Exemplo n.º 1
0
def is_palindrome(x):
    """
        is palindrome
    :param x:
    :return:
    """
    if x < 0:
        return False
    if x < 10:
        return True
    # return x == int(str(x)[::-1])
    length = len(str(x))
    latter = ""
    temp = x
    half_len = length // 2
    for i in range(half_len):
        latter += str(temp % 10)
        temp = temp // 10
    if length % 2 == 0:
        # if x = 1234554321, then return x = (1234554321 // 10000)
        x = x // math.pow(10, half_len)
    else:
        # if x = 12345654321, then return x = (12345654321 // 100000)
        x = x // math.pow(10, half_len + 1)
    return str(int(x)) == latter
Exemplo n.º 2
0
 def DPLSW(self, thetaTild, countXVec, myMDP, featuresMatrix, gamma, epsilon, delta,batchSize, initStateDist="uniform", pi="uniform"):
     dim=len(featuresMatrix.T)
     alpha=(5.0*numpy.sqrt(2*numpy.math.log(2.0/delta)))/epsilon
     beta= (epsilon/4)/(dim+numpy.math.log(2.0/delta))
     
     Gamma_w=myMDP.getGammaMatrix()
     for i in range(len(countXVec)):
         Gamma_w[i][i]=Gamma_w[i][i]*countXVec[i]/batchSize
     
     GammaSqrt= (Gamma_w)
     for i in range(len(GammaSqrt)):
         GammaSqrt[i][i]=math.sqrt(Gamma_w[i][i])
         
     GammaSqrtPhi= numpy.mat(GammaSqrt) *numpy.mat(featuresMatrix)
     if self.is_invertible(GammaSqrtPhi):
         GammaSqrtPhiInv=linalg.inv(GammaSqrtPhi)
     else:
         GammaSqrtPhiInv=linalg.pinv(GammaSqrtPhi)
         
     PsiBetaX= self.SmootBound_LSW(myMDP, Gamma_w, countXVec, beta, myMDP.startStateDistribution())
     sigmmaX= (alpha*myMDP.getMaxReward())/(1-gamma)
     sigmmaX=sigmmaX*numpy.linalg.norm(GammaSqrtPhiInv)
     sigmmaX=sigmmaX*math.pow(PsiBetaX, .5)
     cov_X=math.pow(sigmmaX,2)*numpy.identity(dim)
     mean=numpy.zeros(dim)
     ethaX=numpy.random.multivariate_normal(mean,cov_X)        
     thetaTild=numpy.squeeze(numpy.asarray(thetaTild))
     ethaX=numpy.squeeze(numpy.asarray(ethaX))
     thetaTild_priv=thetaTild+ethaX
     return [thetaTild_priv,thetaTild,math.pow(sigmmaX,2)]
Exemplo n.º 3
0
    def update_creature_properties(self, creature: Creature, creature_actions: CreatureActions) -> None:
        """
        Updates the creature properties according to its actions.
        """

        # The more the creature moves, the higher its fitness.
        distance = math.sqrt(math.pow(creature_actions.x, 2) + math.pow(creature_actions.y, 2))
        creature.fitness += distance
        creature.distance_travelled += distance
        creature.age += 1
        if int(creature.distance_travelled) % 30 == 0:
            creature.age -= 5
        if creature.age >= MAX_AGE:
            self.dead_creatures.append(creature)
Exemplo n.º 4
0
 def computeEligibilityVector(self, lambdaCoef, gamma, index,dim,featureMatrix):
     z_i= numpy.zeros((1,dim))
     for j in range(index):
         phi_j=featureMatrix[j][:]
         temp=math.pow(gamma*lambdaCoef, index-j)
         z_i+=temp*(phi_j)
     return z_i
Exemplo n.º 5
0
 def LSL_subSampleAggregate(self, batch, s, numberOfsubSamples,myMDP,featuresMatrix,regCoef, pow_exp,numTrajectories,epsilon,delta,distUB):
     dim=len(featuresMatrix.T)
     alpha=(5.0*numpy.sqrt(2*numpy.math.log(2.0/delta)))/epsilon
     #beta= (epsilon/4)*(dim+numpy.math.log(2.0/delta))
     beta= (s/(2*numberOfsubSamples))
     
     subSamples=self.subSampleGen(batch, numberOfsubSamples)
     z=numpy.zeros((len(subSamples),dim))
     for i in range(len(subSamples)):
         FVMC=self.FVMCPE(myMDP, featuresMatrix, subSamples[i])
         #regc=self.computeLambdas(myMDP, featuresMatrix,regCoef, len(subSamples[i]), pow_exp)
         #z[i]=numpy.ravel(self.LSL(FVMC[2], myMDP, featuresMatrix,regc[0][0],len(subSamples[i]),FVMC[1]))
         SA_reidge_coef=100*math.pow(len(subSamples[i]), 0.5)
         z[i]=numpy.ravel(self.LSL(FVMC[2], myMDP, featuresMatrix,SA_reidge_coef,len(subSamples[i]),FVMC[1]))
         #z[i]= numpy.squeeze(numpy.asarray(FVMC[0]))#this is LSW
         
     partitionPoint=int((numberOfsubSamples+math.sqrt(numberOfsubSamples))/2)  
     g= self.generalized_median(myMDP,z,partitionPoint,distUB)
     #g= self.aggregate_median(myMDP,z)
     
     #To check the following block
     S_z=self.computeAggregateSmoothBound(z, beta, s,myMDP,distUB)
     #print(S_z)
     cov_X=(S_z/alpha)*numpy.identity((dim))
     ethaX=numpy.random.multivariate_normal(numpy.zeros(dim),cov_X)
     #print(S_z)
     #noise=(S_z/alpha)*ethaX
     #numpy.mat(featuresMatrix)*numpy.mat(g[1]+ethaX)
     temp_priv=numpy.mat(featuresMatrix)*numpy.mat(g[1]+ethaX).T
     return [temp_priv, numpy.mat(featuresMatrix)*numpy.mat(g[1]).T]
def iswt(coefficients, wavelet):
    """
     Input parameters:
       coefficients
         approx and detail coefficients, arranged in level value
         exactly as output from swt:
         e.g. [(cA1, cD1), (cA2, cD2), ..., (cAn, cDn)]
       wavelet
         Either the name of a wavelet or a Wavelet object
   """
    output = coefficients[0][0].copy() # Avoid modification of input data
    #num_levels, equivalent to the decomposition level, n
    num_levels = len(coefficients)
    for j in range(num_levels,0,-1):
        step_size = int(math.pow(2, j-1))
        last_index = step_size
        _, cD = coefficients[num_levels - j]
        for first in range(last_index): # 0 to last_index - 1
            # Getting the indices that we will transform
            indices = arange(first, len(cD), step_size)
            # select the even indices
            even_indices = indices[0::2]
            # select the odd indices
            odd_indices = indices[1::2]
            # perform the inverse dwt on the selected indices,
            # making sure to use periodic boundary conditions
            x1 = pywt.idwt(output[even_indices], cD[even_indices],wavelet, 'per')
            x2 = pywt.idwt(output[odd_indices], cD[odd_indices],wavelet, 'per')
            # perform a circular shift right
            x2 = roll(x2, 1)
            # average and insert into the correct indices
            output[indices] = (x1 + x2)/2.
    return output
Exemplo n.º 7
0
 def computeEligibilityVector(self, lambdaCoef, gamma, index, dim,featureMatrix):
     z_i= numpy.zeros((1,dim))
     for j in range(index):
         phi_j=featureMatrix[j][:]
         temp=math.pow(gamma*lambdaCoef, index-j)
         z_i+=temp*(phi_j)
     return z_i
Exemplo n.º 8
0
Arquivo: em.py Projeto: akribisch/EM
def isSame(cur, now):
    bool = True
    for i in range(0, len(cur)):
        if abs(cur[i] - now[i]) > math.pow(10, -3):
            bool = False
            break
    return bool
Exemplo n.º 9
0
 def getFitness(self, model):
     scores = []
     for i in range(0, 1):
         scores.append(
             model.score(self._dataSet.getXTest(),
                         self._dataSet.getYTest()))
     return copy(math.pow(100, mean(scores)))
Exemplo n.º 10
0
def iswt(coefficients, wavelet):
    """
     Input parameters:
       coefficients
         approx and detail coefficients, arranged in level value
         exactly as output from swt:
         e.g. [(cA1, cD1), (cA2, cD2), ..., (cAn, cDn)]
       wavelet
         Either the name of a wavelet or a Wavelet object
   """
    output = coefficients[0][0].copy()  # Avoid modification of input data
    #num_levels, equivalent to the decomposition level, n
    num_levels = len(coefficients)
    for j in range(num_levels, 0, -1):
        step_size = int(math.pow(2, j - 1))
        last_index = step_size
        _, cD = coefficients[num_levels - j]
        for first in range(last_index):  # 0 to last_index - 1
            # Getting the indices that we will transform
            indices = arange(first, len(cD), step_size)
            # select the even indices
            even_indices = indices[0::2]
            # select the odd indices
            odd_indices = indices[1::2]
            # perform the inverse dwt on the selected indices,
            # making sure to use periodic boundary conditions
            x1 = pywt.idwt(output[even_indices], cD[even_indices], wavelet,
                           'per')
            x2 = pywt.idwt(output[odd_indices], cD[odd_indices], wavelet,
                           'per')
            # perform a circular shift right
            x2 = roll(x2, 1)
            # average and insert into the correct indices
            output[indices] = (x1 + x2) / 2.
    return output
Exemplo n.º 11
0
def crossfade(wave, percent=.1):
    n = int(len(wave) * percent / 2)
    weight = lambda i: math.pow(i, 2)
    i_max = weight(n)
    for i in range(n):
        amp = weight(i) / i_max
        wave[i] *= amp
        wave[-(i + 1)] *= amp
Exemplo n.º 12
0
    def DPLSW(self, FirstVisitVector, countXVec, myMDP, featuresMatrix, gamma, epsilon, delta,batchSize, initStateDist="uniform", pi="uniform"):

        dim = len(featuresMatrix.T)
        alpha = (5.0*numpy.sqrt(2*numpy.math.log(2.0/delta)))/epsilon
        beta = (epsilon/4)/(dim+numpy.math.log(2.0/delta))

        Gamma_w = myMDP.getGammaMatrix()
        # for i in range(len(countXVec)):
        #     Gamma_w[i][i] = Gamma_w[i][i]*countXVec[i]/batchSize
        
        GammaSqrt = Gamma_w
        for i in range(len(GammaSqrt)):
            GammaSqrt[i][i] = math.sqrt(Gamma_w[i][i])

        GammaSqrt = GammaSqrt * numpy.mat(featuresMatrix)

        if self.is_invertible(GammaSqrt):
            GammaSqrtPhiInv = linalg.inv(GammaSqrt)
        else:
            GammaSqrtPhiInv = linalg.pinv(GammaSqrt)

        GammaTemp = numpy.mat(featuresMatrix).T * Gamma_w * numpy.mat(featuresMatrix)

        #GammaSqrtPhi = numpy.mat(GammaSqrt) * numpy.mat(featuresMatrix)
        if self.is_invertible(GammaTemp):
            GammaTempPhiInv = linalg.inv(GammaTemp)
        else:
            GammaTempPhiInv = linalg.pinv(GammaTemp)

        FirstVisitVector = numpy.reshape(FirstVisitVector, (len(FirstVisitVector), 1))

        thetaTild = GammaTempPhiInv * numpy.mat(featuresMatrix.T)
        thetaTild = thetaTild * numpy.mat(Gamma_w) * numpy.mat(FirstVisitVector)
            
        PsiBetaX = self.SmootBound_LSW(myMDP, Gamma_w, countXVec, beta, myMDP.startStateDistribution())
        sigmmaX = (alpha*myMDP.getMaxReward())/(1-self.gamma_factor)
        sigmmaX = sigmmaX*numpy.linalg.norm(GammaSqrtPhiInv,2)
        sigmmaX = sigmmaX*math.pow(PsiBetaX, 0.5)
        cov_X = math.pow(sigmmaX,2)*numpy.identity(dim)
        mean = numpy.zeros(dim)
        ethaX = numpy.random.multivariate_normal(mean, cov_X)
        thetaTild = numpy.squeeze(numpy.asarray(thetaTild))
        ethaX = numpy.squeeze(numpy.asarray(ethaX))
        thetaTild_priv = thetaTild + ethaX
        return [thetaTild_priv, thetaTild, math.pow(sigmmaX,2)]
Exemplo n.º 13
0
def get_retention(t):
    #     c = 1.8
    #     d = 1.21
    c = average([1.8, 1.34, 0.9, 1.36])
    d = average([1.21, 0.873, 0.9, 1.36])
    print(c, d)
    if t <= 1.0:
        return 1.0
    innr = math.pow(math.log(t, 10.0), d)
    return c / (innr + c)
def mse(x, locations, distances):
    # This function calculates the mean squared error of the reference points
    # and the point x

    mse = 0.0
    for location, distance in zip(locations, distances):
        distance_calculated = great_circle_distance(x[0], x[1], location[0],
                                                    location[1])
        mse += math.pow(distance_calculated - distance, 2.0)
    return mse / 3
Exemplo n.º 15
0
    def GS_based_DPLSL (self, FirstVisitVector, countXVec, myMDP, featuresMatrix, gamma, epsilon, delta, regCoef, numTrajectories, rho, pi="uniform"):
        dim=len(featuresMatrix.T)
        Rho=numpy.reshape(rho,(len(rho),1))
        thetaTil_X= self.LSL(FirstVisitVector, myMDP, featuresMatrix, regCoef, numTrajectories,countXVec)
        
        
        normPhi=numpy.linalg.norm(featuresMatrix)
        maxRho=numpy.linalg.norm(Rho,Inf)
        l2Rho=numpy.linalg.norm(Rho)
        alpha=(5.0*numpy.sqrt(2*numpy.math.log(2.0/delta)))/epsilon

        sigma_X=float(2*alpha*myMDP.getMaxReward()*normPhi/((1-myMDP.getGamma())*(regCoef-maxRho*numpy.math.pow(normPhi, 2))))
        varphi_lamda=normPhi*maxRho*math.sqrt(numTrajectories)/(math.sqrt(2*regCoef))+l2Rho
        sigma_X=sigma_X*varphi_lamda
        cov_X=math.pow(sigma_X,2)*numpy.identity(dim)
        mean=numpy.zeros(dim)
        ethaX=numpy.random.multivariate_normal(mean,cov_X)
        #thetaTil_X=numpy.squeeze(numpy.asarray(thetaTil_X))
        #ethaX=numpy.squeeze(numpy.asarray(ethaX))
        thetaTil_X_priv=thetaTil_X+numpy.reshape(ethaX, (dim,1))
        return [thetaTil_X_priv, thetaTil_X,math.pow(sigma_X,2)]
Exemplo n.º 16
0
    def GS_based_DPLSL (self, FirstVisitVector, countXVec, myMDP, featuresMatrix, gamma, epsilon, delta, regCoef, numTrajectories, rho, pi="uniform"):
        dim=len(featuresMatrix.T)
        Rho=numpy.reshape(rho,(len(rho),1))
        thetaTil_X= self.LSL(FirstVisitVector, myMDP, featuresMatrix, regCoef, numTrajectories,countXVec)
        
        
        normPhi=numpy.linalg.norm(featuresMatrix)
        maxRho=numpy.linalg.norm(Rho,Inf)
        l2Rho=numpy.linalg.norm(Rho)
        alpha=(5.0*numpy.sqrt(2*numpy.math.log(2.0/delta)))/epsilon

        sigma_X=float(2*alpha*myMDP.getMaxReward()*normPhi/((1-myMDP.getGamma())*(regCoef-maxRho*numpy.math.pow(normPhi, 2))))
        varphi_lamda=normPhi*maxRho*math.sqrt(numTrajectories)/(math.sqrt(2*regCoef))+l2Rho
        sigma_X=sigma_X*varphi_lamda
        cov_X=math.pow(sigma_X,2)*numpy.identity(dim)
        mean=numpy.zeros(dim)
        ethaX=numpy.random.multivariate_normal(mean,cov_X)
        #thetaTil_X=numpy.squeeze(numpy.asarray(thetaTil_X))
        #ethaX=numpy.squeeze(numpy.asarray(ethaX))
        thetaTil_X_priv=thetaTil_X+numpy.reshape(ethaX, (dim,1))
        return [thetaTil_X_priv, thetaTil_X,math.pow(sigma_X,2)]
Exemplo n.º 17
0
 def getFitnessFold(self, individual):
     kf = KFold(n_splits=10)
     X = np.array(self._dataSet.getX())
     y = np.array(self._dataSet.getY())
     parameter = individual.getParam()
     model = self._estimator.set_params(**parameter)
     scores = []
     for train_index, test_index in kf.split(X):
         # print("TRAIN:", train_index, "TEST:", test_index)
         X_train, X_test = X[train_index], X[test_index]
         y_train, y_test = y[train_index], y[test_index]
         model.fit(X_train, y_train)
         scores.append(model.score(X_test, y_test))
     return copy(math.pow(100, mean(scores)))
Exemplo n.º 18
0
    def DPLSL (self, LSL_Vector, countXVec, myMDP, featuresMatrix, gamma, epsilon, delta, regCoef, numTrajectories, rho, pi="uniform"):
        regCoef=regCoef
        dim=len(featuresMatrix.T)
        Rho=numpy.reshape(rho,(len(rho),1))
        thetaTil_X= LSL_Vector #self.LSL(FirstVisitVector, myMDP, featuresMatrix, regCoef, numTrajectories,countXVec)
        normPhi=numpy.linalg.norm(featuresMatrix)
        maxRho=numpy.linalg.norm(Rho,Inf)
        alpha=(5.0*numpy.sqrt(2*numpy.math.log(2.0/delta)))/epsilon
        beta= (epsilon/4)/(dim+numpy.math.log(2.0/delta))

        PsiBetaX = self.SmoothBound_LSL(featuresMatrix, myMDP, countXVec, myMDP.startStateDistribution(), regCoef, beta, numTrajectories)
        
        sigma_X=2*alpha*myMDP.getMaxReward()*normPhi/(1-myMDP.getGamma())
        sigma_X=sigma_X/(regCoef-maxRho*numpy.math.pow(normPhi, 2))
        sigma_X=sigma_X*(numpy.math.pow(PsiBetaX,0.5))
        
        #print(sigma_X)
        cov_X=math.pow(sigma_X,2)*numpy.identity(dim)
        mean=numpy.zeros(dim)
        ethaX=numpy.random.multivariate_normal(mean,cov_X)
        ethaX=numpy.reshape(ethaX,(len(ethaX),1))
        thetaTil_X_priv=thetaTil_X+ethaX
        return [thetaTil_X_priv, thetaTil_X,math.pow(sigma_X,2)]
Exemplo n.º 19
0
    def DPLSL(self, LSL_Vector, countXVec, myMDP, featuresMatrix, gamma, epsilon, delta, regCoef, numTrajectories, rho, pi="uniform"):
        regCoef = regCoef
        dim = len(featuresMatrix.T)
        Rho = numpy.reshape(rho , (len(rho),1))
        thetaTil_X = LSL_Vector #self.LSL(FirstVisitVector, myMDP, featuresMatrix, regCoef, numTrajectories,countXVec)
        normPhi = numpy.linalg.norm(featuresMatrix, 2)
        maxRho = numpy.linalg.norm(Rho, Inf)
        alpha = (5.0*numpy.sqrt(2*numpy.math.log(2.0/delta)))/epsilon
        beta = (epsilon/4)/(dim+numpy.math.log(2.0/delta))

        PsiBetaX = self.SmoothBound_LSL(featuresMatrix, myMDP, countXVec, myMDP.startStateDistribution(), regCoef, beta, numTrajectories)
        
        sigma_X = 2*alpha*myMDP.getMaxReward()*normPhi/(1-myMDP.getGamma())
        sigma_X = sigma_X/(regCoef-maxRho*numpy.math.pow(normPhi, 2))
        sigma_X = sigma_X*(numpy.math.pow(PsiBetaX,0.5))
        
        #print(sigma_X)
        cov_X = math.pow(sigma_X,2)*numpy.identity(dim)
        mean = numpy.zeros(dim)
        ethaX = numpy.random.multivariate_normal(mean,cov_X)
        ethaX = numpy.reshape(ethaX,(len(ethaX),1))
        thetaTil_X_priv = thetaTil_X + ethaX

        return [thetaTil_X_priv.reshape((dim,1)), thetaTil_X, math.pow(sigma_X,2)]
Exemplo n.º 20
0
 def SmoothBound_LSL(self,featurmatrix, myMDP, countXVec, rho, regCoef,beta,numTrajectories):
     normPhi = numpy.linalg.norm(featurmatrix,2)
     maxRho = numpy.linalg.norm(rho,Inf)
     c_lambda = normPhi*maxRho/(math.sqrt(2*regCoef))
     #print('===============================================')
     #print(regCoef)
     l2Rho = numpy.linalg.norm(rho)
     phi_k = 0
     Vals = []
     for k in range(0, numTrajectories+1):
         minVal=0
         for s in range(len(myMDP.getStateSpace())):
             minVal = minVal+rho[s] * min(countXVec[s]+k, numTrajectories)
         phi_k = c_lambda*math.sqrt(minVal)+l2Rho
         Vals.append((math.pow(phi_k,2))*math.exp(-k*beta))    
     upperBound=max(Vals)
     return upperBound
Exemplo n.º 21
0
 def SmoothBound_LSL(self,featurmatrix, myMDP, countXVec, rho, regCoef,beta,numTrajectories):
     normPhi=numpy.linalg.norm(featurmatrix)
     maxRho=numpy.linalg.norm(rho,Inf)
     c_lambda=normPhi*maxRho/(math.sqrt(2*regCoef))
     #print('===============================================')
     #print(regCoef)
     l2Rho=numpy.linalg.norm(rho)
     phi_k=0
     Vals=[]
     for k in range(0,numTrajectories):
         minVal=0
         for s in range(len(myMDP.getStateSpace())-1):
             minVal=minVal+rho[s]*min(countXVec[s]+k,numTrajectories)
         phi_k=c_lambda*math.sqrt(minVal)+l2Rho
         Vals.append((math.pow(phi_k,2))*math.exp(-k*beta))    
     upperBound=max(Vals)
     #print('Smooth upper bound= '+str(upperBound))  
     return upperBound  
Exemplo n.º 22
0
 def computeEligibilities(self, featureMatrix, lambda_coef, trajectory, gamma):
     dim=len(featureMatrix)
     upBound=len(trajectory)-1
     Z=numpy.zeros(shape=(upBound,dim))
     temp=numpy.zeros((dim,1))
     temp=numpy.reshape(temp,(dim,1))
     for i in range(upBound):
         temp=numpy.zeros(dim)
         temp=numpy.reshape(temp,(dim,1))
         for k in range(i):
             s_k=trajectory[k][0]
             temp2=featureMatrix[s_k,:]
             temp2=numpy.reshape(temp2, (dim,1))
             #temp2= temp2.T
             temp+=math.pow((lambda_coef*gamma),(i-k))*temp2
         for k in range(dim):
             Z[i,k]=temp[k]
             
     return Z
Exemplo n.º 23
0
    def lsl_sub_sample_aggregate(self, batch, num_sub_sample_rooted, numberOfsubSamples, myMDP, featuresMatrix,
                                 epsilon, delta, epsilon_star, delta_star, rho, subSampleSize):

        dim = len(featuresMatrix.T)
        alpha_star = (5.0*numpy.sqrt(2*numpy.math.log(2.0/delta_star)))/epsilon_star
        beta_star = (epsilon_star/4)*(dim+numpy.math.log(2.0/delta_star))

        alpha = (5.0*numpy.sqrt(2*numpy.math.log(2.0/delta)))/epsilon
        beta = (epsilon/4)*(dim+numpy.math.log(2.0/delta))

        beta_generalized_median = (num_sub_sample_rooted/(2*numberOfsubSamples))
        subSamples = self.subSampleGen(batch, numberOfsubSamples, subSampleSize)
        # sub_sampled_lsl_vectors = numpy.zeros((len(subSamples), dim))
        # sub_sampled_dplsl_vectors = numpy.zeros((len(subSamples), dim))
        sub_sampled_lsl_vectors = numpy.zeros((dim, 1))
        sub_sampled_dplsl_vectors = numpy.zeros((dim, 1))
        for i in range(len(subSamples)):
            FVMC = self.FVMCPE(myMDP, featuresMatrix, subSamples[i])
            #regc=self.computeLambdas(myMDP, featuresMatrix,regCoef, len(subSamples[i]), pow_exp)
            #z[i]=numpy.ravel(self.LSL(FVMC[2], myMDP, featuresMatrix,regc[0][0],len(subSamples[i]),FVMC[1]))
            SA_reidge_coef = 4 * math.pow(len(subSamples[i]), 0.5)
            #SA_reidge_coef = 1000 * math.pow(len(subSamples[i]), 0.4) # new setting for the ridge coefficient
            lsl_vector = self.LSL(FVMC[2], myMDP, featuresMatrix, SA_reidge_coef, len(subSamples[i]), FVMC[1])
            sub_sampled_lsl_vectors += lsl_vector
            sub_sampled_dplsl_vectors += self.DPLSL(lsl_vector, FVMC[1], myMDP, featuresMatrix, myMDP.getGamma(),
                                                    epsilon, delta, SA_reidge_coef, len(subSamples[i]), rho)[0]
            #z[i]= numpy.squeeze(numpy.asarray(FVMC[0]))#this is LSW



        # partitionPoint = int((numberOfsubSamples+math.sqrt(numberOfsubSamples))/2)
        # g = self.generalized_median(myMDP, sub_sampled_lsl_vectors, partitionPoint, distUB)
        #g= self.aggregate_median(myMDP,z)

        #To check the following block
        # S_z = self.computeAggregateSmoothBound(sub_sampled_lsl_vectors, beta_generalized_median, num_sub_sample_rooted,
        #                                        myMDP, distUB)
        # cov_X = (S_z/alpha_star)*numpy.identity((dim))
        # ethaX = numpy.random.multivariate_normal(numpy.zeros(dim),cov_X)
        # temp_priv = numpy.mat(featuresMatrix)*numpy.mat(g[1]+ethaX).T

        return sub_sampled_lsl_vectors/numberOfsubSamples, numpy.mat(featuresMatrix)*numpy.mat(sub_sampled_dplsl_vectors/
                                                                                              numberOfsubSamples)
Exemplo n.º 24
0
 def computeEligibilities(self, featureMatrix, lambda_coef, trajectory, gamma):
     dim=len(featureMatrix)
     upBound=len(trajectory)-1
     Z=numpy.zeros(shape=(upBound,dim))
     temp=numpy.zeros((dim,1))
     temp=numpy.reshape(temp,(dim,1))
     for i in range(upBound):
         temp=numpy.zeros(dim)
         temp=numpy.reshape(temp,(dim,1))
         for k in range(i):
             s_k=trajectory[k][0]
             temp2=featureMatrix[s_k,:]
             temp2=numpy.reshape(temp2, (dim,1))
             #temp2= temp2.T
             temp+=math.pow((lambda_coef*gamma),(i-k))*temp2
         for k in range(dim):
             Z[i,k]=temp[k]
             
     return Z
Exemplo n.º 25
0
def gelu(x):
    return 0.5 * x * (1 + math.tanh(
        math.sqrt(2 / math.pi) * (x + 0.044715 * math.pow(x, 3))))
Exemplo n.º 26
0
def exact_sol(k,y0,t):
    return y0 * m.pow(m.e,-k*t)
Exemplo n.º 27
0
def getLineData(pixels, x1, y1, x2, y2, lineW=2, theZ=0, theC=0, theT=0):
    """
    Grabs pixel data covering the specified line, and rotates it horizontally
    so that x1,y1 is to the left,
    Returning a numpy 2d array. Used by Kymograph.py script.
    Uses PIL to handle rotating and interpolating the data. Converts to numpy
    to PIL and back (may change dtype.)

    @param pixels:          PixelsWrapper object
    @param x1, y1, x2, y2:  Coordinates of line
    @param lineW:           Width of the line we want
    @param theZ:            Z index within pixels
    @param theC:            Channel index
    @param theT:            Time index
    """

    from numpy import asarray

    sizeX = pixels.getSizeX()
    sizeY = pixels.getSizeY()

    lineX = x2 - x1
    lineY = y2 - y1

    rads = math.atan(float(lineX) / lineY)

    # How much extra Height do we need, top and bottom?
    extraH = abs(math.sin(rads) * lineW)
    bottom = int(max(y1, y2) + extraH / 2)
    top = int(min(y1, y2) - extraH / 2)

    # How much extra width do we need, left and right?
    extraW = abs(math.cos(rads) * lineW)
    left = int(min(x1, x2) - extraW)
    right = int(max(x1, x2) + extraW)

    # What's the larger area we need? - Are we outside the image?
    pad_left, pad_right, pad_top, pad_bottom = 0, 0, 0, 0
    if left < 0:
        pad_left = abs(left)
        left = 0
    x = left
    if top < 0:
        pad_top = abs(top)
        top = 0
    y = top
    if right > sizeX:
        pad_right = right - sizeX
        right = sizeX
    w = int(right - left)
    if bottom > sizeY:
        pad_bottom = bottom - sizeY
        bottom = sizeY
    h = int(bottom - top)
    tile = (x, y, w, h)

    # get the Tile
    plane = pixels.getTile(theZ, theC, theT, tile)

    # pad if we wanted a bigger region
    if pad_left > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_left), dtype=plane.dtype)
        plane = hstack((pad_data, plane))
    if pad_right > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_right), dtype=plane.dtype)
        plane = hstack((plane, pad_data))
    if pad_top > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_top, data_w), dtype=plane.dtype)
        plane = vstack((pad_data, plane))
    if pad_bottom > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_bottom, data_w), dtype=plane.dtype)
        plane = vstack((plane, pad_data))

    pil = numpyToImage(plane)
    #pil.show()

    # Now need to rotate so that x1,y1 is horizontally to the left of x2,y2
    toRotate = 90 - math.degrees(rads)

    if x1 > x2:
        toRotate += 180
    # filter=Image.BICUBIC see
    # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172449/
    rotated = pil.rotate(toRotate, expand=True)
    #rotated.show()

    # finally we need to crop to the length of the line
    length = int(math.sqrt(math.pow(lineX, 2) + math.pow(lineY, 2)))
    rotW, rotH = rotated.size
    cropX = (rotW - length) / 2
    cropX2 = cropX + length
    cropY = (rotH - lineW) / 2
    cropY2 = cropY + lineW
    cropped = rotated.crop((cropX, cropY, cropX2, cropY2))
    #cropped.show()
    return asarray(cropped)
def getLineData(pixels, x1, y1, x2, y2, lineW=2, theZ=0, theC=0, theT=0):
    """
    Grabs pixel data covering the specified line, and rotates it horizontally
    so that x1,y1 is to the left,
    Returning a numpy 2d array. Used by Kymograph.py script.
    Uses PIL to handle rotating and interpolating the data. Converts to numpy
    to PIL and back (may change dtype.)

    @param pixels:          PixelsWrapper object
    @param x1, y1, x2, y2:  Coordinates of line
    @param lineW:           Width of the line we want
    @param theZ:            Z index within pixels
    @param theC:            Channel index
    @param theT:            Time index
    """

    from numpy import asarray

    sizeX = pixels.getSizeX()
    sizeY = pixels.getSizeY()

    lineX = x2-x1
    lineY = 1 if y2-y1 == 0 else y2-y1

    rads = math.atan(float(lineX) / lineY)

    # How much extra Height do we need, top and bottom?
    extraH = abs(math.sin(rads) * lineW)
    bottom = int(max(y1, y2) + extraH/2)
    top = int(min(y1, y2) - extraH/2)

    # How much extra width do we need, left and right?
    extraW = abs(math.cos(rads) * lineW)
    left = int(min(x1, x2) - extraW)
    right = int(max(x1, x2) + extraW)

    # What's the larger area we need? - Are we outside the image?
    pad_left, pad_right, pad_top, pad_bottom = 0, 0, 0, 0
    if left < 0:
        pad_left = abs(left)
        left = 0
    x = left
    if top < 0:
        pad_top = abs(top)
        top = 0
    y = top
    if right > sizeX:
        pad_right = right - sizeX
        right = sizeX
    w = int(right - left)
    if bottom > sizeY:
        pad_bottom = bottom - sizeY
        bottom = sizeY
    h = int(bottom - top)
    tile = (x, y, w, h)

    # get the Tile
    plane = pixels.getTile(theZ, theC, theT, tile)

    # pad if we wanted a bigger region
    if pad_left > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_left), dtype=plane.dtype)
        plane = hstack((pad_data, plane))
    if pad_right > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_right), dtype=plane.dtype)
        plane = hstack((plane, pad_data))
    if pad_top > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_top, data_w), dtype=plane.dtype)
        plane = vstack((pad_data, plane))
    if pad_bottom > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_bottom, data_w), dtype=plane.dtype)
        plane = vstack((plane, pad_data))

    pil = numpyToImage(plane)
    # pil.show()

    # Now need to rotate so that x1,y1 is horizontally to the left of x2,y2
    toRotate = 90 - math.degrees(rads)

    if x1 > x2:
        toRotate += 180
    # filter=Image.BICUBIC see
    # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172449/
    rotated = pil.rotate(toRotate, expand=True)
    # rotated.show()

    # finally we need to crop to the length of the line
    length = int(math.sqrt(math.pow(lineX, 2) + math.pow(lineY, 2)))
    rotW, rotH = rotated.size
    cropX = (rotW - length)/2
    cropX2 = cropX + length
    cropY = (rotH - lineW)/2
    cropY2 = cropY + lineW
    cropped = rotated.crop((cropX, cropY, cropX2, cropY2))
    # cropped.show()
    return asarray(cropped)
Exemplo n.º 29
0
def lineMagnitude(x1, y1, x2, y2):
    lineMagnitude = np.math.sqrt(
        np.math.pow((x2 - x1), 2) + math.pow((y2 - y1), 2))
    return lineMagnitude
Exemplo n.º 30
0
    def vinc_dir(f, a, coordinate_a, alpha12, s):
        """

        Returns the lat and long of projected point and reverse azimuth
        given a reference point and a distance and azimuth to project.
        lats, longs and azimuths are passed in decimal degrees
        Returns ( phi2,  lambda2,  alpha21 ) as a tuple

        """

        phi1, lambda1 = coordinate_a.lat, coordinate_a.lon
        piD4 = math.atan(1.0)
        two_pi = piD4 * 8.0
        phi1 = phi1 * piD4 / 45.0
        lambda1 = lambda1 * piD4 / 45.0
        alpha12 = alpha12 * piD4 / 45.0
        if alpha12 < 0.0:
            alpha12 += two_pi
        if alpha12 > two_pi:
            alpha12 -= two_pi

        b = a * (1.0 - f)
        tan_u1 = (1 - f) * math.tan(phi1)
        u1 = math.atan(tan_u1)
        sigma1 = math.atan2(tan_u1, math.cos(alpha12))
        sin_alpha = math.cos(u1) * math.sin(alpha12)
        cos_alpha_sq = 1.0 - sin_alpha * sin_alpha
        u2 = cos_alpha_sq * (a * a - b * b) / (b * b)

        # @todo: look into replacing A and B with vincenty's amendment, see if speed/accuracy is good
        A = 1.0 + (u2 / 16384) * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
        B = (u2 / 1024) * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))

        # Starting with the approx
        sigma = (s / (b * A))
        last_sigma = 2.0 * sigma + 2.0  # something impossible

        # Iterate the following 3 eqs unitl no sig change in sigma
        # two_sigma_m , delta_sigma
        while abs((last_sigma - sigma) / sigma) > 1.0e-9:
            two_sigma_m = 2 * sigma1 + sigma
            delta_sigma = B * math.sin(sigma) * (math.cos(two_sigma_m) + (B / 4) * (math.cos(sigma) *
                                                                                    (-1 + 2 * math.pow(
                                                                                        math.cos(two_sigma_m), 2) -
                                                                                     (B / 6) * math.cos(two_sigma_m) *
                                                                                     (-3 + 4 * math.pow(math.sin(sigma),
                                                                                                        2)) *
                                                                                     (-3 + 4 * math.pow(
                                                                                         math.cos(two_sigma_m), 2)))))
            last_sigma = sigma
            sigma = (s / (b * A)) + delta_sigma

        phi2 = math.atan2((math.sin(u1) * math.cos(sigma) + math.cos(u1) * math.sin(sigma) * math.cos(alpha12)),
                          ((1 - f) * math.sqrt(math.pow(sin_alpha, 2) +
                                               pow(math.sin(u1) * math.sin(sigma) - math.cos(u1) * math.cos(
                                                   sigma) * math.cos(alpha12), 2))))

        lmbda = math.atan2((math.sin(sigma) * math.sin(alpha12)), (math.cos(u1) * math.cos(sigma) -
                                                                   math.sin(u1) * math.sin(sigma) * math.cos(alpha12)))

        C = (f / 16) * cos_alpha_sq * (4 + f * (4 - 3 * cos_alpha_sq))
        omega = lmbda - (1 - C) * f * sin_alpha * (sigma + C * math.sin(sigma) *
                                                   (math.cos(two_sigma_m) + C * math.cos(sigma) *
                                                    (-1 + 2 * math.pow(math.cos(two_sigma_m), 2))))

        lambda2 = lambda1 + omega
        alpha21 = math.atan2(sin_alpha, (-math.sin(u1) * math.sin(sigma) +
                                         math.cos(u1) * math.cos(sigma) * math.cos(alpha12)))

        alpha21 += two_pi / 2.0
        if alpha21 < 0.0:
            alpha21 += two_pi
        if alpha21 > two_pi:
            alpha21 -= two_pi

        phi2 = phi2 * 45.0 / piD4
        lambda2 = lambda2 * 45.0 / piD4
        alpha21 = alpha21 * 45.0 / piD4
        return Coordinate(lat=phi2, lon=lambda2), alpha21
Exemplo n.º 31
0
def frequency(steps, start=-9, base=440.0):
    return base * math.pow(2.0, (start + steps) / 12.0)
Exemplo n.º 32
0
def FEM_1order_Solver (preProcData):
    print ('Solving...')
    timeStart=time.time()

#===============================================================================
# Initial data
#===============================================================================
    shapeFunctions=ShapeFuncions()
    gradN=shapeFunctions.grad_nod_tri_1order()
    mu0=4*np.pi*math.pow(10, -7)
    
#------------------------------------------------------------------------------
# Pre-processor
    meshData=preProcData.MeshData
    elemNodes= meshData.ElemNodes
    nodesCoordenates=meshData.NodesCoordenates
    elemTags=meshData.ElemTags
    elemType=meshData.ElemType
    n=len(nodesCoordenates)

#------------------------------------------------------------------------------
# Materials library
    materialProp=preProcData.MaterialProp
    
#------------------------------------------------------------------------------
# Setup
    regionMaterial=preProcData.RegionMaterial
    regionExcitation=preProcData.RegionExcitation
    boundary=preProcData.BC
    
#===============================================================================
#Integration points for Gauss method
#===============================================================================
    u=np.array([1.0/6.0,2.0/3.0,1.0/6.0])
    v=np.array([1.0/6.0,1.0/6.0,2.0/3.0])
    w=1.0/6.0;
    qtdNumInted=3
    Integdudv=0.5
    
#===============================================================================
# Global Matrix initialization
#===============================================================================
    MatGlobal_esq=np.zeros((n,n))
    MatGlobal_dir=np.zeros((n,1))


#===============================================================================
# Main loop over the elements
#===============================================================================
    for k in range (0,len(elemTags)):
        if elemType[k]==2:
    
#------------------------------------------------------------------------------
# Element material propriety
            prop=0
            elemMatProperties=0
            for eachRegion in regionMaterial:
                if eachRegion.RegionNumber==elemTags[k][0]:
                    materialName=eachRegion.MaterialName
                    elemMatProperties=materialProp[materialName].Permeability
                    break
            prop=1.0/(mu0*elemMatProperties)
#------------------------------------------------------------------------------
# Nodes coordinates
            nodes=[]
            nodes.append(elemNodes[k][0])
            nodes.append(elemNodes[k][1])
            nodes.append(elemNodes[k][2])
            
            coordJ=np.array([[nodesCoordenates[nodes[0]][0], nodesCoordenates[nodes[0]][1]],
                             [nodesCoordenates[nodes[1]][0], nodesCoordenates[nodes[1]][1]],
                             [nodesCoordenates[nodes[2]][0], nodesCoordenates[nodes[2]][1]]])

#------------------------------------------------------------------------------
# Jacobian
#            coordJ=coordJ.T
#            gradN=gradN.T
            operations=Operations()
            Jac=operations.get_jacobian_triangle(k,elemNodes,nodesCoordenates)
            invJac=np.linalg.inv(Jac)
            detJac=np.linalg.det(Jac)
            invJacGradN=invJac*gradN
    
#------------------------------------------------------------------------------
# Left side integral
            matLocal_esq=np.zeros((3,3))
            for pinteg in range(0,qtdNumInted):
                matLocal_esq=matLocal_esq+np.transpose(invJacGradN)*invJacGradN*detJac*Integdudv*w*prop
    
# Left side matrix assembling
            for im in range (0,3):
                for jm in range(0,3):
                    MatGlobal_esq[elemNodes[k][im],elemNodes[k][jm]]=MatGlobal_esq[elemNodes[k][im],elemNodes[k][jm]]+ matLocal_esq[im,jm]
    
#------------------------------------------------------------------------------
# Right side integral
            matLocal_dir=np.zeros((3,1))

# Get Js
            Js=0
            for eachregion in regionExcitation:
                if eachregion.RegionNumber==elemTags[k][0]:
                    Js=eachregion.Value
                    break
    
# Right side integral    
            for pinteg in range(0,qtdNumInted):
                uinteg=u[pinteg]
                vinteg=v[pinteg]
                N_prim=shapeFunctions.Nod_Tri_1order(uinteg, vinteg)
                matLocal_dir=matLocal_dir+detJac*Integdudv*w*Js*np.transpose(N_prim)
    
# Right side matrix assembling
            for im in range (0,3):
                MatGlobal_dir[elemNodes[k][im],0]=MatGlobal_dir[elemNodes[k][im],0]+matLocal_dir[im,0]
    
    
#===============================================================================
# Boundary conditions
#===============================================================================
# Get values
    nodesBC = GetBCs(elemNodes, elemTags, boundary)
                    
# Apply values
    for eachNodeBC in nodesBC:
        MatGlobal_esq[eachNodeBC,:]=np.zeros(n)
        MatGlobal_esq[eachNodeBC,eachNodeBC]=1.0
        MatGlobal_dir[eachNodeBC]=nodesBC[eachNodeBC]

#===============================================================================
# Linear system
#===============================================================================
    results=np.linalg.solve(MatGlobal_esq,MatGlobal_dir)

#===============================================================================
# Time control
#===============================================================================

    timeEnd=time.time()
    dtime=timeEnd-timeStart
    print ('Solved in '+ str(dtime)+'ms')
    
#===============================================================================
# Save the results
#===============================================================================
    write_file("resultsFile",results,'Results')
Exemplo n.º 33
0
def convert_size(size_bytes):
    if size_bytes == 0:
        return "0B"  # pragma: no cover
    size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
    i = int(math.floor(math.log(size_bytes, 1024)))
    return "%s %s" % (int(size_bytes / math.pow(1024, i)), size_name[i])
Exemplo n.º 34
0
def convert_size(size_bytes):
    if size_bytes == 0:
        return "0B"  # pragma: no cover
    size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
    i = int(math.floor(math.log(size_bytes, 1024)))
    return "%s %s" % (int(size_bytes / math.pow(1024, i)), size_name[i])
 def __get_differentiation_control_factor(self, t):
     exp = 1 - (self.max_efos / (self.max_efos - t))
     w = math.pow(_e, exp)
     r = round(random.uniform(0, 1), 2)
     return F0 + F1 * math.pow(2, w) * r
Exemplo n.º 36
0
from numpy import math
a=7
b=67
d=118
c=math.pow(a,b)
print(c+d)

Exemplo n.º 37
0
def get_line_data(image, x1, y1, x2, y2, line_w=2, the_z=0, the_c=0, the_t=0):
    """
    Grab pixel data covering the specified line, and rotates it horizontally.

    Uses current rendering settings and returns 8-bit data.
    Rotates it so that x1,y1 is to the left,
    Returning a numpy 2d array. Used by Kymograph.py script.
    Uses PIL to handle rotating and interpolating the data. Converts to numpy
    to PIL and back (may change dtype.)

    @param pixels:          PixelsWrapper object
    @param x1, y1, x2, y2:  Coordinates of line
    @param line_w:          Width of the line we want
    @param the_z:           Z index within pixels
    @param the_c:           Channel index
    @param the_t:           Time index
    """
    size_x = image.getSizeX()
    size_y = image.getSizeY()

    line_x = x2 - x1
    line_y = y2 - y1

    rads = math.atan2(line_y, line_x)

    # How much extra Height do we need, top and bottom?
    extra_h = abs(math.sin(rads) * line_w)
    bottom = int(max(y1, y2) + extra_h / 2)
    top = int(min(y1, y2) - extra_h / 2)

    # How much extra width do we need, left and right?
    extra_w = abs(math.cos(rads) * line_w)
    left = int(min(x1, x2) - extra_w)
    right = int(max(x1, x2) + extra_w)

    # What's the larger area we need? - Are we outside the image?
    pad_left, pad_right, pad_top, pad_bottom = 0, 0, 0, 0
    if left < 0:
        pad_left = abs(left)
        left = 0
    x = left
    if top < 0:
        pad_top = abs(top)
        top = 0
    y = top
    if right > size_x:
        pad_right = right - size_x
        right = size_x
    w = int(right - left)
    if bottom > size_y:
        pad_bottom = bottom - size_y
        bottom = size_y
    h = int(bottom - top)

    # get the Tile - render single channel white
    image.set_active_channels([the_c + 1], None, ['FFFFFF'])
    jpeg_data = image.renderJpegRegion(the_z, the_t, x, y, w, h)
    pil = Image.open(StringIO(jpeg_data))

    # pad if we wanted a bigger region
    if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0:
        img_w, img_h = pil.size
        new_w = img_w + pad_left + pad_right
        new_h = img_h + pad_top + pad_bottom
        canvas = Image.new('RGB', (new_w, new_h), '#ff0000')
        canvas.paste(pil, (pad_left, pad_top))
        pil = canvas

    # Now need to rotate so that x1,y1 is horizontally to the left of x2,y2
    to_rotate = math.degrees(rads)

    # filter=Image.BICUBIC see
    # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172449/
    rotated = pil.rotate(to_rotate, expand=True)

    # finally we need to crop to the length of the line
    length = int(math.sqrt(math.pow(line_x, 2) + math.pow(line_y, 2)))
    rot_w, rot_h = rotated.size
    crop_x = (rot_w - length) / 2
    crop_x2 = crop_x + length
    crop_y = (rot_h - line_w) / 2
    crop_y2 = crop_y + line_w
    cropped = rotated.crop((crop_x, crop_y, crop_x2, crop_y2))

    # return numpy array
    rgb_plane = asarray(cropped)
    # greyscale image. r, g, b all same. Just use first
    return rgb_plane[::, ::, 0]
Exemplo n.º 38
0
def doGaussNewton_ref(param_value,
                      param_range,
                      UM_value,
                      obs,
                      cov,
                      scalings,
                      olist,
                      constraint,
                      studyJSON,
                      trace=False):
    """ 
    Reference version of doGaaussNewton -- Kuniko's orginal version. This allows 
    Easy comparision between Kuniko's original code and re-enginnered code.
    
    the function doGaussNewton_ref does the  calculation for the n+1 initial runs in an iteration,
    and can be invoked from (usually) the class GaussNewton, using data from studies, or from
    test python scripts for arbitrary inputs
 
    :param param_value: array of parameter values
    :param param_range: array of max/min of range for each parameter in order
    :param UM_value: array of simulated observables
    :param obs: array of target values
    :param cov: covariance array (header defines the observables in use) TODO inconsistent with use of constraint_target in JSON file?
    :param scalings: observables are related arrays get scaled before statistical analysis
    :param olist: name of the observables - probabaly unused except perhaps in diagnostic
    :param constraint: TODO what is this?? 
    :param studyJSON The complete dictionary from the study's JSON of which
                     this function might lift simple values to give extensibility. 
    Other arguments have had some manipulation in reading the JSON (scalings, slist... to give correspondence across arrays)
    :param trace: turn on/off trace of what happening 
    :returns: yyT: array defining the next set of parameter values ## change the name of this to somethign sensible...
    :returns: err: error values associated with input set of observables, one err per run. 
    :returns outdict: dictionary of data destined for json file
    """
    #     Through out code use the following is used:
    #    n - no. parameters # change to nParam
    #    m - no. observables # change to nObs
    # TODO:  replace has_key(x) throughout with x in dict

    # get constants from JSON's directory:

    alphas = studyJSON['alphas']
    terminus = studyJSON['terminus']
    # optional ones....
    if studyJSON.has_key("sigma"):
        sigma = studyJSON['sigma']
    else:
        sigma = 0

    if (sigma != 0):
        ## need constraint_target  and if not fail.
        if studyJSON.has_key("constraint_target"):
            constraint_target = studyJSON['constraint_target']
        else:
            sys.exit("Please specifiy constraint_target when sigma != 0."
                     )  ## exit with error
## get the mu value
    if studyJSON.has_key("mu"):
        mu = studyJSON['mu']
    else:
        mu = 1

    m = len(obs)
    n = len(param_value[0, :])

    # include constraint
    coef1 = 1. / (m + sigma)
    coef2 = sigma / ((m + 1) * (2. * mu))

    if sigma == 0:
        constraint = zeros(n + 1)  # TODO make np.zeros
        constraint[:] = 0.  # todo Unnesc
    else:  # sigma != 0 so have constraint..
        use_constraint = constraint.copy(
        ) - constraint_target  #TODO what this doing?

## print out some info if trace on
    if trace:
        print "Version is ", version
        #        print 'constraint.shape()=',constraint
        #        print 'constraint_target=',constraint_target
        print " n %d m %d \n" % (n, m)
        print "param_range"
        print param_range

    na = len(alphas)  # TODO na->nAlphas or nLineSearchRuns

    optStatus = "Continue"  # default optStatus

    # transpose arrays TODO -remove transpose and just do calculations directly
    param_valueT = transpose(param_value)

    param_rangeT = transpose(param_range)
    UM_valueT = transpose(UM_value)

    if trace:
        print "UM_valueT", UM_valueT

    # scale observables, observations and covariance matrix
    # TODO replace with UM_value=UM_value*scalings taking advantage of broadcasting.
    # and
    s_UM_valueT = UM_valueT.copy()
    for i in range(n + 1):  # CHANGED FROM m
        s_UM_valueT[:, i] = UM_valueT[:, i] * scalings

    s_obs = obs * scalings  # leave

    if trace:
        print "obs"
        print zip(olist, zip(obs, scalings))
        print zip(olist, s_obs)

    # TOD cov=cov*np.outer(scalings,scalings)
    for i in range(m):
        cov[:, i] = cov[:, i] * scalings  # scale rows

    cov = cov * scalings  # using broadcasting to scale columns?

    ## now want to regularize s_cov though should be done after constraint included.
    if 'covar_cond' in studyJSON and studyJSON[
            'covar_cond'] is not None:  # specified a condition number for the covariance matrix
        cov = regularize_cov_ref(cov, studyJSON['covar_cond'], trace=trace)

    # constraint C_bar
    s_cov_constraint = zeros((m + 1, m + 1))
    covT = linalg.inv(
        cov)  # TODO replace with pseudo inverse and call it covInv
    #TODO  move all stuff with constraint together and check theory too.
    #TODO merge constraint into simulated and observed vector/matrix
    s_cov_constraint[0:m, 0:m] = coef1 * covT
    s_cov_constraint[m, m] = coef2

    if trace:
        print "Scaled and regularized cov"
        print cov

    UM = s_UM_valueT[:, 0]
    # commented out by SFBT
    #    param_min = param_rangeT[ 1, : ]
    #
    #
    #    param_max = param_rangeT[ 0, : ]
    ## ADDED by SFBT
    param_min = param_rangeT[0, :]
    param_max = param_rangeT[1, :]
    if trace:
        print "param_rangeT"
        print param_rangeT
        print "param_min"
        print param_min
        print "param_max"
        print param_max

## TODO -- scale from 1 to 10 based on param_min and param_max
## param_scale=(param-param_min)/(param_max-param_min)*9+1
## NB this will change the results so do after all tests passed.
    param_scale = ones((n))

    for i in range(n):
        tmp = fabs(param_valueT[i, 0]) * param_scale[i]
        ##tmp = fabs(param_value[ 0, i ]) * param_scale[i]
        while tmp < 1:
            param_scale[i] = param_scale[i] * 10
            tmp = tmp * 10

## TODO clean JACOBIAN calculation
## DO NOT TRANSPOSE JACOBIAN!!!
    Jacobian = zeros((m, n))
    ##Jacobian = zeros( (n,m) ) # TODO -- remove commented code.
    ##Jacobian = zeros( (m,n) )

    # constraint Jacobian_bar
    Jacobian_constraint = zeros((m + 1, n))

    for i in range(n):
        ##Jacobian[ :, i ] = (UM_valueT[ :,i+1 ] - UM) \
        Jacobian[ :, i ] = (s_UM_valueT[ :,i+1 ] - UM) \
        /((param_valueT[ i,i+1 ]-param_valueT[ i,0 ])*param_scale[ i ])
        ##Jacobian[ : , i ] = (UM_value[ i+1, : ] - UM) \
    ##/((param_value[ i+1, i ]-param_value[ 0, i ])*param_scale[ i ])

    # constraint Jacobian_bar
    Jacobian_constraint[0:m, :] = Jacobian
    for i in range(n):
        # 02/02/2015 changed below to incorporate TOA imbalance of 0.5 W/m^2
        #Jacobian_constraint[m,i] = (constraint[i+1]-constraint[0]) \
        Jacobian_constraint[m,i] = (use_constraint[i+1]-use_constraint[0]) \
         /((param_valueT[ i,i+1 ]-param_valueT[ i,0 ])*param_scale[ i ])

    F = UM - s_obs  # This is difference of previous best case from obs
    ##F = UM - obs
    # TODO understand what this is doing.
    # constraint r_bar
    F_constraint = zeros(m + 1)
    F_constraint[0:m] = F
    F_constraint[m] = use_constraint[0]

    if trace:
        print "Jacobian before transpose"
        print Jacobian

##    save("Jacobian",Jacobian)
## read with j= np.load("Jacobian.npy")
##TODO figure out what happens if no constraint
    JacobianT = Jacobian.transpose()

    # constraint J_bar T
    Jacobian_constraintT = Jacobian_constraint.transpose()

    ## 29/09/2014
    ## modified  below to take account of cov in r & henceforth Jacobian
    if len(cov) == 0:
        J = dot(JacobianT, Jacobian)
    else:
        # constraint approximate Hessian of f(x)
        dum = dot(Jacobian_constraintT, s_cov_constraint)
        J = dot(dum, Jacobian_constraint)

    if trace:
        print "after dot, J is "
        print J

##    save("dottedJ",J)
## TOD clean regularisation up, rename J to hessian
    perJ = J

    if trace:
        print 'm, linalg.matrix_rank(perJ)', m, linalg.matrix_rank(perJ)

    con = linalg.cond(J)
    k = 8
    eye = identity(n)

    if trace:  ## SFBT added to reference doGaussNewton
        print "con %e k %d" % (con, k)
    while con > 10e10:
        if k >= 4:
            k = k - 1
            perJ = J + math.pow(10, -k) * eye
            con = linalg.cond(perJ)
            if trace:
                print "conREF %e k %d" % (con, k)
        # 11/05/2015 if con does not ge small enough quit w/ message
        # 22/04/2015 if con does not ge small enough
        else:
            print "regularisation insufficient, stopping: con %e k %d" % (con,
                                                                          k)
            optStatus = "Fatal"
            dictionary = {"jacobian": Jacobian, "hessian": J, "condnum": con}
            return optStatus, None, None, None, dictionary
            ## calculate eval_min, eval_max, eval_star
            #eval_max, evec_max = eigs(J, k=1, which='LM')
            #eval_min, evec_min = eigs(J, k=1, sigma=0, which='LM')
            #eval_star = eval_max*10.**(-10) - eval_min
            #perJ = J + eval_star*eye
            #con = linalg.cond(perJ)
            #print "con %e eval_min %e eval_star %e k %d"%(con, eval_min, eval_star, k)
            # 22/04/2015 break out of the while loop
            #break

    J = perJ

    ## 29/09/2014
    ## modified below to take account of cov in r & henceforth Jacobian
    #tmp = dot(JTcovT,F)
    # constraint approximate Jacobian of f(x)
    tmp = dot(dum,
              F_constraint)  # TODO look at maths and understand this line.
    ##tmp = dot(JacobianT,F)

    s = -linalg.solve(J, tmp)  # work out direction to go in.

    if trace:
        fn_label = 'DOGN_REF'
        print fn_label + ": hessian =", np.round(J, 2)
        print fn_label + ": J^T C^-1 F =  ", np.round(
            Jacobian_constraintT.dot(s_cov_constraint).dot(F_constraint), 2)
        print fn_label + ": s=", s

    x = param_scale * param_valueT[:, 0]

    # err & constrained err
    nsize = n + 1
    nloop = n + 1
    ioffset = 0
    err, err_constraint = calcErr_ref(s_UM_valueT, s_obs, covT, use_constraint,
                                      coef1, coef2, nsize, nloop, ioffset)
    ## TODO work with scaled parameters throughout
    test_max = param_max * param_scale
    test_min = param_min * param_scale
    y = zeros((na, n))
    ##y = zeros( (n,na) )
    ## deal with boundaries TODO use numpy stuff to avoid loops.
    for i in range(na):
        ##y[ i,: ] = x + math.pow(0.1,i)*s
        y[i, :] = x + alphas[i] * s
        ##y[ :, i ] = x + math.pow(0.1,i)*s
        for j in range(n):
            if y[i, j] > test_max[j]:
                y[i, j] = test_max[j]
            elif y[i, j] < test_min[j]:
                y[i, j] = test_min[j]
            else:
                y[i, j] = y[i, j]
            ##if y[ j, i] > test_max[j]:
            ##    y[ j, i] = test_max[j]
            ##elif y[ j, i] < test_min[j]:
            ##    y[ j, i] = test_min[j]
            ##else:
            ##    y[ j, i] = y[ j, i]

    yy = y
    for i in range(na):
        ##for i in range(m):
        yy[i, :] = y[i, :] / param_scale
        ##yy[ : , i] = y[ :, i]/param_scale

    # transpose backward
    yyT = transpose(yy)

    ################################ snip ################################
    dictionary = {
        "jacobian": Jacobian,
        "hessian": J,
        "condnum": con,
        "objfn_GN": err,
        'InvCov': covT
    }
    dictionary['software'] = version

    # hack for time being: output in files
    date = datetime.now()
    sdate = date.strftime('%d-%m-%Y_%H:%M:%S')
    outdir = './'  # with /exports/work/geos_cesd_workspace/OptClim/Data/kytest/
    # the framework fails.
    # This puts files in the iteration directory,
    # or if you are runnign standalone tests, to the directory you are in.

    #    outfile = outdir+'jacob_'+sdate+'.dat'
    #    save(outfile,Jacobian)
    #
    #    outfile = outdir+'hessi_'+sdate+'.dat'
    #    save(outfile,J)
    #
    #    outfile = outdir+'parav_'+sdate+'.dat'
    #    save(outfile,param_value)
    #
    #    outfile = outdir+'condn_'+sdate+'.txt'
    #    f = open(outfile,'w')
    #    f.write(str(con)+'\n')
    #    f.close()
    ################################ snip ################################

    #return yyT,err,dictionary
    # constraint err
    return optStatus, yyT, err, err_constraint, dictionary
Exemplo n.º 39
0
def extract_check_calc_specific_sites(recalc_data_oxides_cats_OX_list):

    print(
        "\n\tFORMULA=> extract_check_calc_specific_sites(recalc_data_oxides_cats_OX__list)"
    )

    print("\t\tDEVO SEPARARE PER LISTE DI MINERALE")
    print("\t\t\tPER OGNI LISTA DI MINERALE FARE I CALCOLI")
    print("\t\t\t\tRITORNARE LISTE DI LISTE DI MINERALI CON specific sites")
    print()

    a_args = []

    print(recalc_data_oxides_cats_OX_list)

    lista = []
    for each_analysis in recalc_data_oxides_cats_OX_list:

        lista.append(each_analysis)
    print("LISTA ", lista)

    for l in lista:
        print("l: ", l)
        if l['mineral'] not in a_args:
            a_args += [l['mineral']]

            new_list = [[]] * len(a_args)

    dict_of_list = {}
    for i in range(len(a_args)):

        for l in [l for l in lista if l['mineral'] == a_args[i]]:
            new_list[i] = new_list[i] + [l]

            sublist_list = new_list[i]

        dict_of_list[a_args[i]] = sublist_list

    for mine, value in dict_of_list.items():

        print("\nmineral group = ", mine, 'is: ', value)
        global zzz
        zzz = 100.00001

        if mine == 'grt':
            #GARNET#
            for single in value:
                alm = single['Fe2'] / (single['Fe2'] + single['Mg'] +
                                       single['Ca'] + single['Mn'])
                py = single['Mg'] / (single['Fe2'] + single['Mg'] +
                                     single['Ca'] + single['Mn'])
                gr = single['Ca'] / (single['Fe2'] + single['Mg'] +
                                     single['Ca'] + single['Mn'])
                sps = single['Mn'] / (single['Fe2'] + single['Mg'] +
                                      single['Ca'] + single['Mn'])
                XFe = single['Fe2'] / (single['Fe2'] + single['Mg'])
                XMg = single['Mg'] / (single['Fe2'] + single['Mg'])
                '''
                Fe3+ = 2*X*(1-T/S)
                X=>oxigens in formula
                T=>ideal number of cations
                S=>observed cations
                '''
                if 'Fe3' in single:
                    print("good to know")
                    pass
                else:
                    print("CATTTIONI SUM GRT: ", single['SUMcat'])
                    Fe3 = 2 * 12 * (1 - 8 / single['SUMcat'])
                    single.update({'Fe3': round(Fe3, 3)})
                    pass
                single.update({'alm': round(alm, 3)})
                single.update({'py': round(py, 3)})
                single.update({'gr': round(gr, 3)})
                single.update({'sps': round(sps, 3)})
                single.update({'XFe': round(XFe, 3)})
                single.update({'XMg': round(XMg, 3)})

                print("every mineral analysis: ", single, "")

        elif mine == 'amph':
            #AMPH#
            for single in value:
                if 8 - single['Si'] > 0:
                    aliv = 8 - single['Si']
                else:
                    aliv = 0
                single.update({'aliv': aliv})

                alvi = single['Al'] - aliv
                single.update({'alvi': round(alvi, 3)})

                single.update({'T': zzz})

                if 'Fe3' in single:
                    print("good to know")
                    pass
                else:
                    print("CATTTIONI SUM: ", single['SUMcat'])
                    Fe3 = 2 * 12 * (1 - 8 / single['SUMcat'])
                    single.update({'Fe3': round(Fe3, 3)})
                    pass

                print("every mineral analysis: ", single, "")

        elif mine == 'px':
            #PYROXENE#
            for single in value:
                if 2 - single['Si'] > 0:
                    aliv = 2 - single['Si']
                else:
                    aliv = 0
                single.update({'aliv': round(aliv, 3)})

                alvi = single['Al'] - aliv
                single.update({'alvi': round(alvi, 3)})

                jd1 = single['Na'] * 2
                single.update({'jd1': round(jd1, 3)})

                if single['alvi'] > (single['Na'] + single['K']):
                    jd2 = single['alvi']
                else:
                    jd2 = single['Na'] + single['K']
                single.update({'jd2': round(jd2, 3)})

                if single['alvi'] > (single['Na'] + single['K']):
                    acm = single['Na'] + single['K'] - single['alvi']
                else:
                    acm = 0

                single.update({'acm': round(acm, 3)})

                if 'Fe3' in single:
                    print("good to know")
                    pass
                else:
                    print("CATTTIONI SUM: ", single['SUMcat'])
                    Fe3 = 2 * 12 * (1 - 8 / single['SUMcat'])
                    single.update({'Fe3': round(Fe3, 3)})
                    pass

                if (single['Fe3'] + single['Cr']) / 2 > single['acm']:
                    CaFeTs = (single['Fe3'] + single['Cr']) / 2
                else:
                    CaFeTs = 0
                single.update({'CaFeTs': round(CaFeTs, 3)})

                CaTiTs = single['Ti']
                single.update({'CaTiTs': round(CaTiTs, 3)})

                if ((single['aliv'] + single['alvi'] - single['jd2'] -
                     2 * single['Ti']) / 2) > 0:
                    CaTs = (single['aliv'] + single['alvi'] - single['jd2'] -
                            2 * single['Ti']) / 2
                else:
                    CaTs = 0
                single.update({'CaTs': CaTs})

                if (single['Ca'] - single['CaFeTs'] - single['CaTiTs'] -
                        single['CaTs']) > 0:
                    woll = single['Ca'] - single['CaFeTs'] - single[
                        'CaTiTs'] - single['CaTs']
                else:
                    woll = 0

                single.update({'woll': round(woll, 3)})

                if 'Ni' in single.keys():
                    en = (single['Mg'] + single['Ni']) / 2
                else:
                    en = (single['Mg'])
                single.update({'en': round(en, 3)})

                fs = (single['Mn'] + single['Fe2']) / 2
                single.update({'fs': round(fs, 3)})

                print("every mineral analysis: ", single, "")

        elif mine == 'bt':
            for single in value:

                #single.update({'Jdddd':zzz})
                print("every mineral analysis: ", single, "")
                #print("TIIIII: ", single['Ti'])
                #global T_henry2005
                if (single['Ti'] > 0.06 and single['Ti'] < 0.6):
                    #print("TIIIIIAAA: ", single['Ti'])
                    b = 4.6482E-09
                    a = -2.3594
                    #b = 4648200000
                    c = -1.7283
                    lnTi = round(math.log(single['Ti']), 3)
                    xmg = round(single['Mg'] / (single['Mg'] + single['Fe2']),
                                3)

                    print("lnTi ", lnTi)
                    print("xmg ", xmg)

                    primo = lnTi
                    secondo = a
                    terzo = round(c * (math.pow(xmg, 3)), 3)

                    print("terzo", terzo)

                    quarto = round((primo - secondo - terzo), 3)

                    quinto = round((quarto / b), 3)
                    print("quarto ", quarto)
                    print("quinto", quinto)

                    if quinto > 0:
                        finale = math.pow(quinto, 0.333)

                        T_henry2005 = finale

                    else:
                        print(
                            "cannot use Henry's calibration, see original paper"
                        )
                        single.update({'T_henry2005': 'OutOf_XMg_Range'})
                        pass
                else:
                    print("cannot use Henry's calibration, see original paper")
                    single.update({'T_henry2005': 'OutOf_Ti_Range'})
                    pass

                if (T_henry2005 > 400 and T_henry2005 < 800):
                    single.update({'T_henry2005': round(T_henry2005, 3)})
                else:
                    print("cannot use Henry's calibration, see original paper")
                    single.update({'T_henry2005': 'OutOf_T_Range'})

    return dict_of_list  ##LISTE_DI_LISTE_DI_MINERALI_CON_specific_sites
Exemplo n.º 40
0
 def euclidean(x1, x2):
     return math.sqrt(
         math.pow(x1[0] - x2[0], 2) + math.pow(x1[1] - x2[1], 2))
Exemplo n.º 41
0
def get_line_data(pixels, x1, y1, x2, y2, line_w=2, the_z=0, the_c=0, the_t=0):
    """
    Grabs pixel data covering the specified line, and rotates it horizontally
    so that x1,y1 is to the left,
    Returning a numpy 2d array. Used by Kymograph.py script.
    Uses PIL to handle rotating and interpolating the data. Converts to numpy
    to PIL and back (may change dtype.)

    @param pixels:          PixelsWrapper object
    @param x1, y1, x2, y2:  Coordinates of line
    @param line_w:          Width of the line we want
    @param the_z:           Z index within pixels
    @param the_c:           Channel index
    @param the_t:           Time index
    """

    size_x = pixels.getSizeX()
    size_y = pixels.getSizeY()

    line_x = x2 - x1
    line_y = y2 - y1

    rads = math.atan(float(line_x) / line_y)

    # How much extra Height do we need, top and bottom?
    extra_h = abs(math.sin(rads) * line_w)
    bottom = int(max(y1, y2) + extra_h / 2)
    top = int(min(y1, y2) - extra_h / 2)

    # How much extra width do we need, left and right?
    extra_w = abs(math.cos(rads) * line_w)
    left = int(min(x1, x2) - extra_w)
    right = int(max(x1, x2) + extra_w)

    # What's the larger area we need? - Are we outside the image?
    pad_left, pad_right, pad_top, pad_bottom = 0, 0, 0, 0
    if left < 0:
        pad_left = abs(left)
        left = 0
    x = left
    if top < 0:
        pad_top = abs(top)
        top = 0
    y = top
    if right > size_x:
        pad_right = right - size_x
        right = size_x
    w = int(right - left)
    if bottom > size_y:
        pad_bottom = bottom - size_y
        bottom = size_y
    h = int(bottom - top)
    tile = (x, y, w, h)

    # get the Tile
    plane = pixels.getTile(the_z, the_c, the_t, tile)

    # pad if we wanted a bigger region
    if pad_left > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_left), dtype=plane.dtype)
        plane = hstack((pad_data, plane))
    if pad_right > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_right), dtype=plane.dtype)
        plane = hstack((plane, pad_data))
    if pad_top > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_top, data_w), dtype=plane.dtype)
        plane = vstack((pad_data, plane))
    if pad_bottom > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_bottom, data_w), dtype=plane.dtype)
        plane = vstack((plane, pad_data))

    pil = script_utils.numpy_to_image(plane, (plane.min(), plane.max()), int32)

    # Now need to rotate so that x1,y1 is horizontally to the left of x2,y2
    to_rotate = 90 - math.degrees(rads)

    if x1 > x2:
        to_rotate += 180
    # filter=Image.BICUBIC see
    # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172449/
    rotated = pil.rotate(to_rotate, expand=True)
    # rotated.show()

    # finally we need to crop to the length of the line
    length = int(math.sqrt(math.pow(line_x, 2) + math.pow(line_y, 2)))
    rot_w, rot_h = rotated.size
    crop_x = (rot_w - length) / 2
    crop_x2 = crop_x + length
    crop_y = (rot_h - line_w) / 2
    crop_y2 = crop_y + line_w
    cropped = rotated.crop((crop_x, crop_y, crop_x2, crop_y2))
    return asarray(cropped)
Exemplo n.º 42
0
 def getHalfToneFreq(self, numHalfTones=0):
     return self.baseFreq * math.pow(math.pow(2, 1 / 12), numHalfTones)