args]
        return templates.signature(restype, *argtypes)
    elif kind == 'pointer':
        pointee = cffi_type.item
        if pointee.kind == 'void':
            return types.voidptr
        else:
            return types.CPointer(map_type(pointee))
    elif kind == 'array':
        return map_type(cffi_type.item)
    else:
        result = _type_map().get(cffi_type)
        if result is None:
            raise TypeError(cffi_type)
        return result
Exemplo n.º 12
0
        def array_impl_unsafe_get_ctypes_pointer(arrtype):
            if isinstance(arrtype, types.Array):
                unsafe_cast = unsafe_caster(types.CPointer(arrtype.dtype))

                def array_impl(arr):
                    return unsafe_cast(src=arr.ctypes.data)
                return array_impl
Exemplo n.º 13
0
    def __init__(self, dmm, fe_type):

        members = [
            ('table_ptr', types.CPointer(types.uint8)),
            ('meminfo', types.MemInfoPointer(types.voidptr)),
        ]
        models.StructModel.__init__(self, dmm, fe_type, members)
Exemplo n.º 14
0
 class ArrayTemplate(cgutils.Structure):
     _fields = [
         ('data', types.CPointer(dtype)),
         ('shape', types.UniTuple(types.intp, nd)),
         ('strides', types.UniTuple(types.intp, nd)),
         ('parent', types.pyobject),
     ]
Exemplo n.º 15
0
 def _convert_internal(ctypeobj):
     # Recursive helper
     if issubclass(ctypeobj, ctypes._Pointer):
         valuety = _convert_internal(ctypeobj._type_)
         if valuety is not None:
             return types.CPointer(valuety)
     else:
         return _FROM_CTYPES.get(ctypeobj)
Exemplo n.º 16
0
 def generic(self, args, kws):
     if kws or (len(args) != 1):
         return
     [ary] = args
     if not (isinstance(ary, types.Array) and ary.layout in ('C', 'F')):
         return
     ptr = types.CPointer(ary.dtype)
     return templates.signature(ptr, ary)
Exemplo n.º 17
0
def jit_integrand_function(integrand_function):
    """Based on https://stackoverflow.com/a/49732825/4779220"""
    jitted_function = numba.jit(integrand_function, nopython=True, nogil=True)

    @numba.cfunc(nut.float64(nut.intc, nut.CPointer(nut.float64)))
    def wrapped(n, xx):
        # TODO: nicer way to not hard code number of args? `*carray()` may not expand correctly
        return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5])
    return LowLevelCallable(wrapped.ctypes)
Exemplo n.º 18
0
 def __init__(self, dmm, fe_type):
     array_type = fe_type.array_type
     dtype = array_type.dtype
     ndim = array_type.ndim
     members = [('array', array_type),
                ('pointers', types.EphemeralArray(types.CPointer(dtype), ndim)),
                ('indices', types.EphemeralArray(types.intp, ndim)),
                ('exhausted', types.EphemeralPointer(types.boolean)),
     ]
     super(FlatIter, self).__init__(dmm, fe_type, members)
Exemplo n.º 19
0
def test_numba_assembly():
    mesh = UnitSquareMesh(MPI.comm_world, 13, 13)
    Q = FunctionSpace(mesh, "Lagrange", 1)

    u = TrialFunction(Q)
    v = TestFunction(Q)

    a = cpp.fem.Form([Q._cpp_object, Q._cpp_object])
    L = cpp.fem.Form([Q._cpp_object])

    sig = types.void(types.CPointer(typeof(ScalarType())),
                     types.CPointer(types.CPointer(typeof(ScalarType()))),
                     types.CPointer(types.double), types.intc)

    fnA = cfunc(sig, cache=True)(tabulate_tensor_A)
    a.set_cell_tabulate(0, fnA.address)

    fnb = cfunc(sig, cache=True)(tabulate_tensor_b)
    L.set_cell_tabulate(0, fnb.address)

    if (False):
        ufc_form = ffc_jit(dot(grad(u), grad(v)) * dx)
        ufc_form = cpp.fem.make_ufc_form(ufc_form[0])
        a = cpp.fem.Form(ufc_form, [Q._cpp_object, Q._cpp_object])
        ufc_form = ffc_jit(v * dx)
        ufc_form = cpp.fem.make_ufc_form(ufc_form[0])
        L = cpp.fem.Form(ufc_form, [Q._cpp_object])

    assembler = cpp.fem.Assembler([[a]], [L], [])
    A = PETScMatrix()
    b = PETScVector()
    assembler.assemble(A, cpp.fem.Assembler.BlockType.monolithic)
    assembler.assemble(b, cpp.fem.Assembler.BlockType.monolithic)

    Anorm = A.norm(cpp.la.Norm.frobenius)
    bnorm = b.norm(cpp.la.Norm.l2)

    print(Anorm, bnorm)

    assert (np.isclose(Anorm, 56.124860801609124))
    assert (np.isclose(bnorm, 0.0739710713711999))

    list_timings([TimingType.wall])
Exemplo n.º 20
0
 class ArrayTemplate(cgutils.Structure):
     _fields = [
         ('parent', types.pyobject),
         ('nitems', types.intp),
         ('itemsize', types.intp),
         # These three fields comprise the unofficiel llarray ABI
         # (used by the GPU backend)
         ('data', types.CPointer(dtype)),
         ('shape', types.UniTuple(types.intp, nd)),
         ('strides', types.UniTuple(types.intp, nd)),
     ]
Exemplo n.º 21
0
 def generic(self, args, kws):
     if kws or len(args) != 1:
         return
     [ary] = args
     if not isinstance(ary, types.Buffer):
         raise TypingError("from_buffer() expected a buffer object, got %s"
                           % (ary,))
     if ary.layout not in ('C', 'F'):
         raise TypingError("from_buffer() unsupported on non-contiguous buffers (got %s)"
                           % (ary,))
     ptr = types.CPointer(ary.dtype)
     return templates.signature(ptr, ary)
Exemplo n.º 22
0
 def __init__(self, dmm, fe_typ):
     cls_data_ty = types.ClassDataType(fe_typ)
     # MemInfoPointer uses the `dtype` attribute to traverse for nested
     # NRT MemInfo.  Since we handle nested NRT MemInfo ourselves,
     # we will replace provide MemInfoPointer with an opaque type
     # so that it does not raise exception for nested meminfo.
     dtype = types.Opaque('Opaque.' + str(cls_data_ty))
     members = [
         ('meminfo', types.MemInfoPointer(dtype)),
         ('data', types.CPointer(cls_data_ty)),
     ]
     super(InstanceModel, self).__init__(dmm, fe_typ, members)
Exemplo n.º 23
0
 def __init__(self, dmm, fe_type):
     ndim = fe_type.ndim
     members = [
         ('meminfo', types.MemInfoPointer(fe_type.dtype)),
         ('parent', types.pyobject),
         ('nitems', types.intp),
         ('itemsize', types.intp),
         ('data', types.CPointer(fe_type.dtype)),
         ('shape', types.UniTuple(types.intp, ndim)),
         ('strides', types.UniTuple(types.intp, ndim)),
     ]
     super(ArrayModel, self).__init__(dmm, fe_type, members)
Exemplo n.º 24
0
    def next_raw(self):
        sig = types.uint64(types.CPointer(types.uint64))

        @cfunc(sig)
        def next_64(st):
            bit_gen_state = carray(st, (2, ), dtype=np.uint64)
            return splitmix_next(bit_gen_state)

        # Ensure a reference is held
        self._next_64 = next_64

        return next_64
Exemplo n.º 25
0
    def next_double(self):
        sig = types.double(types.CPointer(types.uint64))

        @cfunc(sig)
        def next_double(st):
            bit_gen_state = carray(st, (2, ), dtype=np.uint64)
            return (np.uint64(splitmix_next(bit_gen_state)) >>
                    np.uint64(11)) / 9007199254740992.0

        # Ensure a reference is held
        self._next_double = next_double

        return next_double
Exemplo n.º 26
0
def _type_map():
    """
    Lazily compute type map, as calling ffi.typeof() involves costly
    parsing of C code...
    """
    global _cached_type_map
    if _cached_type_map is None:
        _cached_type_map = {
            ffi.typeof('char'): types.int8,
            ffi.typeof('short'): types.short,
            ffi.typeof('int'): types.intc,
            ffi.typeof('long'): types.long_,
            ffi.typeof('long long'): types.longlong,
            ffi.typeof('unsigned char'): types.uchar,
            ffi.typeof('unsigned short'): types.ushort,
            ffi.typeof('unsigned int'): types.uintc,
            ffi.typeof('unsigned long'): types.ulong,
            ffi.typeof('unsigned long long'): types.ulonglong,
            ffi.typeof('int8_t'): types.char,
            ffi.typeof('uint8_t'): types.uchar,
            ffi.typeof('int16_t'): types.short,
            ffi.typeof('uint16_t'): types.ushort,
            ffi.typeof('int32_t'): types.intc,
            ffi.typeof('uint32_t'): types.uintc,
            ffi.typeof('int64_t'): types.longlong,
            ffi.typeof('uint64_t'): types.ulonglong,
            ffi.typeof('float'): types.float_,
            ffi.typeof('double'): types.double,
            ffi.typeof('char *'): types.voidptr,
            ffi.typeof('void *'): types.voidptr,
            ffi.typeof('uint8_t *'): types.CPointer(types.uint8),
            ffi.typeof('float *'): types.CPointer(types.float32),
            ffi.typeof('double *'): types.CPointer(types.float64),
            ffi.typeof('ssize_t'): types.intp,
            ffi.typeof('size_t'): types.uintp,
            ffi.typeof('void'): types.void,
        }
    return _cached_type_map
Exemplo n.º 27
0
    def __init__(self, dmm, fe_type):
        # TODO: types other than Array and StringArray?
        if fe_type.dtype == string_type:
            members = [
                ('num_items', types.uint64),
                ('num_total_chars', types.uint64),
                ('offsets', types.CPointer(offset_typ)),
                ('data', types.CPointer(char_typ)),
                ('meminfo', types.MemInfoPointer(str_arr_payload_type)),
            ]
        else:
            ndim = 1
            members = [
                ('meminfo', types.MemInfoPointer(fe_type.dtype)),
                ('parent', types.pyobject),
                ('nitems', types.intp),
                ('itemsize', types.intp),
                ('data', types.CPointer(fe_type.dtype)),
                ('shape', types.UniTuple(types.intp, ndim)),
                ('strides', types.UniTuple(types.intp, ndim)),
            ]

        super(SeriesModel, self).__init__(dmm, fe_type, members)
Exemplo n.º 28
0
def _integrand_function(integrand_function):
    """Wrap `integrand_function` as a `LowLevelCallable` to be used with quad.

    `integrand_function` has to have the signature (float, complex) -> float.

    This speeds up integration by removing call overhead. However only float
    arguments can be passed to and from the function.

    """
    @numba.cfunc(nb_t.float64(nb_t.intc, nb_t.CPointer(nb_t.float64)))
    def wrapped(__, xx):
        return integrand_function(xx[0], xx[1] + xx[2])

    return LowLevelCallable(wrapped.ctypes)
Exemplo n.º 29
0
        class CContiguousFlatIter(cgutils.Structure):
            """
            .flat() implementation for C-contiguous arrays.
            """
            _fields = [
                ('array', types.CPointer(array_type)),
                ('stride', types.intp),
                ('pointer', types.CPointer(types.CPointer(dtype))),
                ('index', types.CPointer(types.intp)),
            ]

            def init_specific(self, context, builder, arrty, arr):
                zero = context.get_constant(types.intp, 0)
                self.index = cgutils.alloca_once_value(builder, zero)
                self.pointer = cgutils.alloca_once_value(builder, arr.data)
                # We can't trust strides[-1] to always contain the right
                # step value, see
                # http://docs.scipy.org/doc/numpy-dev/release.html#npy-relaxed-strides-checking
                self.stride = arr.itemsize

            def iternext_specific(self, context, builder, arrty, arr, result):
                nitems = arr.nitems

                index = builder.load(self.index)
                is_valid = builder.icmp(lc.ICMP_SLT, index, nitems)
                result.set_valid(is_valid)

                with cgutils.if_likely(builder, is_valid):
                    ptr = builder.load(self.pointer)
                    value = context.unpack_value(builder, arrty.dtype, ptr)
                    result.yield_(value)

                    index = builder.add(index,
                                        context.get_constant(types.intp, 1))
                    builder.store(index, self.index)
                    ptr = cgutils.pointer_add(builder, ptr, self.stride)
                    builder.store(ptr, self.pointer)
Exemplo n.º 30
0
Arquivo: cv_ext.py Projeto: rowhit/sdc
def imdecode_overload(A_t, flags_t):

    if (isinstance(A_t, types.Array) and A_t.ndim == 1
            and A_t.dtype == types.uint8 and flags_t == types.intp):
        in_dtype = A_t.dtype
        out_dtype = A_t.dtype

        sig = types.CPointer(out_dtype)(
            types.CPointer(types.intp),  # output shape
            types.CPointer(in_dtype),  # input array
            types.intp,  # input size (num_bytes)
            types.intp,  # flags
        )
        cv_imdecode = types.ExternalFunction("cv_imdecode", sig)

        def imdecode_imp(A, flags):
            out_shape = np.empty(2, dtype=np.int64)
            data = cv_imdecode(out_shape.ctypes, A.ctypes, len(A), flags)
            n_channels = 3
            out_shape_tup = (out_shape[0], out_shape[1], n_channels)
            img = wrap_array(data, out_shape_tup)
            return img

        return imdecode_imp