Exemplo n.º 1
0
def map_angles(angles, period=None):
    """
    maps angles into interval [-pi,pi]
    """

    from numpy.oldnumeric import fmod, greater, logical_not

    if period is None:
        from numpy.oldnumeric import pi as period

    mask = greater(angles, 0.)

    return mask * (fmod(angles+period, 2*period)-period) + \
           logical_not(mask) * (fmod(angles-period, 2*period)+period)
Exemplo n.º 2
0
def map_angles(angles, period=None):
    """
    maps angles into interval [-pi,pi]
    """

    from numpy.oldnumeric import fmod, greater, logical_not

    if period is None:
        from numpy.oldnumeric import pi as period

    mask = greater(angles, 0.)

    return mask * (fmod(angles + period, 2 * period) - period) + \
        logical_not(mask) * (fmod(angles - period, 2 * period) + period)
Exemplo n.º 3
0
def concentricrings(x, y, white_thickness, gaussian_width, spacing):
    """
    Concetric rings with the solid ring-shaped region, then Gaussian fall-off at the edges.
    """

    # To have zero value in middle point this pattern calculates zero-value rings instead of
    # the one-value ones. But to be consistent with the rest of functions the parameters
    # are connected to one-value rings - like half_thickness is now recalculated for zero-value ring:
    half_thickness = ((spacing-white_thickness)/2.0)*greater_equal(spacing-white_thickness,0.0)

    distance_from_origin = sqrt(x**2+y**2)

    distance_from_ring_middle = fmod(distance_from_origin,spacing)
    distance_from_ring_middle = minimum(distance_from_ring_middle,spacing - distance_from_ring_middle)

    distance_from_ring = distance_from_ring_middle - half_thickness

    ring = 0.0 + greater_equal(distance_from_ring,0.0)

    sigmasq = gaussian_width*gaussian_width

    with float_error_ignore():
        falloff = exp(divide(-distance_from_ring*distance_from_ring, 2.0*sigmasq))

    return maximum(falloff,ring)
Exemplo n.º 4
0
    def function(self,params):
        """Archemidean spiral function."""

        aspect_ratio = params['aspect_ratio']
        x = self.pattern_x/aspect_ratio
        y = self.pattern_y
        thickness = params['thickness']
        gaussian_width = params['smoothing']
        size = params['size']

        half_thickness = thickness/2.0
        spacing = size*2*pi

        distance_from_origin = sqrt(x**2+y**2)
        distance_from_spiral_middle = fmod(spacing + distance_from_origin - size*arctan2(y,x),spacing)

        distance_from_spiral_middle = minimum(distance_from_spiral_middle,spacing - distance_from_spiral_middle)
        distance_from_spiral = distance_from_spiral_middle - half_thickness

        spiral = 1.0 - greater_equal(distance_from_spiral,0.0)

        sigmasq = gaussian_width*gaussian_width

        with float_error_ignore():
            falloff = exp(divide(-distance_from_spiral*distance_from_spiral, 2.0*sigmasq))

        return maximum(falloff, spiral)
Exemplo n.º 5
0
    def function(self,params):
        """Concentric rings."""

        aspect_ratio = params['aspect_ratio']
        x = self.pattern_x/aspect_ratio
        y = self.pattern_y
        thickness = params['thickness']
        gaussian_width = params['smoothing']
        size = params['size']

        half_thickness = thickness / 2.0

        distance_from_origin = sqrt(x**2+y**2)

        distance_from_ring_middle = fmod(distance_from_origin,size)
        distance_from_ring_middle = minimum(distance_from_ring_middle,size - distance_from_ring_middle)

        distance_from_ring = distance_from_ring_middle - half_thickness

        ring = 1.0 - greater_equal(distance_from_ring,0.0)

        sigmasq = gaussian_width*gaussian_width

        with float_error_ignore():
            falloff = exp(divide(-distance_from_ring*distance_from_ring, 2.0*sigmasq))

        return maximum(falloff, ring)
Exemplo n.º 6
0
    def function(self,params):
        """Hyperbolic function."""

        aspect_ratio = params['aspect_ratio']
        x = self.pattern_x/aspect_ratio
        y = self.pattern_y
        thickness = params['thickness']
        gaussian_width = params['smoothing']
        size = params['size']

        half_thickness = thickness / 2.0

        distance_from_vertex_middle = fmod(sqrt(absolute(x**2 - y**2)),size)
        distance_from_vertex_middle = minimum(distance_from_vertex_middle,size - distance_from_vertex_middle)

        distance_from_vertex = distance_from_vertex_middle - half_thickness

        hyperbola = 1.0 - greater_equal(distance_from_vertex,0.0)

        sigmasq = gaussian_width*gaussian_width

        with float_error_ignore():
            falloff = exp(divide(-distance_from_vertex*distance_from_vertex, 2.0*sigmasq))

        return maximum(falloff, hyperbola)
Exemplo n.º 7
0
def spiral(x, y, thickness, gaussian_width, density):
    """
    Archemidean spiral with Gaussian fall-off outside the spiral curve.
    """
    half_thickness = thickness/2.0
    spacing = density*2*pi

    distance_from_origin = sqrt(x**2+y**2)
    distance_from_spiral_middle = fmod(spacing + distance_from_origin - density*arctan2(y,x),spacing)

    distance_from_spiral_middle = minimum(distance_from_spiral_middle,spacing - distance_from_spiral_middle)
    distance_from_spiral = distance_from_spiral_middle - half_thickness

    spiral = 1.0 - greater_equal(distance_from_spiral,0.0)

    sigmasq = gaussian_width*gaussian_width

    with float_error_ignore():
        falloff = exp(divide(-distance_from_spiral*distance_from_spiral, 2.0*sigmasq))

    return maximum(falloff,spiral)
Exemplo n.º 8
0
    def draw(self):
        # XXX This method is not speed-optimized. I just wrote it to
        # get the job done. (Nonetheless, it seems faster than the C
        # version commented out above.)

        p = self.parameters  # shorthand
        if p.center is not None:
            if not hasattr(VisionEgg.config, "_GAVE_CENTER_DEPRECATION"):
                logger = logging.getLogger('VisionEgg.Dots')
                logger.warning("Specifying DotArea2D by deprecated "
                               "'center' parameter deprecated.  Use "
                               "'position' parameter instead.  (Allows "
                               "use of 'anchor' parameter to set to "
                               "other values.)")
                VisionEgg.config._GAVE_CENTER_DEPRECATION = 1
            p.anchor = 'center'
            p.position = p.center[0], p.center[
                1]  # copy values (don't copy ref to tuple)
        if p.on:
            # calculate center
            center = VisionEgg._get_center(p.position, p.anchor, p.size)

            if p.anti_aliasing:
                if len(p.color) == 4 and not self._gave_alpha_warning:
                    if p.color[3] != 1.0:
                        logger = logging.getLogger('VisionEgg.Dots')
                        logger.warning("The parameter anti_aliasing is "
                                       "set to true in the DotArea2D "
                                       "stimulus class, but the color "
                                       "parameter specifies an alpha "
                                       "value other than 1.0.  To "
                                       "acheive the best anti-aliasing, "
                                       "ensure that the alpha value for "
                                       "the color parameter is 1.0.")
                        self._gave_alpha_warning = 1
                gl.glEnable(gl.GL_POINT_SMOOTH)
                # allow max_alpha value to control blending
                gl.glEnable(gl.GL_BLEND)
                gl.glBlendFunc(gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA)
            else:
                gl.glDisable(gl.GL_BLEND)

            now_sec = VisionEgg.time_func()
            if self.start_times_sec is not None:
                # compute extinct dots and generate new positions
                replace_indices = Numeric.nonzero(
                    Numeric.greater(now_sec - self.start_times_sec,
                                    p.dot_lifespan_sec))
                Numeric.put(self.start_times_sec, replace_indices, now_sec)

                new_x_positions = RandomArray.uniform(0.0, 1.0,
                                                      (len(replace_indices), ))
                Numeric.put(self.x_positions, replace_indices, new_x_positions)

                new_y_positions = RandomArray.uniform(0.0, 1.0,
                                                      (len(replace_indices), ))
                Numeric.put(self.y_positions, replace_indices, new_y_positions)

                new_random_directions_radians = RandomArray.uniform(
                    0.0, 2 * math.pi, (len(replace_indices), ))
                Numeric.put(self.random_directions_radians, replace_indices,
                            new_random_directions_radians)
            else:
                # initialize dot extinction values to random (uniform) distribution
                self.start_times_sec = RandomArray.uniform(
                    now_sec - p.dot_lifespan_sec, now_sec,
                    (self.constant_parameters.num_dots, ))

            signal_num_dots = int(
                round(p.signal_fraction * self.constant_parameters.num_dots))
            time_delta_sec = now_sec - self.last_time_sec
            self.last_time_sec = now_sec  # reset for next loop
            x_increment_normalized = math.cos(
                p.signal_direction_deg / 180.0 * math.pi
            ) * p.velocity_pixels_per_sec / p.size[0] * time_delta_sec
            y_increment_normalized = -math.sin(
                p.signal_direction_deg / 180.0 * math.pi
            ) * p.velocity_pixels_per_sec / p.size[1] * time_delta_sec
            self.x_positions[:signal_num_dots] += x_increment_normalized
            self.y_positions[:signal_num_dots] += y_increment_normalized

            num_random_dots = self.constant_parameters.num_dots - signal_num_dots
            random_x_increment_normalized = Numeric.cos(
                self.random_directions_radians[signal_num_dots:]
            ) * p.velocity_pixels_per_sec / p.size[0] * time_delta_sec
            random_y_increment_normalized = -Numeric.sin(
                self.random_directions_radians[signal_num_dots:]
            ) * p.velocity_pixels_per_sec / p.size[1] * time_delta_sec
            self.x_positions[signal_num_dots:] += random_x_increment_normalized
            self.y_positions[signal_num_dots:] += random_y_increment_normalized

            self.x_positions = Numeric.fmod(self.x_positions, 1.0)  # wrap
            self.y_positions = Numeric.fmod(self.y_positions, 1.0)

            self.x_positions = Numeric.fmod(self.x_positions + 1,
                                            1.0)  # wrap again for values < 1
            self.y_positions = Numeric.fmod(self.y_positions + 1, 1.0)

            xs = (self.x_positions - 0.5) * p.size[0] + center[0]
            ys = (self.y_positions - 0.5) * p.size[1] + center[1]

            if len(p.color) == 3:
                gl.glColor3f(*p.color)
            elif len(p.color) == 4:
                gl.glColor4f(*p.color)
            gl.glPointSize(p.dot_size)

            # Clear the modeview matrix
            gl.glMatrixMode(gl.GL_MODELVIEW)
            gl.glPushMatrix()

            gl.glDisable(gl.GL_TEXTURE_2D)

            if p.depth is None:
                depth = 0.0
            else:
                gl.glEnable(gl.GL_DEPTH_TEST)
                depth = p.depth
            zs = (depth, ) * len(xs)  # make N tuple with repeat value of depth
            draw_dots(xs, ys, zs)
            if p.anti_aliasing:
                gl.glDisable(gl.GL_POINT_SMOOTH)  # turn off
            gl.glPopMatrix()
Exemplo n.º 9
0
    def draw(self):
        # XXX This method is not speed-optimized. I just wrote it to
        # get the job done. (Nonetheless, it seems faster than the C
        # version commented out above.)

        p = self.parameters # shorthand
        if p.center is not None:
            if not hasattr(VisionEgg.config,"_GAVE_CENTER_DEPRECATION"):
                logger = logging.getLogger('VisionEgg.Dots')
                logger.warning("Specifying DotArea2D by deprecated "
                               "'center' parameter deprecated.  Use "
                               "'position' parameter instead.  (Allows "
                               "use of 'anchor' parameter to set to "
                               "other values.)")
                VisionEgg.config._GAVE_CENTER_DEPRECATION = 1
            p.anchor = 'center'
            p.position = p.center[0], p.center[1] # copy values (don't copy ref to tuple)
        if p.on:
            # calculate center
            center = VisionEgg._get_center(p.position,p.anchor,p.size)

            if p.anti_aliasing:
                if len(p.color) == 4 and not self._gave_alpha_warning:
                    if p.color[3] != 1.0:
                        logger = logging.getLogger('VisionEgg.Dots')
                        logger.warning("The parameter anti_aliasing is "
                                       "set to true in the DotArea2D "
                                       "stimulus class, but the color "
                                       "parameter specifies an alpha "
                                       "value other than 1.0.  To "
                                       "acheive the best anti-aliasing, "
                                       "ensure that the alpha value for "
                                       "the color parameter is 1.0.")
                        self._gave_alpha_warning = 1
                gl.glEnable( gl.GL_POINT_SMOOTH )
                # allow max_alpha value to control blending
                gl.glEnable( gl.GL_BLEND )
                gl.glBlendFunc( gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA )
            else:
                gl.glDisable( gl.GL_BLEND )

            now_sec = VisionEgg.time_func()
            if self.start_times_sec is not None:
                # compute extinct dots and generate new positions
                replace_indices = Numeric.nonzero( Numeric.greater( now_sec - self.start_times_sec, p.dot_lifespan_sec) )
                Numeric.put( self.start_times_sec, replace_indices, now_sec )

                new_x_positions = RandomArray.uniform(0.0,1.0,
                                                      (len(replace_indices),))
                Numeric.put( self.x_positions, replace_indices, new_x_positions )

                new_y_positions = RandomArray.uniform(0.0,1.0,
                                                      (len(replace_indices),))
                Numeric.put( self.y_positions, replace_indices, new_y_positions )

                new_random_directions_radians = RandomArray.uniform(0.0,2*math.pi,
                                                                    (len(replace_indices),))
                Numeric.put( self.random_directions_radians, replace_indices, new_random_directions_radians )
            else:
                # initialize dot extinction values to random (uniform) distribution
                self.start_times_sec = RandomArray.uniform( now_sec - p.dot_lifespan_sec, now_sec,
                                                            (self.constant_parameters.num_dots,))

            signal_num_dots = int(round(p.signal_fraction * self.constant_parameters.num_dots))
            time_delta_sec = now_sec - self.last_time_sec
            self.last_time_sec = now_sec # reset for next loop
            x_increment_normalized =  math.cos(p.signal_direction_deg/180.0*math.pi) * p.velocity_pixels_per_sec / p.size[0] * time_delta_sec
            y_increment_normalized = -math.sin(p.signal_direction_deg/180.0*math.pi) * p.velocity_pixels_per_sec / p.size[1] * time_delta_sec
            self.x_positions[:signal_num_dots] += x_increment_normalized
            self.y_positions[:signal_num_dots] += y_increment_normalized

            num_random_dots = self.constant_parameters.num_dots - signal_num_dots
            random_x_increment_normalized =  Numeric.cos(self.random_directions_radians[signal_num_dots:]) * p.velocity_pixels_per_sec / p.size[0] * time_delta_sec
            random_y_increment_normalized = -Numeric.sin(self.random_directions_radians[signal_num_dots:]) * p.velocity_pixels_per_sec / p.size[1] * time_delta_sec
            self.x_positions[signal_num_dots:] += random_x_increment_normalized
            self.y_positions[signal_num_dots:] += random_y_increment_normalized

            self.x_positions = Numeric.fmod( self.x_positions, 1.0 ) # wrap
            self.y_positions = Numeric.fmod( self.y_positions, 1.0 )

            self.x_positions = Numeric.fmod( self.x_positions+1, 1.0 ) # wrap again for values < 1
            self.y_positions = Numeric.fmod( self.y_positions+1, 1.0 )

            xs = (self.x_positions - 0.5) * p.size[0] + center[0]
            ys = (self.y_positions - 0.5) * p.size[1] + center[1]

            if len(p.color)==3:
                gl.glColor3f(*p.color)
            elif len(p.color)==4:
                gl.glColor4f(*p.color)
            gl.glPointSize(p.dot_size)

            # Clear the modeview matrix
            gl.glMatrixMode(gl.GL_MODELVIEW)
            gl.glPushMatrix()

            gl.glDisable(gl.GL_TEXTURE_2D)

            if p.depth is None:
                depth = 0.0
            else:
                gl.glEnable(gl.GL_DEPTH_TEST)
                depth = p.depth
            zs = (depth,)*len(xs) # make N tuple with repeat value of depth
            draw_dots(xs,ys,zs)
            if p.anti_aliasing:
                gl.glDisable( gl.GL_POINT_SMOOTH ) # turn off
            gl.glPopMatrix()