Exemplo n.º 1
0
    def __init__(self, arg_count, py_func):
        self._tm = default_type_manager
        #_dispatcher.Dispatcher.__init__(self, self._tm.get_pointer(), arg_count)

        # A mapping of signatures to entry points
        self.overloads = {}
        # A mapping of signatures to compile results
        self._compileinfos = {}
        # A list of nopython signatures
        self._npsigs = []

        self.py_func = py_func
        # other parts of Numba assume the old Python 2 name for code object
        self.func_code = get_code_object(py_func)
        # but newer python uses a different name
        self.__code__ = self.func_code

        self._pysig = utils.pysignature(self.py_func)
        _argnames = tuple(self._pysig.parameters)
        _dispatcher.Dispatcher.__init__(self, self._tm.get_pointer(),
                                        arg_count, _argnames)

        self.doc = py_func.__doc__
        self._compile_lock = utils.NonReentrantLock()

        utils.finalize(self, self._make_finalizer())
Exemplo n.º 2
0
    def __init__(self, func):
        func = get_function_object(func)
        code = get_code_object(func)
        pysig = utils.pysignature(func)
        if not code:
            raise errors.ByteCodeSupportError(
                "%s does not provide its bytecode" % func)
        if code.co_cellvars:
            raise NotImplementedError("cell vars are not supported")

        table = utils.SortedMap(ByteCodeIter(code))
        labels = set(dis.findlabels(code.co_code))
        labels.add(0)

        try:
            func_qualname = func.__qualname__
        except AttributeError:
            func_qualname = func.__name__

        self._mark_lineno(table, code)
        super(ByteCode, self).__init__(func=func,
                                       func_qualname=func_qualname,
                                       is_generator=inspect.isgeneratorfunction(func),
                                       pysig=pysig,
                                       filename=code.co_filename,
                                       co_names=code.co_names,
                                       co_varnames=code.co_varnames,
                                       co_consts=code.co_consts,
                                       co_freevars=code.co_freevars,
                                       table=table,
                                       labels=list(sorted(labels)))
Exemplo n.º 3
0
    def __init__(self, arg_count, py_func):
        self._tm = default_type_manager
        # _dispatcher.Dispatcher.__init__(self, self._tm.get_pointer(), arg_count)

        # A mapping of signatures to entry points
        self.overloads = {}
        # A mapping of signatures to compile results
        self._compileinfos = {}
        # A list of nopython signatures
        self._npsigs = []

        self.py_func = py_func
        # other parts of Numba assume the old Python 2 name for code object
        self.func_code = get_code_object(py_func)
        # but newer python uses a different name
        self.__code__ = self.func_code

        self._pysig = utils.pysignature(self.py_func)
        _argnames = tuple(self._pysig.parameters)
        _dispatcher.Dispatcher.__init__(self, self._tm.get_pointer(), arg_count, _argnames)

        self.doc = py_func.__doc__
        self._compile_lock = utils.NonReentrantLock()

        utils.finalize(self, self._make_finalizer())
Exemplo n.º 4
0
    def __init__(self, py_func, locals={}, targetoptions={}):
        """
        Parameters
        ----------
        py_func: function object to be compiled
        locals: dict, optional
            Mapping of local variable names to Numba types.  Used to override
            the types deduced by the type inference engine.
        targetoptions: dict, optional
            Target-specific config options.
        """
        self.typingctx = self.targetdescr.typing_context
        self.targetctx = self.targetdescr.target_context

        pysig = utils.pysignature(py_func)
        arg_count = len(pysig.parameters)

        _OverloadedBase.__init__(self, arg_count, py_func, pysig)

        functools.update_wrapper(self, py_func)

        self.targetoptions = targetoptions
        self.locals = locals
        self._cache = NullCache()

        self.typingctx.insert_overloaded(self)
Exemplo n.º 5
0
    def __init__(self, py_func, locals={}, targetoptions={}):
        """
        Parameters
        ----------
        py_func: function object to be compiled
        locals: dict, optional
            Mapping of local variable names to Numba types.  Used to override
            the types deduced by the type inference engine.
        targetoptions: dict, optional
            Target-specific config options.
        """
        self.typingctx = self.targetdescr.typing_context
        self.targetctx = self.targetdescr.target_context

        pysig = utils.pysignature(py_func)
        arg_count = len(pysig.parameters)

        _OverloadedBase.__init__(self, arg_count, py_func, pysig)

        functools.update_wrapper(self, py_func)

        self.targetoptions = targetoptions
        self.locals = locals

        self.typingctx.insert_overloaded(self)
Exemplo n.º 6
0
    def __init__(self, py_func, locals={}, targetoptions={}, impl_kind='direct'):
        """
        Parameters
        ----------
        py_func: function object to be compiled
        locals: dict, optional
            Mapping of local variable names to Numba types.  Used to override
            the types deduced by the type inference engine.
        targetoptions: dict, optional
            Target-specific config options.
        """
        self.typingctx = self.targetdescr.typing_context
        self.targetctx = self.targetdescr.target_context

        pysig = utils.pysignature(py_func)
        arg_count = len(pysig.parameters)
        can_fallback = not targetoptions.get('nopython', False)
        _DispatcherBase.__init__(self, arg_count, py_func, pysig, can_fallback)

        functools.update_wrapper(self, py_func)

        self.targetoptions = targetoptions
        self.locals = locals
        self._cache = NullCache()
        compiler_class = self._impl_kinds[impl_kind]
        self._impl_kind = impl_kind
        self._compiler = compiler_class(py_func, self.targetdescr,
                                        targetoptions, locals)
        self._cache_hits = collections.Counter()
        self._cache_misses = collections.Counter()

        self._type = types.Dispatcher(self)
        self.typingctx.insert_global(self, self._type)
Exemplo n.º 7
0
def sum_expand(self, args, kws):
    """
    sum can be called with or without an axis parameter.
    """
    pysig = None
    if kws:

        def sum_stub(axis):
            pass

        pysig = utils.pysignature(sum_stub)
        # rewrite args
        args = list(args) + [kws['axis']]
        kws = None
    args_len = len(args)
    assert args_len <= 1
    if args_len == 0:
        # No axis parameter so the return type of the summation is a scalar
        # of the type of the array.
        out = signature(_expand_integer(self.this.dtype),
                        *args,
                        recvr=self.this)
    else:
        # There is an axis paramter so the return type of this summation is
        # an array of dimension one less than the input array.
        return_type = types.Array(dtype=_expand_integer(self.this.dtype),
                                  ndim=self.this.ndim - 1,
                                  layout='C')
        out = signature(return_type, *args, recvr=self.this)
    return out.replace(pysig=pysig)
Exemplo n.º 8
0
    def from_function(cls, pyfunc):
        """
        Create the FunctionIdentity of the given function.
        """
        func = get_function_object(pyfunc)
        code = get_code_object(func)
        pysig = utils.pysignature(func)
        if not code:
            raise errors.ByteCodeSupportError(
                "%s does not provide its bytecode" % func)

        try:
            func_qualname = func.__qualname__
        except AttributeError:
            func_qualname = func.__name__

        self = cls()
        self.func = pyfunc
        self.func_qualname = func_qualname
        self.func_name = func_qualname.split('.')[-1]
        self.code = code
        self.module = inspect.getmodule(func)
        self.is_generator = inspect.isgeneratorfunction(func)
        self.pysig = pysig
        self.filename = code.co_filename
        self.firstlineno = code.co_firstlineno
        self.arg_count = len(pysig.parameters)
        self.arg_names = list(pysig.parameters)

        return self
Exemplo n.º 9
0
    def __init__(self, py_func, locals={}, targetoptions={}, impl_kind='direct'):
        """
        Parameters
        ----------
        py_func: function object to be compiled
        locals: dict, optional
            Mapping of local variable names to Numba types.  Used to override
            the types deduced by the type inference engine.
        targetoptions: dict, optional
            Target-specific config options.
        """
        self.typingctx = self.targetdescr.typing_context
        self.targetctx = self.targetdescr.target_context

        pysig = utils.pysignature(py_func)
        arg_count = len(pysig.parameters)
        can_fallback = not targetoptions.get('nopython', False)
        _DispatcherBase.__init__(self, arg_count, py_func, pysig, can_fallback)

        functools.update_wrapper(self, py_func)

        self.targetoptions = targetoptions
        self.locals = locals
        self._cache = NullCache()
        compiler_class = self._impl_kinds[impl_kind]
        self._impl_kind = impl_kind
        self._compiler = compiler_class(py_func, self.targetdescr,
                                        targetoptions, locals)
        self._cache_hits = collections.Counter()
        self._cache_misses = collections.Counter()

        self._type = types.Dispatcher(self)
        self.typingctx.insert_global(self, self._type)
Exemplo n.º 10
0
def sum_expand(self, args, kws):
    """
    sum can be called with or without an axis parameter.
    """
    pysig = None
    if kws:
        def sum_stub(axis):
            pass
        pysig = utils.pysignature(sum_stub)
        # rewrite args
        args = list(args) + [kws['axis']]
        kws = None
    args_len = len(args)
    assert args_len <= 1
    if args_len == 0:
        # No axis parameter so the return type of the summation is a scalar
        # of the type of the array.
        out = signature(_expand_integer(self.this.dtype), *args,
                        recvr=self.this)
    else:
        # There is an axis paramter so the return type of this summation is
        # an array of dimension one less than the input array.
        return_type = types.Array(dtype=_expand_integer(self.this.dtype),
                                  ndim=self.this.ndim-1, layout='C')
        out = signature(return_type, *args, recvr=self.this)
    return out.replace(pysig=pysig)
Exemplo n.º 11
0
    def __init__(self, func):
        func = get_function_object(func)
        code = get_code_object(func)
        pysig = utils.pysignature(func)
        if not code:
            raise errors.ByteCodeSupportError(
                "%s does not provide its bytecode" % func)

        # A map of {offset: ByteCodeInst}
        table = utils.SortedMap(ByteCodeIter(code))
        labels = set(dis.findlabels(code.co_code))
        labels.add(0)

        try:
            func_qualname = func.__qualname__
        except AttributeError:
            func_qualname = func.__name__

        self._mark_lineno(table, code)
        super(ByteCode, self).__init__(func=func,
                                       func_qualname=func_qualname,
                                       is_generator=inspect.isgeneratorfunction(func),
                                       pysig=pysig,
                                       filename=code.co_filename,
                                       co_names=code.co_names,
                                       co_varnames=code.co_varnames,
                                       co_consts=code.co_consts,
                                       co_freevars=code.co_freevars,
                                       table=table,
                                       labels=list(sorted(labels)))
Exemplo n.º 12
0
 def __init__(self, func, incols, outcols, kwargs):
     # Get signature of user function
     sig = pysignature(func)
     self.sig = sig
     self.incols = incols
     self.outcols = outcols
     self.kwargs = kwargs
     self.kernel = self.compile(func, sig.parameters.keys(), kwargs.keys())
Exemplo n.º 13
0
 def __init__(self, py_func, targetdescr, targetoptions, locals,
              pipeline_class):
     self.py_func = py_func
     self.targetdescr = targetdescr
     self.targetoptions = targetoptions
     self.locals = locals
     self.pysig = utils.pysignature(self.py_func)
     self.pipeline_class = pipeline_class
Exemplo n.º 14
0
 def __init__(self, py_func, targetdescr, targetoptions, locals,
              pipeline_class):
     self.py_func = py_func
     self.targetdescr = targetdescr
     self.targetoptions = targetoptions
     self.locals = locals
     self.pysig = utils.pysignature(self.py_func)
     self.pipeline_class = pipeline_class
Exemplo n.º 15
0
def _getargs(fn):
    """
    Returns list of positional and keyword argument names in order.
    """
    sig = utils.pysignature(fn)
    params = sig.parameters
    args = [k for k, v in params.items()
            if (v.kind & v.POSITIONAL_OR_KEYWORD) == v.POSITIONAL_OR_KEYWORD]
    return args
Exemplo n.º 16
0
 def __init__(self, func, incols, outcols, kwargs, pessimistic_nulls,
              cache_key):
     # Get signature of user function
     sig = pysignature(func)
     self.sig = sig
     self.incols = incols
     self.outcols = outcols
     self.kwargs = kwargs
     self.pessimistic_nulls = pessimistic_nulls
     self.cache_key = cache_key
     self.kernel = self.compile(func, sig.parameters.keys(), kwargs.keys())
Exemplo n.º 17
0
 def __init__(self, py_func, targetdescr, targetoptions, locals,
              pipeline_class):
     self.py_func = py_func
     self.targetdescr = targetdescr
     self.targetoptions = targetoptions
     self.locals = locals
     self.pysig = utils.pysignature(self.py_func)
     self.pipeline_class = pipeline_class
     # Remember key=(args, return_type) combinations that will fail
     # compilation to avoid compilation attempt on them.  The values are
     # the exceptions.
     self._failed_cache = {}
Exemplo n.º 18
0
 def resolve_argsort(self, ary, args, kws):
     assert not args
     kwargs = dict(kws)
     kind = kwargs.pop('kind', types.StringLiteral('quicksort'))
     if kwargs:
         msg = "Unsupported keywords: {!r}"
         raise TypingError(msg.format([k for k in kwargs.keys()]))
     if ary.ndim == 1:
         def argsort_stub(kind='quicksort'):
             pass
         pysig = utils.pysignature(argsort_stub)
         sig = signature(types.Array(types.intp, 1, 'C'), kind).replace(pysig=pysig)
         return sig
Exemplo n.º 19
0
    def for_function(self, func):
        """Bind the sentry to the signature of *func*.

        Parameters
        ----------
        func : Function
            A python function.

        Returns
        -------
        obj : BoundLiteralArgs
        """
        return self.for_pysig(utils.pysignature(func))
Exemplo n.º 20
0
 def resolve_argsort(self, ary, args, kws):
     assert not args
     kwargs = dict(kws)
     kind = kwargs.pop('kind', types.Const('quicksort'))
     if kwargs:
         msg = "Unsupported keywords: {!r}"
         raise TypingError(msg.format([k for k in kwargs.keys()]))
     if ary.ndim == 1:
         def argsort_stub(kind='quicksort'):
             pass
         pysig = utils.pysignature(argsort_stub)
         sig = signature(types.Array(types.intp, 1, 'C'), kind).replace(pysig=pysig)
         return sig
Exemplo n.º 21
0
 def _get_implementation(self, args, kws):
     impl = self.py_func(*args, **kws)
     # Check the generating function and implementation signatures are
     # compatible, otherwise compiling would fail later.
     pysig = utils.pysignature(self.py_func)
     implsig = utils.pysignature(impl)
     ok = len(pysig.parameters) == len(implsig.parameters)
     if ok:
         for pyparam, implparam in zip(pysig.parameters.values(),
                                       implsig.parameters.values()):
             # We allow the implementation to omit default values, but
             # if it mentions them, they should have the same value...
             if (pyparam.name != implparam.name
                     or pyparam.kind != implparam.kind
                     or (implparam.default is not implparam.empty
                         and implparam.default != pyparam.default)):
                 ok = False
     if not ok:
         raise TypeError("generated implementation %s should be compatible "
                         "with signature '%s', but has signature '%s'" %
                         (impl, pysig, implsig))
     self.impls.add(impl)
     return impl
Exemplo n.º 22
0
 def _get_implementation(self, args, kws):
     impl = self.py_func(*args, **kws)
     # Check the generating function and implementation signatures are
     # compatible, otherwise compiling would fail later.
     pysig = utils.pysignature(self.py_func)
     implsig = utils.pysignature(impl)
     ok = len(pysig.parameters) == len(implsig.parameters)
     if ok:
         for pyparam, implparam in zip(pysig.parameters.values(),
                                       implsig.parameters.values()):
             # We allow the implementation to omit default values, but
             # if it mentions them, they should have the same value...
             if (pyparam.name != implparam.name or
                 pyparam.kind != implparam.kind or
                 (implparam.default is not implparam.empty and
                  implparam.default != pyparam.default)):
                 ok = False
     if not ok:
         raise TypeError("generated implementation %s should be compatible "
                         "with signature '%s', but has signature '%s'"
                         % (impl, pysig, implsig))
     self.impls.add(impl)
     return impl
Exemplo n.º 23
0
 def _set_init(cls):
     """
     Generate a wrapper for calling the constructor from pure Python.
     Note the wrapper will only accept positional arguments.
     """
     init = cls.class_type.instance_type.methods['__init__']
     init_sig = utils.pysignature(init)
     # get postitional and keyword arguments
     # offset by one to exclude the `self` arg
     args = _getargs(init_sig)[1:]
     cls._ctor_sig = init_sig
     ctor_source = _ctor_template.format(args=', '.join(args))
     glbls = {"__numba_cls_": cls}
     exec_(ctor_source, glbls)
     ctor = glbls['ctor']
     cls._ctor = njit(ctor)
Exemplo n.º 24
0
Arquivo: base.py Projeto: numba/numba
 def _set_init(cls):
     """
     Generate a wrapper for calling the constructor from pure Python.
     Note the wrapper will only accept positional arguments.
     """
     init = cls.class_type.instance_type.methods['__init__']
     init_sig = utils.pysignature(init)
     # get postitional and keyword arguments
     # offset by one to exclude the `self` arg
     args = _getargs(init_sig)[1:]
     cls._ctor_sig = init_sig
     ctor_source = _ctor_template.format(args=', '.join(args))
     glbls = {"__numba_cls_": cls}
     exec_(ctor_source, glbls)
     ctor = glbls['ctor']
     cls._ctor = njit(ctor)
Exemplo n.º 25
0
    def _type_me(self, argtys, kwtys):
        """
        Implement AbstractTemplate.generic() for the typing class
        built by StencilFunc._install_type().
        Return the call-site signature.
        """
        if (self.neighborhood is not None
                and len(self.neighborhood) != argtys[0].ndim):
            raise ValueError("%d dimensional neighborhood specified "
                             "for %d dimensional input array" %
                             (len(self.neighborhood), argtys[0].ndim))

        argtys_extra = argtys
        sig_extra = ""
        result = None
        if 'out' in kwtys:
            argtys_extra += (kwtys['out'], )
            sig_extra += ", out=None"
            result = kwtys['out']

        if 'neighborhood' in kwtys:
            argtys_extra += (kwtys['neighborhood'], )
            sig_extra += ", neighborhood=None"

        # look in the type cache first
        if argtys_extra in self._type_cache:
            (_sig, _, _, _) = self._type_cache[argtys_extra]
            return _sig

        (real_ret, typemap, calltypes) = self.get_return_type(argtys)
        sig = signature(real_ret, *argtys_extra)
        dummy_text = ("def __numba_dummy_stencil({}{}):\n    pass\n".format(
            ",".join(self.kernel_ir.arg_names), sig_extra))
        exec_(dummy_text) in globals(), locals()
        dummy_func = eval("__numba_dummy_stencil")
        sig.pysig = utils.pysignature(dummy_func)
        self._targetctx.insert_func_defn([(self._lower_me, self, argtys_extra)
                                          ])
        self._type_cache[argtys_extra] = (sig, result, typemap, calltypes)
        return sig
Exemplo n.º 26
0
    def _type_me(self, argtys, kwtys):
        """
        Implement AbstractTemplate.generic() for the typing class
        built by StencilFunc._install_type().
        Return the call-site signature.
        """
        if (self.neighborhood is not None and
            len(self.neighborhood) != argtys[0].ndim):
            raise ValueError("%d dimensional neighborhood specified "
                             "for %d dimensional input array" %
                             (len(self.neighborhood), argtys[0].ndim))

        argtys_extra = argtys
        sig_extra = ""
        result = None
        if 'out' in kwtys:
            argtys_extra += (kwtys['out'],)
            sig_extra += ", out=None"
            result = kwtys['out']

        if 'neighborhood' in kwtys:
            argtys_extra += (kwtys['neighborhood'],)
            sig_extra += ", neighborhood=None"

        # look in the type cache first
        if argtys_extra in self._type_cache:
            (_sig, _, _, _) = self._type_cache[argtys_extra]
            return _sig

        (real_ret, typemap, calltypes) = self.get_return_type(argtys)
        sig = signature(real_ret, *argtys_extra)
        dummy_text = ("def __numba_dummy_stencil({}{}):\n    pass\n".format(
                        ",".join(self.kernel_ir.arg_names), sig_extra))
        exec_(dummy_text) in globals(), locals()
        dummy_func = eval("__numba_dummy_stencil")
        sig.pysig = utils.pysignature(dummy_func)
        self._targetctx.insert_func_defn([(self._lower_me, self, argtys_extra)])
        self._type_cache[argtys_extra] = (sig, result, typemap, calltypes)
        return sig
Exemplo n.º 27
0
    def from_function(cls, pyfunc):
        """
        Create the FunctionIdentity of the given function.
        """
        func = get_function_object(pyfunc)
        code = get_code_object(func)
        pysig = utils.pysignature(func)
        if not code:
            raise errors.ByteCodeSupportError(
                "%s does not provide its bytecode" % func)

        try:
            func_qualname = func.__qualname__
        except AttributeError:
            func_qualname = func.__name__

        self = cls()
        self.func = func
        self.func_qualname = func_qualname
        self.func_name = func_qualname.split('.')[-1]
        self.code = code
        self.module = inspect.getmodule(func)
        self.modname = (utils._dynamic_modname
                        if self.module is None
                        else self.module.__name__)
        self.is_generator = inspect.isgeneratorfunction(func)
        self.pysig = pysig
        self.filename = code.co_filename
        self.firstlineno = code.co_firstlineno
        self.arg_count = len(pysig.parameters)
        self.arg_names = list(pysig.parameters)

        # Even the same function definition can be compiled into
        # several different function objects with distinct closure
        # variables, so we make sure to disambiguate using an unique id.
        uid = next(cls._unique_ids)
        self.unique_name = '{}${}'.format(self.func_qualname, uid)

        return self
Exemplo n.º 28
0
    def from_function(cls, pyfunc):
        """
        Create the FunctionIdentity of the given function.
        """
        func = get_function_object(pyfunc)
        code = get_code_object(func)
        pysig = utils.pysignature(func)
        if not code:
            raise errors.ByteCodeSupportError(
                "%s does not provide its bytecode" % func)

        try:
            func_qualname = func.__qualname__
        except AttributeError:
            func_qualname = func.__name__

        self = cls()
        self.func = pyfunc
        self.func_qualname = func_qualname
        self.func_name = func_qualname.split('.')[-1]
        self.code = code
        self.module = inspect.getmodule(func)
        self.modname = (utils._dynamic_modname
                        if self.module is None else self.module.__name__)
        self.is_generator = inspect.isgeneratorfunction(func)
        self.pysig = pysig
        self.filename = code.co_filename
        self.firstlineno = code.co_firstlineno
        self.arg_count = len(pysig.parameters)
        self.arg_names = list(pysig.parameters)

        # Even the same function definition can be compiled into
        # several different function objects with distinct closure
        # variables, so we make sure to disambiguate using an unique id.
        uid = next(cls._unique_ids)
        self.unique_name = '{}${}'.format(self.func_qualname, uid)

        return self
Exemplo n.º 29
0
Arquivo: base.py Projeto: numba/numba
def _has_loc(fn):
    """Does function *fn* take ``loc`` argument?
    """
    sig = utils.pysignature(fn)
    return 'loc' in sig.parameters
Exemplo n.º 30
0
    def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes,
                         *args):
        # Overall approach:
        # 1) Construct a string containing a function definition for the stencil function
        #    that will execute the stencil kernel.  This function definition includes a
        #    unique stencil function name, the parameters to the stencil kernel, loop
        #    nests across the dimenions of the input array.  Those loop nests use the
        #    computed stencil kernel size so as not to try to compute elements where
        #    elements outside the bounds of the input array would be needed.
        # 2) The but of the loop nest in this new function is a special sentinel
        #    assignment.
        # 3) Get the IR of this new function.
        # 4) Split the block containing the sentinel assignment and remove the sentinel
        #    assignment.  Insert the stencil kernel IR into the stencil function IR
        #    after label and variable renaming of the stencil kernel IR to prevent
        #    conflicts with the stencil function IR.
        # 5) Compile the combined stencil function IR + stencil kernel IR into existence.

        # Copy the kernel so that our changes for this callsite
        # won't effect other callsites.
        (kernel_copy,
         copy_calltypes) = self.copy_ir_with_calltypes(self.kernel_ir,
                                                       calltypes)
        # The stencil kernel body becomes the body of a loop, for which args aren't needed.
        ir_utils.remove_args(kernel_copy.blocks)
        first_arg = kernel_copy.arg_names[0]

        in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap)
        name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks)
        ir_utils.apply_copy_propagate(kernel_copy.blocks, in_cps,
                                      name_var_table, typemap, copy_calltypes)

        if "out" in name_var_table:
            raise ValueError(
                "Cannot use the reserved word 'out' in stencil kernels.")

        sentinel_name = ir_utils.get_unused_var_name("__sentinel__",
                                                     name_var_table)
        if config.DEBUG_ARRAY_OPT == 1:
            print("name_var_table", name_var_table, sentinel_name)

        the_array = args[0]

        if config.DEBUG_ARRAY_OPT == 1:
            print("_stencil_wrapper", return_type, return_type.dtype,
                  type(return_type.dtype), args)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # We generate a Numba function to execute this stencil and here
        # create the unique name of this function.
        stencil_func_name = "__numba_stencil_%s_%s" % (hex(
            id(the_array)).replace("-", "_"), self.id)

        # We will put a loop nest in the generated function for each
        # dimension in the input array.  Here we create the name for
        # the index variable for each dimension.  index0, index1, ...
        index_vars = []
        for i in range(the_array.ndim):
            index_var_name = ir_utils.get_unused_var_name(
                "index" + str(i), name_var_table)
            index_vars += [index_var_name]

        # Create extra signature for out and neighborhood.
        out_name = ir_utils.get_unused_var_name("out", name_var_table)
        neighborhood_name = ir_utils.get_unused_var_name(
            "neighborhood", name_var_table)
        sig_extra = ""
        if result is not None:
            sig_extra += ", {}=None".format(out_name)
        if "neighborhood" in dict(self.kws):
            sig_extra += ", {}=None".format(neighborhood_name)

        # Get a list of the standard indexed array names.
        standard_indexed = self.options.get("standard_indexing", [])

        if first_arg in standard_indexed:
            raise ValueError("The first argument to a stencil kernel must "
                             "use relative indexing, not standard indexing.")

        if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0:
            raise ValueError("Standard indexing requested for an array name "
                             "not present in the stencil kernel definition.")

        # Add index variables to getitems in the IR to transition the accesses
        # in the kernel from relative to regular Python indexing.  Returns the
        # computed size of the stencil kernel and a list of the relatively indexed
        # arrays.
        kernel_size, relatively_indexed = self.add_indices_to_kernel(
            kernel_copy, index_vars, the_array.ndim, self.neighborhood,
            standard_indexed)
        if self.neighborhood is None:
            self.neighborhood = kernel_size

        if config.DEBUG_ARRAY_OPT == 1:
            print("After add_indices_to_kernel")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # The return in the stencil kernel becomes a setitem for that
        # particular point in the iteration space.
        ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks,
                                                      index_vars, out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("After replace_return_with_setitem", ret_blocks)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Start to form the new function to execute the stencil kernel.
        func_text = "def {}({}{}):\n".format(stencil_func_name,
                                             ",".join(kernel_copy.arg_names),
                                             sig_extra)

        # Get loop ranges for each dimension, which could be either int
        # or variable. In the latter case we'll use the extra neighborhood
        # argument to the function.
        ranges = []
        for i in range(the_array.ndim):
            if isinstance(kernel_size[i][0], int):
                lo = kernel_size[i][0]
                hi = kernel_size[i][1]
            else:
                lo = "{}[{}][0]".format(neighborhood_name, i)
                hi = "{}[{}][1]".format(neighborhood_name, i)
            ranges.append((lo, hi))

        # If there are more than one relatively indexed arrays, add a call to
        # a function that will raise an error if any of the relatively indexed
        # arrays are of different size than the first input array.
        if len(relatively_indexed) > 1:
            func_text += "    raise_if_incompatible_array_sizes(" + first_arg
            for other_array in relatively_indexed:
                if other_array != first_arg:
                    func_text += "," + other_array
            func_text += ")\n"

        # Get the shape of the first input array.
        shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table)
        func_text += "    {} = {}.shape\n".format(shape_name, first_arg)

        # If we have to allocate the output array (the out argument was not used)
        # then us numpy.full if the user specified a cval stencil decorator option
        # or np.zeros if they didn't to allocate the array.
        if result is None:
            return_type_name = numpy_support.as_dtype(
                return_type.dtype).type.__name__
            if "cval" in self.options:
                cval = self.options["cval"]
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError(
                        "cval type does not match stencil return type.")
                out_init = "{} = np.full({}, {}, dtype=np.{})\n".format(
                    out_name, shape_name, cval, return_type_name)
            else:
                out_init = "{} = np.zeros({}, dtype=np.{})\n".format(
                    out_name, shape_name, return_type_name)
            func_text += "    " + out_init

        offset = 1
        # Add the loop nests to the new function.
        for i in range(the_array.ndim):
            for j in range(offset):
                func_text += "    "
            # ranges[i][0] is the minimum index used in the i'th dimension
            # but minimum's greater than 0 don't preclude any entry in the array.
            # So, take the minimum of 0 and the minimum index found in the kernel
            # and this will be a negative number (potentially -0).  Then, we do
            # unary - on that to get the positive offset in this dimension whose
            # use is precluded.
            # ranges[i][1] is the maximum of 0 and the observed maximum index
            # in this dimension because negative maximums would not cause us to
            # preclude any entry in the array from being used.
            func_text += ("for {} in range(-min(0,{}),"
                          "{}[{}]-max(0,{})):\n").format(
                              index_vars[i], ranges[i][0], shape_name, i,
                              ranges[i][1])
            offset += 1

        for j in range(offset):
            func_text += "    "
        # Put a sentinel in the code so we can locate it in the IR.  We will
        # remove this sentinel assignment and replace it with the IR for the
        # stencil kernel body.
        func_text += "{} = 0\n".format(sentinel_name)
        func_text += "    return {}\n".format(out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new stencil func text")
            print(func_text)

        # Force the new stencil function into existence.
        exec_(func_text) in globals(), locals()
        stencil_func = eval(stencil_func_name)
        if sigret is not None:
            pysig = utils.pysignature(stencil_func)
            sigret.pysig = pysig
        # Get the IR for the newly created stencil function.
        stencil_ir = compiler.run_frontend(stencil_func)
        ir_utils.remove_dels(stencil_ir.blocks)

        # rename all variables in stencil_ir afresh
        var_table = ir_utils.get_name_var_table(stencil_ir.blocks)
        new_var_dict = {}
        reserved_names = (
            [sentinel_name, out_name, neighborhood_name, shape_name] +
            kernel_copy.arg_names + index_vars)
        for name, var in var_table.items():
            if not name in reserved_names:
                new_var_dict[name] = ir_utils.mk_unique_var(name)
        ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict)

        stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1

        # Shift lables in the kernel copy so they are guaranteed unique
        # and don't conflict with any labels in the stencil_ir.
        kernel_copy.blocks = ir_utils.add_offset_to_labels(
            kernel_copy.blocks, stencil_stub_last_label)
        new_label = max(kernel_copy.blocks.keys()) + 1
        # Adjust ret_blocks to account for addition of the offset.
        ret_blocks = [x + stencil_stub_last_label for x in ret_blocks]

        if config.DEBUG_ARRAY_OPT == 1:
            print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label)
            print("before replace sentinel stencil_ir")
            ir_utils.dump_blocks(stencil_ir.blocks)
            print("before replace sentinel kernel_copy")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Search all the block in the stencil outline for the sentinel.
        for label, block in stencil_ir.blocks.items():
            for i, inst in enumerate(block.body):
                if (isinstance(inst, ir.Assign)
                        and inst.target.name == sentinel_name):
                    # We found the sentinel assignment.
                    loc = inst.loc
                    scope = block.scope
                    # split block across __sentinel__
                    # A new block is allocated for the statements prior to the
                    # sentinel but the new block maintains the current block
                    # label.
                    prev_block = ir.Block(scope, loc)
                    prev_block.body = block.body[:i]
                    # The current block is used for statements after sentinel.
                    block.body = block.body[i + 1:]
                    # But the current block gets a new label.
                    body_first_label = min(kernel_copy.blocks.keys())

                    # The previous block jumps to the minimum labelled block of
                    # the parfor body.
                    prev_block.append(ir.Jump(body_first_label, loc))
                    # Add all the parfor loop body blocks to the gufunc
                    # function's IR.
                    for (l, b) in kernel_copy.blocks.items():
                        stencil_ir.blocks[l] = b

                    stencil_ir.blocks[new_label] = block
                    stencil_ir.blocks[label] = prev_block
                    # Add a jump from all the blocks that previously contained
                    # a return in the stencil kernel to the block
                    # containing statements after the sentinel.
                    for ret_block in ret_blocks:
                        stencil_ir.blocks[ret_block].append(
                            ir.Jump(new_label, loc))
                    break
            else:
                continue
            break

        stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks)
        ir_utils.remove_dels(stencil_ir.blocks)

        assert (isinstance(the_array, types.Type))
        array_types = args

        new_stencil_param_types = list(array_types)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new_stencil_param_types", new_stencil_param_types)
            ir_utils.dump_blocks(stencil_ir.blocks)

        # Compile the combined stencil function with the replaced loop
        # body in it.
        new_func = compiler.compile_ir(self._typingctx, self._targetctx,
                                       stencil_ir, new_stencil_param_types,
                                       None, compiler.DEFAULT_FLAGS, {})
        return new_func
Exemplo n.º 31
0
def sum_expand(self, args, kws):
    """
    sum can be called with or without an axis parameter, and with or without
    a dtype parameter
    """
    pysig = None
    if 'axis' in kws and 'dtype' not in kws:
        def sum_stub(axis):
            pass
        pysig = utils.pysignature(sum_stub)
        # rewrite args
        args = list(args) + [kws['axis']]
    elif 'dtype' in kws and 'axis' not in kws:
        def sum_stub(dtype):
            pass
        pysig = utils.pysignature(sum_stub)
        # rewrite args
        args = list(args) + [kws['dtype']]
    elif 'dtype' in kws and 'axis' in kws:
        def sum_stub(axis, dtype):
            pass
        pysig = utils.pysignature(sum_stub)
        # rewrite args
        args = list(args) + [kws['axis'], kws['dtype']]

    args_len = len(args)
    assert args_len <= 2
    if args_len == 0:
        # No axis or dtype parameter so the return type of the summation is a scalar
        # of the type of the array.
        out = signature(_expand_integer(self.this.dtype), *args,
                        recvr=self.this)
    elif args_len == 1 and 'dtype' not in kws:
        # There is an axis parameter, either arg or kwarg
        if self.this.ndim == 1:
            # 1d reduces to a scalar
            return_type = self.this.dtype
        else:
            # the return type of this summation is  an array of dimension one
            # less than the input array.
            return_type = types.Array(dtype=_expand_integer(self.this.dtype),
                                    ndim=self.this.ndim-1, layout='C')
        out = signature(return_type, *args, recvr=self.this)

    elif args_len == 1 and 'dtype' in kws:
        # No axis parameter so the return type of the summation is a scalar
        # of the dtype parameter.
        from .npydecl import _parse_dtype
        dtype, = args
        dtype = _parse_dtype(dtype)
        out = signature(dtype, *args, recvr=self.this)

    elif args_len == 2:
        # There is an axis and dtype parameter, either arg or kwarg
        from .npydecl import _parse_dtype
        dtype = _parse_dtype(args[1])
        return_type = dtype
        if self.this.ndim != 1:
            # 1d reduces to a scalar, 2d and above reduce dim by 1
            # the return type of this summation is  an array of dimension one
            # less than the input array.
            return_type = types.Array(dtype=return_type,
                                    ndim=self.this.ndim-1, layout='C')
        out = signature(return_type, *args, recvr=self.this)
    else:
        pass
    return out.replace(pysig=pysig)
Exemplo n.º 32
0
    def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes, *args):
        # Overall approach:
        # 1) Construct a string containing a function definition for the stencil function
        #    that will execute the stencil kernel.  This function definition includes a
        #    unique stencil function name, the parameters to the stencil kernel, loop
        #    nests across the dimenions of the input array.  Those loop nests use the
        #    computed stencil kernel size so as not to try to compute elements where
        #    elements outside the bounds of the input array would be needed.
        # 2) The but of the loop nest in this new function is a special sentinel
        #    assignment.
        # 3) Get the IR of this new function.
        # 4) Split the block containing the sentinel assignment and remove the sentinel
        #    assignment.  Insert the stencil kernel IR into the stencil function IR
        #    after label and variable renaming of the stencil kernel IR to prevent
        #    conflicts with the stencil function IR.
        # 5) Compile the combined stencil function IR + stencil kernel IR into existence.

        # Copy the kernel so that our changes for this callsite
        # won't effect other callsites.
        (kernel_copy, copy_calltypes) = self.copy_ir_with_calltypes(
                                            self.kernel_ir, calltypes)
        # The stencil kernel body becomes the body of a loop, for which args aren't needed.
        ir_utils.remove_args(kernel_copy.blocks)
        first_arg = kernel_copy.arg_names[0]

        in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap)
        name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks)
        ir_utils.apply_copy_propagate(
            kernel_copy.blocks,
            in_cps,
            name_var_table,
            typemap,
            copy_calltypes)

        if "out" in name_var_table:
            raise ValueError("Cannot use the reserved word 'out' in stencil kernels.")

        sentinel_name = ir_utils.get_unused_var_name("__sentinel__", name_var_table)
        if config.DEBUG_ARRAY_OPT == 1:
            print("name_var_table", name_var_table, sentinel_name)

        the_array = args[0]

        if config.DEBUG_ARRAY_OPT == 1:
            print("_stencil_wrapper", return_type, return_type.dtype,
                                      type(return_type.dtype), args)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # We generate a Numba function to execute this stencil and here
        # create the unique name of this function.
        stencil_func_name = "__numba_stencil_%s_%s" % (
                                        hex(id(the_array)).replace("-", "_"),
                                        self.id)

        # We will put a loop nest in the generated function for each
        # dimension in the input array.  Here we create the name for
        # the index variable for each dimension.  index0, index1, ...
        index_vars = []
        for i in range(the_array.ndim):
            index_var_name = ir_utils.get_unused_var_name("index" + str(i),
                                                          name_var_table)
            index_vars += [index_var_name]

        # Create extra signature for out and neighborhood.
        out_name = ir_utils.get_unused_var_name("out", name_var_table)
        neighborhood_name = ir_utils.get_unused_var_name("neighborhood",
                                                         name_var_table)
        sig_extra = ""
        if result is not None:
            sig_extra += ", {}=None".format(out_name)
        if "neighborhood" in dict(self.kws):
            sig_extra += ", {}=None".format(neighborhood_name)

        # Get a list of the standard indexed array names.
        standard_indexed = self.options.get("standard_indexing", [])

        if first_arg in standard_indexed:
            raise ValueError("The first argument to a stencil kernel must "
                             "use relative indexing, not standard indexing.")

        if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0:
            raise ValueError("Standard indexing requested for an array name "
                             "not present in the stencil kernel definition.")

        # Add index variables to getitems in the IR to transition the accesses
        # in the kernel from relative to regular Python indexing.  Returns the
        # computed size of the stencil kernel and a list of the relatively indexed
        # arrays.
        kernel_size, relatively_indexed = self.add_indices_to_kernel(
                kernel_copy, index_vars, the_array.ndim,
                self.neighborhood, standard_indexed)
        if self.neighborhood is None:
            self.neighborhood = kernel_size

        if config.DEBUG_ARRAY_OPT == 1:
            print("After add_indices_to_kernel")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # The return in the stencil kernel becomes a setitem for that
        # particular point in the iteration space.
        ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks,
                                                      index_vars, out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("After replace_return_with_setitem", ret_blocks)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Start to form the new function to execute the stencil kernel.
        func_text = "def {}({}{}):\n".format(stencil_func_name,
                        ",".join(kernel_copy.arg_names), sig_extra)

        # Get loop ranges for each dimension, which could be either int
        # or variable. In the latter case we'll use the extra neighborhood
        # argument to the function.
        ranges = []
        for i in range(the_array.ndim):
            if isinstance(kernel_size[i][0], int):
                lo = kernel_size[i][0]
                hi = kernel_size[i][1]
            else:
                lo = "{}[{}][0]".format(neighborhood_name, i)
                hi = "{}[{}][1]".format(neighborhood_name, i)
            ranges.append((lo, hi))

        # If there are more than one relatively indexed arrays, add a call to
        # a function that will raise an error if any of the relatively indexed
        # arrays are of different size than the first input array.
        if len(relatively_indexed) > 1:
            func_text += "    raise_if_incompatible_array_sizes(" + first_arg
            for other_array in relatively_indexed:
                if other_array != first_arg:
                    func_text += "," + other_array
            func_text += ")\n"

        # Get the shape of the first input array.
        shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table)
        func_text += "    {} = {}.shape\n".format(shape_name, first_arg)


        # If we have to allocate the output array (the out argument was not used)
        # then us numpy.full if the user specified a cval stencil decorator option
        # or np.zeros if they didn't to allocate the array.
        if result is None:
            if "cval" in self.options:
                cval = self.options["cval"]
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError(
                        "cval type does not match stencil return type.")

                out_init ="{} = np.full({}, {}, dtype=np.{})\n".format(
                            out_name, shape_name, cval, return_type.dtype)

            else:
                out_init ="{} = np.zeros({}, dtype=np.{})\n".format(
                            out_name, shape_name, return_type.dtype)
            func_text += "    " + out_init

        offset = 1
        # Add the loop nests to the new function.
        for i in range(the_array.ndim):
            for j in range(offset):
                func_text += "    "
            # ranges[i][0] is the minimum index used in the i'th dimension
            # but minimum's greater than 0 don't preclude any entry in the array.
            # So, take the minimum of 0 and the minimum index found in the kernel
            # and this will be a negative number (potentially -0).  Then, we do
            # unary - on that to get the positive offset in this dimension whose
            # use is precluded.
            # ranges[i][1] is the maximum of 0 and the observed maximum index
            # in this dimension because negative maximums would not cause us to
            # preclude any entry in the array from being used.
            func_text += ("for {} in range(-min(0,{}),"
                          "{}[{}]-max(0,{})):\n").format(
                            index_vars[i],
                            ranges[i][0],
                            shape_name,
                            i,
                            ranges[i][1])
            offset += 1

        for j in range(offset):
            func_text += "    "
        # Put a sentinel in the code so we can locate it in the IR.  We will
        # remove this sentinel assignment and replace it with the IR for the
        # stencil kernel body.
        func_text += "{} = 0\n".format(sentinel_name)
        func_text += "    return {}\n".format(out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new stencil func text")
            print(func_text)

        # Force the new stencil function into existence.
        exec_(func_text) in globals(), locals()
        stencil_func = eval(stencil_func_name)
        if sigret is not None:
            pysig = utils.pysignature(stencil_func)
            sigret.pysig = pysig
        # Get the IR for the newly created stencil function.
        stencil_ir = compiler.run_frontend(stencil_func)
        ir_utils.remove_dels(stencil_ir.blocks)

        # rename all variables in stencil_ir afresh
        var_table = ir_utils.get_name_var_table(stencil_ir.blocks)
        new_var_dict = {}
        reserved_names = ([sentinel_name, out_name, neighborhood_name,
                           shape_name] + kernel_copy.arg_names + index_vars)
        for name, var in var_table.items():
            if not name in reserved_names:
                new_var_dict[name] = ir_utils.mk_unique_var(name)
        ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict)

        stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1

        # Shift lables in the kernel copy so they are guaranteed unique
        # and don't conflict with any labels in the stencil_ir.
        kernel_copy.blocks = ir_utils.add_offset_to_labels(
                                kernel_copy.blocks, stencil_stub_last_label)
        new_label = max(kernel_copy.blocks.keys()) + 1
        # Adjust ret_blocks to account for addition of the offset.
        ret_blocks = [x + stencil_stub_last_label for x in ret_blocks]

        if config.DEBUG_ARRAY_OPT == 1:
            print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label)
            print("before replace sentinel stencil_ir")
            ir_utils.dump_blocks(stencil_ir.blocks)
            print("before replace sentinel kernel_copy")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Search all the block in the stencil outline for the sentinel.
        for label, block in stencil_ir.blocks.items():
            for i, inst in enumerate(block.body):
                if (isinstance( inst, ir.Assign) and
                    inst.target.name == sentinel_name):
                    # We found the sentinel assignment.
                    loc = inst.loc
                    scope = block.scope
                    # split block across __sentinel__
                    # A new block is allocated for the statements prior to the
                    # sentinel but the new block maintains the current block
                    # label.
                    prev_block = ir.Block(scope, loc)
                    prev_block.body = block.body[:i]
                    # The current block is used for statements after sentinel.
                    block.body = block.body[i + 1:]
                    # But the current block gets a new label.
                    body_first_label = min(kernel_copy.blocks.keys())

                    # The previous block jumps to the minimum labelled block of
                    # the parfor body.
                    prev_block.append(ir.Jump(body_first_label, loc))
                    # Add all the parfor loop body blocks to the gufunc
                    # function's IR.
                    for (l, b) in kernel_copy.blocks.items():
                        stencil_ir.blocks[l] = b

                    stencil_ir.blocks[new_label] = block
                    stencil_ir.blocks[label] = prev_block
                    # Add a jump from all the blocks that previously contained
                    # a return in the stencil kernel to the block
                    # containing statements after the sentinel.
                    for ret_block in ret_blocks:
                        stencil_ir.blocks[ret_block].append(
                            ir.Jump(new_label, loc))
                    break
            else:
                continue
            break

        stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks)
        ir_utils.remove_dels(stencil_ir.blocks)

        assert(isinstance(the_array, types.Type))
        array_types = args

        new_stencil_param_types = list(array_types)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new_stencil_param_types", new_stencil_param_types)
            ir_utils.dump_blocks(stencil_ir.blocks)

        # Compile the combined stencil function with the replaced loop
        # body in it.
        new_func = compiler.compile_ir(
            self._typingctx,
            self._targetctx,
            stencil_ir,
            new_stencil_param_types,
            None,
            compiler.DEFAULT_FLAGS,
            {})
        return new_func
Exemplo n.º 33
0
 def generic(self, args, kws):
     sig = signature(svc_type, types.intp)
     pysig = utils.pysignature(SVC_dummy)
     sig.pysig = pysig
     return sig
Exemplo n.º 34
0
def _has_loc(fn):
    """Does function *fn* take ``loc`` argument?
    """
    sig = utils.pysignature(fn)
    return 'loc' in sig.parameters
Exemplo n.º 35
0
 def generic(self, args, kws):
     sig = signature(mnb_type, types.intp)
     pysig = utils.pysignature(MultinomialNB_dummy)
     sig.pysig = pysig
     return sig