Exemplo n.º 1
0
 def setup(self):
     self.image = np.random.random((200, 200, 100))
     self.image[:100, :100, :] += 1
     self.image[150:, 150:, :] += 0.5
     self.msk = np.zeros((200, 200, 100))
     self.msk[10:-10, 10:-10, 10:-10] = 1
     self.msk_slice = self.msk[..., 50]
     if Version(skimage.__version__) >= Version('0.17.0'):
         self.slic_kwargs = dict(start_label=1)
     else:
         self.slic_kwargs = {}
Exemplo n.º 2
0
    def setup(self, *args):
        try:
            # use a separate skeletonize_3d function on older scikit-image
            if Version(skimage.__version__) < Version('0.16.0'):
                self.skeletonize = morphology.skeletonize_3d
            else:
                self.skeletonize = morphology.skeletonize
        except AttributeError:
            raise NotImplementedError("3d skeletonize unavailable")

        # we stack the horse data 5 times to get an example volume
        self.image = np.stack(5 * [util.invert(data.horse())])
Exemplo n.º 3
0
    def setup(self):
        try:
            mask = np.zeros((64, 64)) > 0
            mask[10:-10, 10:-10] = 1
            segmentation.slic(np.ones_like(mask), mask=mask)
        except TypeError:
            raise NotImplementedError("masked slic unavailable")

        self.image = np.random.random((200, 200, 100))
        self.image[:100, :100, :] += 1
        self.image[150:, 150:, :] += 0.5
        self.msk = np.zeros((200, 200, 100))
        self.msk[10:-10, 10:-10, 10:-10] = 1
        self.msk_slice = self.msk[..., 50]
        if Version(skimage.__version__) >= Version('0.17.0'):
            self.slic_kwargs = dict(start_label=1)
        else:
            self.slic_kwargs = {}
Exemplo n.º 4
0
from functools import partial
from multiprocessing import Pool

import numpy as np
from numpy.lib import NumpyVersion as Version
import scipy


if Version(scipy.__version__) >= Version('1.4.0'):
    import scipy.fft
    _fft = scipy.fft
else:
    import scipy.fftpack
    _fft = scipy.fftpack


def _image_tv(x, axis=0, n_points=3):
    """ Computes total variation (TV) of matrix x across a given axis and
    along two directions.

    Parameters
    ----------
    x : 2D ndarray
        matrix x
    axis : int (0 or 1)
        Axis which TV will be calculated. Default a is set to 0.
    n_points : int
        Number of points to be included in TV calculation.

    Returns
Exemplo n.º 5
0
Arquivo: _fft.py Projeto: the-lay/cupy
]

_scipy_150 = False
try:
    import scipy
    import scipy.fft as _scipy_fft
except ImportError:

    class _DummyModule:
        def __getattr__(self, name):
            return None

    _scipy_fft = _DummyModule()
else:
    from numpy.lib import NumpyVersion as Version
    _scipy_150 = Version(scipy.__version__) >= Version('1.5.0')
    del Version
    del scipy

# Backend support for scipy.fft

__ua_domain__ = 'numpy.scipy.fft'
_implemented = {}


def __ua_convert__(dispatchables, coerce):
    if coerce:
        try:
            replaced = [
                cupy.asarray(d.value)
                if d.coercible and d.type is np.ndarray else d.value