Exemplo n.º 1
0
def test_fill_diagonal():
    a = np.zeros((3, 3), int)
    fill_diagonal(a, 5)
    yield (assert_array_equal, a, np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5]]))

    #Test tall matrix
    a = np.zeros((10, 3), int)
    fill_diagonal(a, 5)
    yield (assert_array_equal, a,
           np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0], [0, 0, 0],
                     [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]))

    #Test tall matrix wrap
    a = np.zeros((10, 3), int)
    fill_diagonal(a, 5, True)
    yield (assert_array_equal, a,
           np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0], [5, 0, 0],
                     [0, 5, 0], [0, 0, 5], [0, 0, 0], [5, 0, 0], [0, 5, 0]]))

    #Test wide matrix
    a = np.zeros((3, 10), int)
    fill_diagonal(a, 5)
    yield (assert_array_equal, a,
           np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                     [0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
                     [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]]))

    # The same function can operate on a 4-d array:
    a = np.zeros((3, 3, 3, 3), int)
    fill_diagonal(a, 4)
    i = np.array([0, 1, 2])
    yield (assert_equal, np.where(a != 0), (i, i, i, i))
 def test_tall_matrix_wrap(self):
     a = np.zeros((10, 3), int)
     fill_diagonal(a, 5, True)
     assert_array_equal(
         a,
         np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0], [5, 0, 0],
                   [0, 5, 0], [0, 0, 5], [0, 0, 0], [5, 0, 0], [0, 5, 0]]))
Exemplo n.º 3
0
    def estimate_mmd(self, sample1, sample2, unbiased=False):
        """
        Compute the MMD between two samples.

        Parameters
        ----------
        sample1 : array-like matrix, shape=(n_samples1, n_features)

        sample2 : array-like matrix, shape=(n_samples2, n_features)

        unbiased : boolean, optional
            Default is False.

        Returns
        -------
        estimated_mmd : float
        """
        assert len(sample1.shape) == 2
        assert len(sample2.shape) == 2
        assert sample1.shape[1] == sample2.shape[1]

        K11 = self.kernel(sample1, sample1)
        K22 = self.kernel(sample2, sample2)
        K12 = self.kernel(sample1, sample2)
        if unbiased:
            fill_diagonal(K11, 0.0)
            fill_diagonal(K22, 0.0)
            n = float(shape(K11)[0])
            m = float(shape(K22)[0])
            return (np.sum(K11) / (n**2 - n) + np.sum(K22) / (m**2 - m) -
                    2 * np.mean(K12))
        else:
            return np.mean(K11) + np.mean(K22) - 2 * np.mean(K12)
Exemplo n.º 4
0
 def test_basic(self):
     a = np.zeros((3, 3), int)
     fill_diagonal(a, 5)
     assert_array_equal(
         a, np.array([[5, 0, 0],
                      [0, 5, 0],
                      [0, 0, 5]])
         )
 def test_wide_matrix(self):
     a = np.zeros((3, 10), int)
     fill_diagonal(a, 5)
     assert_array_equal(
         a,
         np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]]))
Exemplo n.º 6
0
 def test_wide_matrix(self):
     a = np.zeros((3, 10), int)
     fill_diagonal(a, 5)
     assert_array_equal(
         a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                      [0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
                      [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]])
         )
Exemplo n.º 7
0
 def test_basic(self):
     a = np.zeros((3, 3), int)
     fill_diagonal(a, 5)
     assert_array_equal(
         a, np.array([[5, 0, 0],
                      [0, 5, 0],
                      [0, 0, 5]])
         )
Exemplo n.º 8
0
 def unbiased_HSnorm_estimate_of_centred_operator(K):
     '''returns an unbiased estimate of \sum_r \lambda_r^2 where \lambda_r are the 
     eigenvalues of the centred kernel operator'''
     m = shape(K)[0]
     fill_diagonal(K, 0.)
     first_term = sum(K**2)
     second_term = (sum(K)**2) / ((m - 1.) * (m - 2.))
     third_term = -2. * sum(K.dot(K)) / (m - 2.)
     return (first_term + second_term + third_term) / (m * (m - 3.))
Exemplo n.º 9
0
def test_fill_diagonal():
    a = np.zeros((3, 3), int)
    fill_diagonal(a, 5)
    yield (assert_array_equal, a,
           np.array([[5, 0, 0],
                  [0, 5, 0],
                  [0, 0, 5]]))

    #Test tall matrix
    a = np.zeros((10, 3), int)
    fill_diagonal(a, 5)
    yield (assert_array_equal, a,
           np.array([[5, 0, 0],
                  [0, 5, 0],
                  [0, 0, 5],
                  [0, 0, 0],
                  [0, 0, 0],
                  [0, 0, 0],
                  [0, 0, 0],
                  [0, 0, 0],
                  [0, 0, 0],
                  [0, 0, 0]]))

    #Test tall matrix wrap
    a = np.zeros((10, 3), int)
    fill_diagonal(a, 5, True)
    yield (assert_array_equal, a,
           np.array([[5, 0, 0],
                  [0, 5, 0],
                  [0, 0, 5],
                  [0, 0, 0],
                  [5, 0, 0],
                  [0, 5, 0],
                  [0, 0, 5],
                  [0, 0, 0],
                  [5, 0, 0],
                  [0, 5, 0]]))

    #Test wide matrix
    a = np.zeros((3, 10), int)
    fill_diagonal(a, 5)
    yield (assert_array_equal, a,
           np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]]))

    # The same function can operate on a 4-d array:
    a = np.zeros((3, 3, 3, 3), int)
    fill_diagonal(a, 4)
    i = np.array([0, 1, 2])
    yield (assert_equal, np.where(a != 0), (i, i, i, i))
Exemplo n.º 10
0
 def test_tall_matrix_wrap(self):
     a = np.zeros((10, 3), int)
     fill_diagonal(a, 5, True)
     assert_array_equal(
         a, np.array([[5, 0, 0],
                      [0, 5, 0],
                      [0, 0, 5],
                      [0, 0, 0],
                      [5, 0, 0],
                      [0, 5, 0],
                      [0, 0, 5],
                      [0, 0, 0],
                      [5, 0, 0],
                      [0, 5, 0]])
         )
Exemplo n.º 11
0
 def estimateMMD(self,sample1,sample2,unbiased=False):
     """
     Compute the MMD between two samples
     """
     K11 = self.kernel(sample1,sample1)
     K22 = self.kernel(sample2,sample2)
     K12 = self.kernel(sample1,sample2)
     if unbiased:
         fill_diagonal(K11,0.0)
         fill_diagonal(K22,0.0)
         n=float(shape(K11)[0])
         m=float(shape(K22)[0])
         return sum(sum(K11))/(pow(n,2)-n) + sum(sum(K22))/(pow(m,2)-m) - 2*mean(K12[:])
     else:
         return mean(K11[:])+mean(K22[:])-2*mean(K12[:])
 def test_tall_matrix(self):
     a = np.zeros((10, 3), int)
     fill_diagonal(a, 5)
     assert_array_equal(
         a,
         np.array([
             [5, 0, 0],
             [0, 5, 0],
             [0, 0, 5],
             [0, 0, 0],
             [0, 0, 0],
             [0, 0, 0],
             [0, 0, 0],
             [0, 0, 0],
             [0, 0, 0],
             [0, 0, 0],
         ]),
     )
Exemplo n.º 13
0
 def test_hetero_shape_handling(self):
     # raise error with high dimensionality and
     # shape mismatch
     a = np.zeros((3, 3, 7, 3), int)
     with assert_raises_regex(ValueError, "equal length"):
         fill_diagonal(a, 2)
Exemplo n.º 14
0
 def test_low_dim_handling(self):
     # raise error with low dimensionality
     a = np.zeros(3, int)
     with assert_raises_regex(ValueError, "at least 2-d"):
         fill_diagonal(a, 5)
Exemplo n.º 15
0
 def test_operate_4d_array(self):
     a = np.zeros((3, 3, 3, 3), int)
     fill_diagonal(a, 4)
     i = np.array([0, 1, 2])
     assert_equal(np.where(a != 0), (i, i, i, i))
Exemplo n.º 16
0
 def test_low_dim_handling(self):
     # raise error with low dimensionality
     a = np.zeros(3, int)
     with assert_raises_regex(ValueError, "at least 2-d"):
         fill_diagonal(a, 5)
Exemplo n.º 17
0
 def test_hetero_shape_handling(self):
     # raise error with high dimensionality and
     # shape mismatch
     a = np.zeros((3,3,7,3), int)
     with assert_raises_regex(ValueError, "equal length"):
         fill_diagonal(a, 2)
Exemplo n.º 18
0
 def test_operate_4d_array(self):
     a = np.zeros((3, 3, 3, 3), int)
     fill_diagonal(a, 4)
     i = np.array([0, 1, 2])
     assert_equal(np.where(a != 0), (i, i, i, i))