Exemplo n.º 1
0
    def _get_state(self):
        """Get the observation."""
        locations = _A(self.eng.get_vehicles_location())
        self.image = self.quantize_list(locations)
        phases = self.eng.get_trafficLight_phases()
        position_speed_start = self.observation_space.spaces['vehicle'].low
        observation = {'phase':_A(phases), 'vehicle':self.image}	

        return observation
Exemplo n.º 2
0
 def __init__(self, V, N=1024):
     self.N = N
     self.min_xy = _A([V[:, 0].min(), V[:, 1].min()])
     self.max_xy = _A([V[:, 0].max(), V[:, 1].max()])
Exemplo n.º 3
0
    def __init__(self, config_path=config_path, mode='train'):
        
        work_dir = _P(config_path).parents[0]
        self.mode = mode
        self.last_action = None
        
        self.config = config = json.load(open(config_path, 'rt'))
        self.thread_num = config.get("thread_num", 4)
        
        roadnetFile = _P(config['dir']) / config['roadnetFile']
        self.roadnet = roadnet = json.load(roadnetFile.open('rt'))
        self.intersections = json_normalize(roadnet['intersections'])
        self.roads = roads = json_normalize(roadnet['roads'])
        self.intersections = self.intersections[~self.intersections['virtual']]  # Filter out virtuals
        
        self.lns = [len(row['trafficLight.lightphases']) for i, row in self.intersections.iterrows()]
        l = list()  # Read all points to get bounding box.
        for i, (p1, p2) in roads.points.iteritems(): l.extend((p1, p2)) 
        l = _D(l)
        self.min_xy = _A(l['x'].min(), l['y'].min())
        self.max_xy = _A(l['x'].max(), l['y'].max())
        self.MAT_SIZE = (self.max_xy - self.min_xy).max()
        self.range_1 = self.MAT_SIZE / (self.max_xy - self.min_xy)
        self.image = np.zeros((self.MAT_SIZE, self.MAT_SIZE), dtype=np.uint8)

        self.input_shape = (config['WINDOW_LENGTH'], self.MAT_SIZE, self.MAT_SIZE)

        num_phases = self.lns[0]
        self.action_space = gym.spaces.Discrete(num_phases)
        self.observation_space = gym.spaces.Dict({
            'phase':gym.spaces.Box(low=0, high=1, shape=(1,1), dtype=np.float32),
            'vehicle':gym.spaces.Box(low=0, high=14, shape=(1, self.MAT_SIZE, self.MAT_SIZE), dtype=np.float32)})
        #self.seed(seed, state)

        # Store what the agent tried
        self.curr_episode = -1
        self.action_episode_memory = []
        self.count_from_last_bump = 0
        self.total_num_bumps = 0
        self.curr_step = -1

        DIR = _P(config['dir'])
        #archive_dump = _P(config['dir']) / config['archive_dump']
        self.num_sim_loops = config.get('num_sim_loops', 500)
        self.output_dict_path = _P(config['dir']) / "summary.json"
        roudnet_output = DIR/ config['roadnetLogFile']
        replayLogFile = DIR/ config['replayLogFile']
        
        weights_filename = f"dqn_{config['WINDOW_LENGTH']}_{self.MAT_SIZE},{self.MAT_SIZE}_{mode}_weights.h5f"
        
        self.weights_filename = work_dir / weights_filename
        self.checkpoint_weights_filename = work_dir / ('checkpoint_{step}_' + weights_filename)

        if mode == 'train':
            self.config['saveReplay'] = False
            self.work_config_path = work_dir / "generated_train_config.json"            
        else:
            self.work_config_path = work_dir / "generated_predict_config.json"            
            self.config['saveReplay'] = True
                    
            try:
                os.remove(str(roudnet_output))
                print("Removed previous log file %s" % roudnet_output)
            except BaseException as e:
                print(str(e), roudnet_output)
            try:
                os.remove(str(replayLogFile))
                print("Removed previous log file %s" % replayLogFile)
            except BaseException as e:
                print(str(e), replayLogFile)
        self.eng = cityflow.Engine(str(self.work_config_path), thread_num=self.thread_num)
        
        json.dump(self.config, self.work_config_path.open('wt'))
Exemplo n.º 4
0
 def preprocess(self, image, mask):
     im = _A(image, dtype=np.float32) / 255.0
     msk = _A(mask, dtype=np.float32) / 255.0
     msk = 1.0 - msk
     im[msk == 0] = 1
     return im, msk
Exemplo n.º 5
0
 def get_screen(self):
     locations = _A(self.env.eng.get_vehicles_location())
     image = self.env.quantize_list(locations).reshape(
         1, 1, self.env.MAT_SIZE, self.env.MAT_SIZE)
     return torch.tensor(image, device=self.device, dtype=torch.float32)