Exemplo n.º 1
0
def broyden (func, x1, x2, tol = 1e-8):
    """
    Implementation of the Broyden method finding roots to a multivariable func-
    tion.

    Inputs:
        func: The vector function you wish to find a root for
        x1: One initial guess vector
        x2: A second initial guess vector
        [tol]: optional. Tolerance level

    Returns:
        x such that func(x) = 0
    """
    if abs(func(x1)) < tol:
        return x1
    if abs(func(x2)) < tol:
        return x2

    x1Array = sp.array(x1)
    x2Array = sp.array(x2)
    jaco = Jacobian(func)

    f1 = func(x1)
    f2 = func(x2)

    deltax = (x2-x1)
    Jacob = jaco.jacobian(deltax)

    Jnew = Jacob + (f2- f1 - sp.dot(sp.dot(Jacob,deltax),deltax.T))\
    /(la.norm(deltax)**2)

    xnew = la.inv(Jnew) * (-f2) + x2

    x1 = x2
    x2 = xnew
    Jacob = Jnew

    i=0
    while abs(la.norm(func(xnew))) > tol:
        f1 = func(x1)
        f2 = func(x2)

        deltax = (x2-x1)

        Jnew = Jacob + (f2- f1 - sp.dot(sp.dot(Jacob,deltax),deltax.T))\
        /(la.norm(deltax)**2)

        xnew = la.inv(Jnew) * (-f2) + x2

        x1 = x2
        x2 = xnew
        Jacob = Jnew

        i += 1
        print i
    return xnew
Exemplo n.º 2
0
def systemNewton(function, x0, fPrime = None, tol = 0.0001):
    epsilon = 1e-5
    xArray = sp.array(x0, dtype = float)
    funArray = sp.array(function)
    numEqns = funArray.size
    numVars = xArray.size
    if numVars==1:
        if fPrime:
            return myNewNewton(function, x0, fPrime)
        else:
            return myNewNewton(function, x0)
    else:
        xold = xArray
        jacfun = Jacobian(function)
        jac0 = sp.mat(jacfun.jacobian(xold))
        xnew = xold - la.solve(jac0,function(xold))
        while max(abs(xnew-xold))> tol:
            xold = xnew
            jacNew = sp.mat(jacfun.jacobian(xold))
            xnew = xold - la.solve(jacNew,function(xold))
        return xnew