Exemplo n.º 1
0
def doubleslit(b=0.1,a=0.4,lambda_1=632,z=0.5):
    """
    Return a Young's doubleslit(Frauhofer Diffraction)
    Input:
    --------------------------------
    b: slit of width in mm
    a: slit separation of in mm
    lambda_1: wavelength in nm
    z: slit-to-screen distance in m.
    """
    lambda_1 = float(lambda_1)
    theta = __np__.linspace(-0.04,0.04,1000)
    theta1 = __np__.ones(100)
    [theta,theta1] = __np__.meshgrid(theta,theta1)
    beta = __np__.pi*(b/1000)/(lambda_1/(10**9))*__sin__(theta)
    alpha = __np__.pi*(a/1000)/(lambda_1/(10**9))*__sin__(theta)
    y = 4*(__sin__(beta)**2/(beta**2)*__cos__(alpha)**2)
    fig = __plt__.figure(1,figsize=(12,8), dpi=80)
    __plt__.imshow(-y)
    __plt__.set_cmap('Greys')
    __plt__.show()
    
    theta = __np__.linspace(-0.04,0.04,1000)
    beta = __np__.pi*(b/1000)/(lambda_1/(10**9))*__sin__(theta)
    alpha = __np__.pi*(a/1000)/(lambda_1/(10**9))*__sin__(theta)
    y = 4*(__sin__(beta)**2/(beta**2)*__cos__(alpha)**2)
    y1 = 4*__sin__(beta)**2/(beta**2)
    fig = __plt__.figure(2,figsize=(12, 8), dpi=80)
    __plt__.plot(theta*z*1000,y)
    __plt__.plot(theta*z*1000,y1,"g--")
    __plt__.show()
Exemplo n.º 2
0
def doubleslit(b=0.1, a=0.4, lambda_1=632, z=0.5):
    """
    Return a Young's doubleslit(Frauhofer Diffraction)
    Input:
    --------------------------------
    b: slit of width in mm
    a: slit separation of in mm
    lambda_1: wavelength in nm
    z: slit-to-screen distance in m.
    """
    lambda_1 = float(lambda_1)
    theta = __np__.linspace(-0.04, 0.04, 1000)
    theta1 = __np__.ones(100)
    [theta, theta1] = __np__.meshgrid(theta, theta1)
    beta = __np__.pi * (b / 1000) / (lambda_1 / (10**9)) * __sin__(theta)
    alpha = __np__.pi * (a / 1000) / (lambda_1 / (10**9)) * __sin__(theta)
    y = 4 * (__sin__(beta)**2 / (beta**2) * __cos__(alpha)**2)
    fig = __plt__.figure(1, figsize=(12, 8), dpi=80)
    __plt__.imshow(-y)
    __plt__.set_cmap('Greys')
    __plt__.show()

    theta = __np__.linspace(-0.04, 0.04, 1000)
    beta = __np__.pi * (b / 1000) / (lambda_1 / (10**9)) * __sin__(theta)
    alpha = __np__.pi * (a / 1000) / (lambda_1 / (10**9)) * __sin__(theta)
    y = 4 * (__sin__(beta)**2 / (beta**2) * __cos__(alpha)**2)
    y1 = 4 * __sin__(beta)**2 / (beta**2)
    fig = __plt__.figure(2, figsize=(12, 8), dpi=80)
    __plt__.plot(theta * z * 1000, y)
    __plt__.plot(theta * z * 1000, y1, "g--")
    __plt__.show()
Exemplo n.º 3
0
def __seidelpolar__(coefficient,r,u):
	W = coefficient
	h = 1
	Ap = W[0][0] * h**2
	At = W[1][0] * h*r*__cos__(u-W[1][1]*__np__.pi/180)
	Ad = W[2][0] * r**2
	Aa = W[3][0] * h**2*r**2*__cos__(u-W[3][1]*__np__.pi/180)
	Ac = W[4][0] * h*r*__cos__(u-W[4][1]*__np__.pi/180)
	As = W[5][0] * r**4

	W = Ap+At+Ad+Aa+Ac+As
	return W
Exemplo n.º 4
0
def __seidelpolar__(coefficient, r, u):
    W = coefficient
    h = 1
    Ap = W[0][0] * h**2
    At = W[1][0] * h * r * __cos__(u - W[1][1] * __np__.pi / 180)
    Ad = W[2][0] * r**2
    Aa = W[3][0] * h**2 * r**2 * __cos__(u - W[3][1] * __np__.pi / 180)
    Ac = W[4][0] * h * r * __cos__(u - W[4][1] * __np__.pi / 180)
    As = W[5][0] * r**4

    W = Ap + At + Ad + Aa + Ac + As
    return W
Exemplo n.º 5
0
def __zernikepolar__(coefficient,a,r,u):
	"""
	------------------------------------------------
	__zernikepolar__(coefficient,r,u):

	Return combined aberration

	Orthonormal Rectangle Aperture Polynomials Caculation in polar coordinates

	coefficient: Orthonormal Rectangle Aperture Polynomials Coefficient from input
	r: rho in polar coordinates
	u: theta in polar coordinates
	------------------------------------------------
	"""
	mu = __sqrt__(9-36*a**2+103*a**4-134*a**6+67*a**6+67*a**8)
	v = __sqrt__(49-196*a**2+330*a**4-268*a**6+134*a**8)
	tau = 1/(128*v*a**4*(1-a**2)**2)
	eta = 9-45*a**2+139*a**4-237*a**6+210*a**8-67*a**10

	R = [0]+coefficient
	R1  =  R[1]  * 1                              
	R2  =  R[2]  * __sqrt__(3)/a*r*__cos__(u)
	R3  =  R[3]  * __sqrt__(3/(1-a**2))*r*__sin__(u)
	R4  =  R[4]  * __sqrt__(5)/2/__sqrt__(1-2*a**2+2*a**4)*(3*r**2-1)
	R5  =  R[5]  * 3/2/a/__sqrt__(1-a**2)*r**2*__sin__(2*u)
	R6  =  R[6]  * __sqrt__(5)/2/a**2/(1-a**2)/__sqrt__(1-2*a**2+2*a**4)*\
					(3*(1-2*a**2+2*a**4)*r**2*__cos__(2*u)+3*(1-2*a**2)*r**2-\
					2*a**2*(1-a**2)*(1-2*a**2))
	R7  =  R[7]  * __sqrt__(21)/2/__sqrt__(27-81*a**2+116*a**4-62*a**6)*\
					(15*r**2-9+4*a**2)*r*__sin__(u)
	R8  =  R[8]  * __sqrt__(21)/2/a/__sqrt__(35-70*a**2+62*a**4)*\
					(15*r**2-5-4*a**2)*r*__cos__(u)
	R9  =  R[9]  * (__sqrt__(5)*__sqrt__((27-54*a**2+62*a**4)/(1-a**2))/\
					(8*a**2*(27-81*a**2+116*a**4-62*a**6)))*((27-54*a**2+62*a**4)*\
					r*__sin__(3*u)-3*(4*a**2*(3-13*a**2+10*a**4)-(9-18*a**2-26*a**4))\
					*r*__sin__(u))
	r1  = 35-70*a**2+62*a**4
	R10 =  R[10] * (__sqrt__(5)/(8*a**3*(1-a**2)*__sqrt__(r1)))*((r1)*r**3*__cos__(3*u)-\
					3*(4*a**2*(7-17*a**2+10*a**4)-(r1)*r**2)*r*__cos__(u))
	R11 =  R[11] * 1/8/mu*(315*r**4+30*(1-2*a**2)*r**2*__cos__(2*u)-240*r**2+27+16*a*2-16*a**4)
	R12 =  R[12] * (3*mu/(8*a**2*v*eta))*(315*(1-2*a**2)*(1-2*a**2+2*a**4)*r**4+\
					5*(7*mu**2*r**2-21+72*a**2-225*a**4+306*a**6-152*a**8)*r**2*__cos__(2*u)-\
					15*(1-2*a**2)*(7+4*a**2-71*a**4+134*a**6-67*a**8)*r**2+\
						a**2*(1-a**2)*(1-2*a**2)*(70-233*a**2+233*a**4))
	R13 =  R[13] * __sqrt__(21)/(4*a*__sqrt__(1-3*a**2+4*a**4-2*a**6))*(5*r**2-3)*r**2*__sin__(2*u)
	R14 =  R[14] * 6*tau*(5*v**2*r**4*__cos__(4*u)-20*(1-2*a**2)*(6*a**2*(7-16*a**2+18*a**4-9*a**6)-\
					49*(1-2*a**2+2*a**4)*r**2)*r**2*__cos__(u)+8*a**4*(1-a**2)**2*(21-62*a**2+62*a**4)-\
					120*a**2*(7-30*a**2+46*a**4-23*a**6)*r**2+\
					15*(49-196*a**2+282*a**4-172*a**6+86*a**8)*r**4)
	R15 =  R[15] * (__sqrt__(21)/(8*a**3*__sqrt__((1-a**2)**3))/__sqrt__(1-2*a**2+2*a**4))*\
					(-(1-2*a**2)*(6*a**2-6*a**4-5*r**2)*r**2*__sin__(2*u)+\
					(5/2)*(1-2*a**2+2**a**4)*r**4*__sin__(4*u))
	RW = 	R1 + R2 +  R3+  R4+  R5+  R6+  R7+  R8+  R9+ \
			R10+ R11+ R12+ R13+ R14+ R15
	return RW
Exemplo n.º 6
0
def __zernikepolar__(coefficient,a,r,u):
	"""
	------------------------------------------------
	__zernikepolar__(coefficient,r,u):

	Return combined aberration

	Orthonormal Rectangle Aperture Polynomials Caculation in polar coordinates

	coefficient: Orthonormal Rectangle Aperture Polynomials Coefficient from input
	r: rho in polar coordinates
	u: theta in polar coordinates
	------------------------------------------------
	"""
	mu = __sqrt__(9-36*a**2+103*a**4-134*a**6+67*a**6+67*a**8)
	v = __sqrt__(49-196*a**2+330*a**4-268*a**6+134*a**8)
	tau = 1/(128*v*a**4*(1-a**2)**2)
	eta = 9-45*a**2+139*a**4-237*a**6+210*a**8-67*a**10

	R = [0]+coefficient
	R1  =  R[1]  * 1                              
	R2  =  R[2]  * __sqrt__(3)/a*r*__cos__(u)
	R3  =  R[3]  * __sqrt__(3/(1-a**2))*r*__sin__(u)
	R4  =  R[4]  * __sqrt__(5)/2/__sqrt__(1-2*a**2+2*a**4)*(3*r**2-1)
	R5  =  R[5]  * 3/2/a/__sqrt__(1-a**2)*r**2*__sin__(2*u)
	R6  =  R[6]  * __sqrt__(5)/2/a**2/(1-a**2)/__sqrt__(1-2*a**2+2*a**4)*\
					(3*(1-2*a**2+2*a**4)*r**2*__cos__(2*u)+3*(1-2*a**2)*r**2-\
					2*a**2*(1-a**2)*(1-2*a**2))
	R7  =  R[7]  * __sqrt__(21)/2/__sqrt__(27-81*a**2+116*a**4-62*a**6)*\
					(15*r**2-9+4*a**2)*r*__sin__(u)
	R8  =  R[8]  * __sqrt__(21)/2/a/__sqrt__(35-70*a**2+62*a**4)*\
					(15*r**2-5-4*a**2)*r*__cos__(u)
	R9  =  R[9]  * (__sqrt__(5)*__sqrt__((27-54*a**2+62*a**4)/(1-a**2))/\
					(8*a**2*(27-81*a**2+116*a**4-62*a**6)))*((27-54*a**2+62*a**4)*\
					r*__sin__(3*u)-3*(4*a**2*(3-13*a**2+10*a**4)-(9-18*a**2-26*a**4))\
					*r*__sin__(u))
	r1  = 35-70*a**2+62*a**4
	R10 =  R[10] * (__sqrt__(5)/(8*a**3*(1-a**2)*__sqrt__(r1)))*((r1)*r**3*__cos__(3*u)-\
					3*(4*a**2*(7-17*a**2+10*a**4)-(r1)*r**2)*r*__cos__(u))
	R11 =  R[11] * 1/8/mu*(315*r**4+30*(1-2*a**2)*r**2*__cos__(2*u)-240*r**2+27+16*a*2-16*a**4)
	R12 =  R[12] * (3*mu/(8*a**2*v*eta))*(315*(1-2*a**2)*(1-2*a**2+2*a**4)*r**4+\
					5*(7*mu**2*r**2-21+72*a**2-225*a**4+306*a**6-152*a**8)*r**2*__cos__(2*u)-\
					15*(1-2*a**2)*(7+4*a**2-71*a**4+134*a**6-67*a**8)*r**2+\
						a**2*(1-a**2)*(1-2*a**2)*(70-233*a**2+233*a**4))
	R13 =  R[13] * __sqrt__(21)/(4*a*__sqrt__(1-3*a**2+4*a**4-2*a**6))*(5*r**2-3)*r**2*__sin__(2*u)
	R14 =  R[14] * 6*tau*(5*v**2*r**4*__cos__(4*u)-20*(1-2*a**2)*(6*a**2*(7-16*a**2+18*a**4-9*a**6)-\
					49*(1-2*a**2+2*a**4)*r**2)*r**2*__cos__(u)+8*a**4*(1-a**2)**2*(21-62*a**2+62*a**4)-\
					120*a**2*(7-30*a**2+46*a**4-23*a**6)*r**2+\
					15*(49-196*a**2+282*a**4-172*a**6+86*a**8)*r**4)
	R15 =  R[15] * (__sqrt__(21)/(8*a**3*__sqrt__((1-a**2)**3))/__sqrt__(1-2*a**2+2*a**4))*\
					(-(1-2*a**2)*(6*a**2-6*a**4-5*r**2)*r**2*__sin__(2*u)+\
					(5/2)*(1-2*a**2+2**a**4)*r**4*__sin__(4*u))
	RW = 	R1 + R2 +  R3+  R4+  R5+  R6+  R7+  R8+  R9+ \
			R10+ R11+ R12+ R13+ R14+ R15
	return RW
Exemplo n.º 7
0
def __seidelpolar__(coefficient,r,u):
	h = coefficient[0]
	W = coefficient
	W200 = W[1] * h**2
	W111 = W[2] * h*r*__cos__(u)
	W020 = W[3] * r**2
	W040 = W[4] * r**4
	W131 = W[5] * h*r**3*__cos__(u)
	W222 = W[6] * h**2*r**2*__cos__(u)
	W220 = W[7] * h**2*r**2
	W311 = W[8] * h**3*r*__cos__(u)
	W = W200+W111+W020+W040+W131+W222+W220+W311

	return W
Exemplo n.º 8
0
def __seidelpolar__(coefficient, r, u):
    h = coefficient[0]
    W = coefficient
    W200 = W[1] * h**2
    W111 = W[2] * h * r * __cos__(u)
    W020 = W[3] * r**2
    W040 = W[4] * r**4
    W131 = W[5] * h * r**3 * __cos__(u)
    W222 = W[6] * h**2 * r**2 * __cos__(u)
    W220 = W[7] * h**2 * r**2
    W311 = W[8] * h**3 * r * __cos__(u)
    W = W200 + W111 + W020 + W040 + W131 + W222 + W220 + W311

    return W
Exemplo n.º 9
0
	def zernikemap(self, label = True):
		"""
		------------------------------------------------
		zernikemap(self, label_1 = True):

		Return a 2D Zernike Polynomials map figure

		label: default show label

		------------------------------------------------
		"""


		theta = __np__.linspace(0, 2*__np__.pi, 400)
		rho = __np__.linspace(0, 1, 400)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __zernikepolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca()
		im = __plt__.pcolormesh(X, Y, Z, cmap=__cm__.RdYlGn)

		if label == True:
			__plt__.title('Zernike Polynomials Surface Heat Map',fontsize=18)
			ax.set_xlabel(self.listcoefficient()[1],fontsize=18)
		__plt__.colorbar()
		ax.set_aspect('equal', 'datalim')
		__plt__.show()
Exemplo n.º 10
0
	def zernikemap(self, label = True):
		"""
		------------------------------------------------
		zernikemap(self, label_1 = True):

		Return a 2D Zernike Polynomials map figure

		label: default show label

		------------------------------------------------
		"""


		theta = __np__.linspace(0, 2*__np__.pi, 400)
		rho = __np__.linspace(0, 1, 400)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __interferometer__.__zernikepolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca()
		im = __plt__.pcolormesh(X, Y, Z, cmap=__cm__.RdYlGn)

		if label == True:
			__plt__.title('Zernike Polynomials Surface Heat Map',fontsize=18)
			ax.set_xlabel(self.listcoefficient()[1],fontsize=18)
		__plt__.colorbar()
		ax.set_aspect('equal', 'datalim')
		__plt__.show()
Exemplo n.º 11
0
    def aspheresurface(self):
        """
		Show the surface of an asphere.
		=============================================================
		Try: 
		A = opticspy.asphere.Coefficient(R=50,a2=0.18*10**(-8),a3 = 0.392629*10**(-13))

		"""
        R = self.__coefficients__[0]
        theta = __np__.linspace(0, 2 * __np__.pi, 100)
        rho = __np__.linspace(0, R, 100)
        [u, r] = __np__.meshgrid(theta, rho)
        X = r * __cos__(u)
        Y = r * __sin__(u)
        Z = __aspherepolar__(self.__coefficients__, r)
        fig = __plt__.figure(figsize=(12, 8), dpi=80)
        ax = fig.gca(projection='3d')
        surf = ax.plot_surface(X,
                               Y,
                               Z,
                               rstride=1,
                               cstride=1,
                               cmap=__cm__.RdYlGn,
                               linewidth=0,
                               antialiased=False,
                               alpha=0.6)
        __plt__.show()
        return 0
Exemplo n.º 12
0
	def seidelsurface(self, label = True, zlim=[], matrix = False):
		r1 = __np__.linspace(0, 1, 100)
		u1 = __np__.linspace(0, 2*__np__.pi, 100)
		[u,r] = __np__.meshgrid(u1,r1)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		W = __seidelpolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, W, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)
		fig.colorbar(surf, shrink=1, aspect=30)
		__plt__.show()
Exemplo n.º 13
0
	def zernikesurface(self, label = True, zlim=[], matrix = False):
		"""
		------------------------------------------------
		zernikesurface(self, label_1 = True):

		Return a 3D Zernike Polynomials surface figure

		label_1: default show label

		------------------------------------------------
		"""
		theta = __np__.linspace(0, 2*__np__.pi, 100)
		rho = __np__.linspace(0, 1, 100)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __interferometer__.__zernikepolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)

		if zlim == []:
			v = max(abs(Z.max()),abs(Z.min()))
			ax.set_zlim(-v*5, v*5)
			cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
		else:
			ax.set_zlim(zlim[0], zlim[1])
			cset = ax.contourf(X, Y, Z, zdir='z', offset=zlim[0], cmap=__cm__.RdYlGn)

		ax.zaxis.set_major_locator(__LinearLocator__(10))
		ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		fig.colorbar(surf, shrink=1, aspect=30)


		p2v = round(__tools__.peak2valley(Z),5)
		rms1 = round(__tools__.rms(Z),5)

		label_1 = self.listcoefficient()[0]+"P-V: "+str(p2v)+"\n"+"RMS: "+str(rms1)
		if label == True:
			__plt__.title('Zernike Polynomials Surface',fontsize=18)
			ax.text2D(0.02, 0.1, label_1, transform=ax.transAxes,fontsize=14)
		else:
			pass
		__plt__.show()

		if matrix == True:
			return Z
		else:
			pass
Exemplo n.º 14
0
	def zernikesurface(self, label = True, zlim=[], matrix = False):
		"""
		------------------------------------------------
		zernikesurface(self, label_1 = True):

		Return a 3D Zernike Polynomials surface figure

		label_1: default show label

		------------------------------------------------
		"""
		theta = __np__.linspace(0, 2*__np__.pi, 100)
		rho = __np__.linspace(0, 1, 100)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __zernikepolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)
		
		if zlim == []:
			v = max(abs(Z.max()),abs(Z.min()))
			ax.set_zlim(-v*5, v*5)
			cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
		else:
			ax.set_zlim(zlim[0], zlim[1])
			cset = ax.contourf(X, Y, Z, zdir='z', offset=zlim[0], cmap=__cm__.RdYlGn)

		ax.zaxis.set_major_locator(__LinearLocator__(10))
		ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		fig.colorbar(surf, shrink=1, aspect=30)


		p2v = round(__tools__.peak2valley(Z),5)
		rms1 = round(__tools__.rms(Z),5)

		label_1 = self.listcoefficient()[0]+"P-V: "+str(p2v)+"\n"+"RMS: "+str(rms1)
		if label == True:
			__plt__.title('Zernike Polynomials Surface',fontsize=18)
			ax.text2D(0.02, 0.1, label_1, transform=ax.transAxes,fontsize=14)
		else:
			pass
		__plt__.show()
		
		if matrix == True:
			return Z
		else:
			pass
Exemplo n.º 15
0
 def seidelsurface(self, label=True, zlim=[], matrix=False):
     r1 = __np__.linspace(0, 1, 100)
     u1 = __np__.linspace(0, 2 * __np__.pi, 100)
     [u, r] = __np__.meshgrid(u1, r1)
     X = r * __cos__(u)
     Y = r * __sin__(u)
     W = __seidelpolar__(self.__coefficients__, r, u)
     fig = __plt__.figure(figsize=(12, 8), dpi=80)
     ax = fig.gca(projection='3d')
     surf = ax.plot_surface(X,
                            Y,
                            W,
                            rstride=1,
                            cstride=1,
                            cmap=__cm__.RdYlGn,
                            linewidth=0,
                            antialiased=False,
                            alpha=0.6)
     fig.colorbar(surf, shrink=1, aspect=30)
     __plt__.show()
Exemplo n.º 16
0
	def aspheresurface(self):
		"""
		Show the surface of an asphere.
		=============================================================
		Try: 
		A = opticspy.asphere.Coefficient(R=50,a2=0.18*10**(-8),a3 = 0.392629*10**(-13))

		"""
		R = self.__coefficients__[0]
		theta = __np__.linspace(0, 2*__np__.pi, 100)
		rho = __np__.linspace(0, R, 100)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __aspherepolar__(self.__coefficients__,r)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)
		__plt__.show()
		return 0
Exemplo n.º 17
0
def spherical_surf(l1):
	R = 1.02
	l1 = l1  #surface matrix length
	theta = __np__.linspace(0, 2*__np__.pi, l1)
	rho = __np__.linspace(0, 1, l1)
	[u,r] = __np__.meshgrid(theta,rho)
	X = r*__cos__(u)
	Y = r*__sin__(u)
	Z = __sqrt__(R**2-r**2)-__sqrt__(R**2-1)
	v_1 = max(abs(Z.max()),abs(Z.min()))

	noise = (__np__.random.rand(len(Z),len(Z))*2-1)*0.05*v_1
	Z = Z+noise
	fig = __plt__.figure(figsize=(12, 8), dpi=80)
	ax = fig.gca(projection='3d')
	surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,\
								linewidth=0, antialiased=False, alpha = 0.6)
	v = max(abs(Z.max()),abs(Z.min()))
	ax.set_zlim(-1, 2)
	ax.zaxis.set_major_locator(__LinearLocator__(10))
	ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
	cset = ax.contourf(X, Y, Z, zdir='z', offset=-1, cmap=__cm__.RdYlGn)
	fig.colorbar(surf, shrink=1, aspect=30)
	__plt__.title('Test Surface: Spherical surface with some noise',fontsize=16)
	__plt__.show()

	#Generate test surface matrix from a detector
	x = __np__.linspace(-1, 1, l1)
	y = __np__.linspace(-1, 1, l1)
	[X,Y] = __np__.meshgrid(x,y)
	Z = __sqrt__(R**2-(X**2+Y**2))-__sqrt__(R**2-1)+noise
	for i in range(len(Z)):
		for j in range(len(Z)):
			if x[i]**2+y[j]**2>1:
				Z[i][j]=0
	return Z
Exemplo n.º 18
0
	def Z20(self,r,u):
		return __sqrt__(12)*r**5*__cos__(5*u)
Exemplo n.º 19
0
	def Z18(self,r,u):
		return __sqrt__(12)*(5*r**2-4)*r**3*__cos__(3*u)
Exemplo n.º 20
0
	def Z16(self,r,u):
		return __sqrt__(12)*(10*r**4-12*r**2+3)*r*__cos__(u)
Exemplo n.º 21
0
	def Z14(self,r,u):
		return __sqrt__(10)*r**4*__cos__(4*u)
Exemplo n.º 22
0
	def Z12(self,r,u):
		return __sqrt__(10)*(4*r**2-3)*r**2*__cos__(2*u)
Exemplo n.º 23
0
	def Z10(self,r,u):
		return __sqrt__(8)*r**3*__cos__(3*u)
Exemplo n.º 24
0
	def Z8(self,r,u):
		return __sqrt__(8)*(3*r**2-2)*r*__cos__(u)
Exemplo n.º 25
0
	def Z28(self,r,u):
		return __sqrt__(14)*r**6*__cos__(6*u)
Exemplo n.º 26
0
	def Z24(self,r,u):
		return __sqrt__(14)*(15*r**4-20*r**2+6)*r**2*__cos__(2*u)
Exemplo n.º 27
0
	def Z36(self,r,u):
		return 4*r**7*__cos__(7*u)
Exemplo n.º 28
0
	def Z32(self,r,u):
		return 4*(21*r**4-30*r**2+10)*r**3*__cos__(3*u)
Exemplo n.º 29
0
	def Z26(self,r,u):
		return __sqrt__(14)*(6*r**2-5)*r**4*__cos__(4*u)
Exemplo n.º 30
0
	def Z2(self,r,u):
		return 2*r*__cos__(u)
Exemplo n.º 31
0
	def Z30(self,r,u):
		return 4*(35*r**6-60*r**4+30*r**2-4)*r*__cos__(u)
Exemplo n.º 32
0
	def Z6(self,r,u):
		return __sqrt__(6)*r**2*__cos__(2*u)
Exemplo n.º 33
0
	def Z34(self,r,u):
		return 4*(7*r**2-6)*r**5*__cos__(5*u)
Exemplo n.º 34
0
def __zernikepolar__(coefficient,r,u):
	"""
	------------------------------------------------
	__zernikepolar__(coefficient,r,u):

	Return combined aberration

	Zernike Polynomials Caculation in polar coordinates

	coefficient: Zernike Polynomials Coefficient from input
	r: rho in polar coordinates
	u: theta in polar coordinates

	------------------------------------------------
	"""
	Z = [0]+coefficient
	Z1  =  Z[1]  * 1*(__cos__(u)**2+__sin__(u)**2)                                 
	Z2  =  Z[2]  * 2*r*__cos__(u)
	Z3  =  Z[3]  * 2*r*__sin__(u)
	Z4  =  Z[4]  * __sqrt__(3)*(2*r**2-1)
	Z5  =  Z[5]  * __sqrt__(6)*r**2*__sin__(2*u)
	Z6  =  Z[6]  * __sqrt__(6)*r**2*__cos__(2*u)
	Z7  =  Z[7]  * __sqrt__(8)*(3*r**2-2)*r*__sin__(u)
	Z8  =  Z[8]  * __sqrt__(8)*(3*r**2-2)*r*__cos__(u)
	Z9  =  Z[9]  * __sqrt__(8)*r**3*__sin__(3*u)
	Z10 =  Z[10] * __sqrt__(8)*r**3*__cos__(3*u)
	Z11 =  Z[11] * __sqrt__(5)*(1-6*r**2+6*r**4)
	Z12 =  Z[12] * __sqrt__(10)*(4*r**2-3)*r**2*__cos__(2*u)
	Z13 =  Z[13] * __sqrt__(10)*(4*r**2-3)*r**2*__sin__(2*u)
	Z14 =  Z[14] * __sqrt__(10)*r**4*__cos__(4*u)
	Z15 =  Z[15] * __sqrt__(10)*r**4*__sin__(4*u)
	Z16 =  Z[16] * __sqrt__(12)*(10*r**4-12*r**2+3)*r*__cos__(u)
	Z17 =  Z[17] * __sqrt__(12)*(10*r**4-12*r**2+3)*r*__sin__(u)
	Z18 =  Z[18] * __sqrt__(12)*(5*r**2-4)*r**3*__cos__(3*u)
	Z19 =  Z[19] * __sqrt__(12)*(5*r**2-4)*r**3*__sin__(3*u)
	Z20 =  Z[20] * __sqrt__(12)*r**5*__cos__(5*u)
	Z21 =  Z[21] * __sqrt__(12)*r**5*__sin__(5*u)
	Z22 =  Z[22] * __sqrt__(7)*(20*r**6-30*r**4+12*r**2-1)
	Z23 =  Z[23] * __sqrt__(14)*(15*r**4-20*r**2+6)*r**2*__sin__(2*u)
	Z24 =  Z[24] * __sqrt__(14)*(15*r**4-20*r**2+6)*r**2*__cos__(2*u)
	Z25 =  Z[25] * __sqrt__(14)*(6*r**2-5)*r**4*__sin__(4*u)
	Z26 =  Z[26] * __sqrt__(14)*(6*r**2-5)*r**4*__cos__(4*u)
	Z27 =  Z[27] * __sqrt__(14)*r**6*__sin__(6*u)
	Z28 =  Z[28] * __sqrt__(14)*r**6*__cos__(6*u)
	Z29 =  Z[29] * 4*(35*r**6-60*r**4+30*r**2-4)*r*__sin__(u)
	Z30 =  Z[30] * 4*(35*r**6-60*r**4+30*r**2-4)*r*__cos__(u)
	Z31 =  Z[31] * 4*(21*r**4-30*r**2+10)*r**3*__sin__(3*u)
	Z32 =  Z[32] * 4*(21*r**4-30*r**2+10)*r**3*__cos__(3*u)
	Z33 =  Z[33] * 4*(7*r**2-6)*r**5*__sin__(5*u)
	Z34 =  Z[34] * 4*(7*r**2-6)*r**5*__cos__(5*u)
	Z35 =  Z[35] * 4*r**7*__sin__(7*u)
	Z36 =  Z[36] * 4*r**7*__cos__(7*u)
	Z37 =  Z[37] * 3*(70*r**8-140*r**6+90*r**4-20*r**2+1)


	Z = Z1 + Z2 +  Z3+  Z4+  Z5+  Z6+  Z7+  Z8+  Z9+ \
		Z10+ Z11+ Z12+ Z13+ Z14+ Z15+ Z16+ Z17+ Z18+ Z19+ \
		Z20+ Z21+ Z22+ Z23+ Z24+ Z25+ Z26+ Z27+ Z28+ Z29+ \
		Z30+ Z31+ Z32+ Z33+ Z34+ Z35+ Z36+ Z37
	return Z
Exemplo n.º 35
0
def __zernikepolar__(coefficient,r,u):
	"""
	------------------------------------------------
	__zernikepolar__(coefficient,r,u):

	Return combined aberration

	Zernike Polynomials Caculation in polar coordinates

	coefficient: Zernike Polynomials Coefficient from input
	r: rho in polar coordinates
	u: theta in polar coordinates

	------------------------------------------------
	"""
	Z = [0]+coefficient
	Z1  =  Z[1]  * 1*(__cos__(u)**2+__sin__(u)**2)
	Z2  =  Z[2]  * 2*r*__cos__(u)
	Z3  =  Z[3]  * 2*r*__sin__(u)
	Z4  =  Z[4]  * __sqrt__(3)*(2*r**2-1)
	Z5  =  Z[5]  * __sqrt__(6)*r**2*__sin__(2*u)
	Z6  =  Z[6]  * __sqrt__(6)*r**2*__cos__(2*u)
	Z7  =  Z[7]  * __sqrt__(8)*(3*r**2-2)*r*__sin__(u)
	Z8  =  Z[8]  * __sqrt__(8)*(3*r**2-2)*r*__cos__(u)
	Z9  =  Z[9]  * __sqrt__(8)*r**3*__sin__(3*u)
	Z10 =  Z[10] * __sqrt__(8)*r**3*__cos__(3*u)
	Z11 =  Z[11] * __sqrt__(5)*(1-6*r**2+6*r**4)
	Z12 =  Z[12] * __sqrt__(10)*(4*r**2-3)*r**2*__cos__(2*u)
	Z13 =  Z[13] * __sqrt__(10)*(4*r**2-3)*r**2*__sin__(2*u)
	Z14 =  Z[14] * __sqrt__(10)*r**4*__cos__(4*u)
	Z15 =  Z[15] * __sqrt__(10)*r**4*__sin__(4*u)
	Z16 =  Z[16] * __sqrt__(12)*(10*r**4-12*r**2+3)*r*__cos__(u)
	Z17 =  Z[17] * __sqrt__(12)*(10*r**4-12*r**2+3)*r*__sin__(u)
	Z18 =  Z[18] * __sqrt__(12)*(5*r**2-4)*r**3*__cos__(3*u)
	Z19 =  Z[19] * __sqrt__(12)*(5*r**2-4)*r**3*__sin__(3*u)
	Z20 =  Z[20] * __sqrt__(12)*r**5*__cos__(5*u)
	Z21 =  Z[21] * __sqrt__(12)*r**5*__sin__(5*u)
	Z22 =  Z[22] * __sqrt__(7)*(20*r**6-30*r**4+12*r**2-1)
	Z23 =  Z[23] * __sqrt__(14)*(15*r**4-20*r**2+6)*r**2*__sin__(2*u)
	Z24 =  Z[24] * __sqrt__(14)*(15*r**4-20*r**2+6)*r**2*__cos__(2*u)
	Z25 =  Z[25] * __sqrt__(14)*(6*r**2-5)*r**4*__sin__(4*u)
	Z26 =  Z[26] * __sqrt__(14)*(6*r**2-5)*r**4*__cos__(4*u)
	Z27 =  Z[27] * __sqrt__(14)*r**6*__sin__(6*u)
	Z28 =  Z[28] * __sqrt__(14)*r**6*__cos__(6*u)
	Z29 =  Z[29] * 4*(35*r**6-60*r**4+30*r**2-4)*r*__sin__(u)
	Z30 =  Z[30] * 4*(35*r**6-60*r**4+30*r**2-4)*r*__cos__(u)
	Z31 =  Z[31] * 4*(21*r**4-30*r**2+10)*r**3*__sin__(3*u)
	Z32 =  Z[32] * 4*(21*r**4-30*r**2+10)*r**3*__cos__(3*u)
	Z33 =  Z[33] * 4*(7*r**2-6)*r**5*__sin__(5*u)
	Z34 =  Z[34] * 4*(7*r**2-6)*r**5*__cos__(5*u)
	Z35 =  Z[35] * 4*r**7*__sin__(7*u)
	Z36 =  Z[36] * 4*r**7*__cos__(7*u)
	Z37 =  Z[37] * 3*(70*r**8-140*r**6+90*r**4-20*r**2+1)


	Z = Z1 + Z2 +  Z3+  Z4+  Z5+  Z6+  Z7+  Z8+  Z9+ \
		Z10+ Z11+ Z12+ Z13+ Z14+ Z15+ Z16+ Z17+ Z18+ Z19+ \
		Z20+ Z21+ Z22+ Z23+ Z24+ Z25+ Z26+ Z27+ Z28+ Z29+ \
		Z30+ Z31+ Z32+ Z33+ Z34+ Z35+ Z36+ Z37
	return Z
Exemplo n.º 36
0
	def Z1(self,r,u):
		return 1*(__cos__(u)**2+__sin__(u)**2)