Exemplo n.º 1
0
    def test_numpy(self):
        assert chash(np.bool_(True)) == chash(np.bool_(True))

        assert chash(np.int8(1)) == chash(np.int8(1))
        assert chash(np.int16(1))
        assert chash(np.int32(1))
        assert chash(np.int64(1))

        assert chash(np.uint8(1))
        assert chash(np.uint16(1))
        assert chash(np.uint32(1))
        assert chash(np.uint64(1))

        assert chash(np.float32(1)) == chash(np.float32(1))
        assert chash(np.float64(1)) == chash(np.float64(1))
        assert chash(np.float128(1)) == chash(np.float128(1))

        assert chash(np.complex64(1+1j)) == chash(np.complex64(1+1j))
        assert chash(np.complex128(1+1j)) == chash(np.complex128(1+1j))
        assert chash(np.complex256(1+1j)) == chash(np.complex256(1+1j))

        assert chash(np.datetime64('2000-01-01')) == chash(np.datetime64('2000-01-01'))
        assert chash(np.timedelta64(1,'W')) == chash(np.timedelta64(1,'W'))

        self.assertRaises(ValueError, chash, np.object())

        assert chash(np.array([[1, 2], [3, 4]])) == \
            chash(np.array([[1, 2], [3, 4]]))
        assert chash(np.array([[1, 2], [3, 4]])) != \
            chash(np.array([[1, 2], [3, 4]]).T)
        assert chash(np.array([1, 2, 3])) == chash(np.array([1, 2, 3]))
        assert chash(np.array([1, 2, 3], dtype=np.int32)) != \
            chash(np.array([1, 2, 3], dtype=np.int64))
Exemplo n.º 2
0
 def test_cublasXtZgemm(self):
     a = (np.random.rand(4, 4)+1j*np.random.rand(4, 4)).astype(np.complex256)
     b = (np.random.rand(4, 4)+1j*np.random.rand(4, 4)).astype(np.complex256)
     c = np.zeros((4, 4), np.complex256)
     
     cublasxt.cublasXtZgemm(self.handle, cublasxt._CUBLAS_OP['N'],
                            cublasxt._CUBLAS_OP['N'], 4, 4, 4, np.complex256(1.0),
                            a.ctypes.data, 4, b.ctypes.data, 4, np.complex256(0.0),
                            c.ctypes.data, 4)
     np.allclose(np.dot(b.T, a.T).T, c)
Exemplo n.º 3
0
 def test_cublasXtZgemm(self):
     a = (np.random.rand(4, 4)+1j*np.random.rand(4, 4)).astype(np.complex256)
     b = (np.random.rand(4, 4)+1j*np.random.rand(4, 4)).astype(np.complex256)
     c = np.zeros((4, 4), np.complex256)
     
     cublasxt.cublasXtZgemm(self.handle,
                            'N', 'N', 4, 4, 4,
                            np.complex256(1.0),
                            a.ctypes.data, 4, b.ctypes.data, 4, np.complex256(0.0),
                            c.ctypes.data, 4)
     np.allclose(np.dot(b.T, a.T).T, c)
Exemplo n.º 4
0
 def test_cublasXtZgemm(self):
     a = (np.random.rand(4, 4)+1j*np.random.rand(4, 4)).astype(np.complex256)
     b = (np.random.rand(4, 4)+1j*np.random.rand(4, 4)).astype(np.complex256)
     c = np.zeros((4, 4), np.complex256)
     
     cublasxt.cublasXtDeviceSelect(handle, 2, np.array([0, 1], np.int32).ctypes.data)
     cublasxt.cublasXtZgemm(self.handle, cublasxt._CUBLAS_OP['N'],
                            cublasxt._CUBLAS_OP['N'], 4, 4, 4, np.complex256(1.0),
                            a.ctypes.data, 4, b.ctypes.data, 4, np.complex256(0.0),
                            c.ctypes.data, 4)
     np.allclose(np.dot(b.T, a.T).T, c)
Exemplo n.º 5
0
def dft(td_data, exp_array = None, return_double = False, inverse = False):

	N = len(td_data)

	if exp_array is None:
		# Make array of exp(-2 pi i f t) to multiply.  This is expensive, so only make
		# the code do it once.
		exp_array = find_exp_array(N, inverse = inverse)

	fd_data = np.zeros(N, dtype = np.complex256)

	# The first term is the DC component, which is just the sum.
	fd_data[0] = sum(np.complex256(td_data))

	# Since this function is most often called by fft(), N is most likely a prime, so assume
	# there are no more trivial multiplications
	if N == 2:
		fd_data[1] += td_data[0]
		fd_data[1] -= td_data[1]
	else:
		for i in range(1, N):
			fd_data[i] += td_data[0]
			for j in range(1, N):
				fd_data[i] += td_data[j] * exp_array[i * j % N]

	if return_double:
		return np.complex128(fd_data)
	else:
		return fd_data
Exemplo n.º 6
0
    def test_invalid(self) -> None:
        prop = bcpp.Int()

        assert not prop.is_valid(None)
        assert not prop.is_valid(0.0)
        assert not prop.is_valid(1.0)
        assert not prop.is_valid(1.0 + 1.0j)
        assert not prop.is_valid("")
        assert not prop.is_valid(())
        assert not prop.is_valid([])
        assert not prop.is_valid({})
        assert not prop.is_valid(_TestHasProps())
        assert not prop.is_valid(_TestModel())

        assert not prop.is_valid(np.bool8(False))
        assert not prop.is_valid(np.bool8(True))
        assert not prop.is_valid(np.float16(0))
        assert not prop.is_valid(np.float16(1))
        assert not prop.is_valid(np.float32(0))
        assert not prop.is_valid(np.float32(1))
        assert not prop.is_valid(np.float64(0))
        assert not prop.is_valid(np.float64(1))
        assert not prop.is_valid(np.complex64(1.0 + 1.0j))
        assert not prop.is_valid(np.complex128(1.0 + 1.0j))
        if hasattr(np, "complex256"):
            assert not prop.is_valid(np.complex256(1.0 + 1.0j))
Exemplo n.º 7
0
    def _create_base_matrix(self):
        # return 15x15 triangle numpy matrix under point model of scattering matrix
        
        # assign phases
        phi   = self.mirror_phases
        theta = self.edge_phases
        
        # define shorthand notation for matrix readability
        def ei(x):
            return np.complex256(np.exp(1j*x))

        sqt2 = np.sqrt(np.complex256(2)) 
        
        # create matrix
        non_zero_entries = {
                            (1,0)  : 1j*ei(theta['ab']),       (1,3)  : 1,
                            (2,0)  : 1,                        (2,3)  : 1j,
                            (3,7)  : ei(phi['a']+theta['ab']), (3,11) : 1j*ei(phi['a']),
                            (4,4)  : sqt2,                     (4,7)  : 1j*ei(theta['ab']),         (4,11) : 1,
                            (6,5)  : 1j*ei(theta['bc']),       (6,8)  : 1,
                            (7,5)  : 1,                        (7,8)  : 1j,
                            (8,1)  : 1j*ei(phi['b']),          (8,12) : ei(phi['b'] + theta['bc']),
                            (9,1)  : 1,                        (9,9)  : sqt2,                       (9,12) : 1j*ei(theta['bc']),
                            (11,10): 1j*ei(theta['ac']),       (11,13): 1,
                            (12,10): 1,                        (12,13): 1j,
                            (13,2) : ei(phi['c']+theta['ac']), (13,6) : 1j*ei(phi['c']),
                            (14,2) : 1j*ei(theta['ac']),       (14,6) : 1,                          (14,14): sqt2
                           }
        
        base_matrix = np.zeros((15,15), dtype=np.complex256)
        for idx,non_zero_entry in non_zero_entries.iteritems():
            base_matrix[idx] = non_zero_entry
        
        return np.multiply(1/sqt2, base_matrix)
Exemplo n.º 8
0
    def test_invalid(self):
        prop = bcpp.Int()

        assert not prop.is_valid(0.0)
        assert not prop.is_valid(1.0)
        assert not prop.is_valid(1.0+1.0j)
        assert not prop.is_valid("")
        assert not prop.is_valid(())
        assert not prop.is_valid([])
        assert not prop.is_valid({})
        assert not prop.is_valid(_TestHasProps())
        assert not prop.is_valid(_TestModel())

        assert not prop.is_valid(np.bool8(False))
        assert not prop.is_valid(np.bool8(True))
        assert not prop.is_valid(np.float16(0))
        assert not prop.is_valid(np.float16(1))
        assert not prop.is_valid(np.float32(0))
        assert not prop.is_valid(np.float32(1))
        assert not prop.is_valid(np.float64(0))
        assert not prop.is_valid(np.float64(1))
        assert not prop.is_valid(np.complex64(1.0+1.0j))
        assert not prop.is_valid(np.complex128(1.0+1.0j))
        if hasattr(np, "complex256"):
            assert not prop.is_valid(np.complex256(1.0+1.0j))
Exemplo n.º 9
0
Arquivo: cram.py Projeto: mqlove/ONIX
def CRAM16(At, N_0):
    """CRAM uses a Chebishev Rational Approximation Method of order 16 to compute the solution of the matricial depletion equation.

    Parameters
    ----------
    At: numpy.array
        Depletion matrix multiplied by the time interval over which nuclides are depleted
    N_0: numpy.array
        Initial nuclides' densities vector
    """

    print('CRAM CALLED')
    t0 = time.time()

    lN = len(N_0)

    theta = np.array([
        -1.0843917078696988026e1 + 1.9277446167181652284e1j,
        -5.2649713434426468895 + 1.6220221473167927305e1j,
        +5.9481522689511774808 + 3.5874573620183222829j,
        +3.5091036084149180974 + 8.4361989858843750826j,
        +6.4161776990994341923 + 1.1941223933701386874j,
        +1.4193758971856659786 + 1.0925363484496722585e1j,
        +4.9931747377179963991 + 5.9968817136039422260j,
        -1.4139284624888862114 + 1.3497725698892745389e1j
    ],
                     dtype=np.complex256)

    alpha_0 = np.complex256(2.1248537104952237488e-16 + 0.0j)

    alpha = np.array([
        -5.0901521865224915650e-7 - 2.4220017652852287970e-5j,
        +2.1151742182466030907e-4 + 4.3892969647380673918e-3j,
        +1.1339775178483930527e2 + 1.0194721704215856450e2j,
        +1.5059585270023467528e1 - 5.7514052776421819979j,
        -6.4500878025539646595e1 - 2.2459440762652096056e2j,
        -1.4793007113557999718 + 1.7686588323782937906j,
        -6.2518392463207918892e1 - 1.1190391094283228480e1j,
        +4.1023136835410021273e-2 - 1.5743466173455468191e-1j
    ],
                     dtype=np.complex256)

    l = len(theta)
    N = N_0 * 0
    _N = np.zeros((lN), dtype=np.complex128)

    for i in range(l):
        term1 = At - theta[i] * np.identity(np.shape(At)[0])
        term2 = alpha[i] * N_0
        _N += np.linalg.solve(term1, term2)

    N = 2 * _N.real
    N = N + alpha_0 * N_0
    # For some reason here N is still complex and not only real

    print('CRAM took:{} s'.format(time.time() - t0))

    return N.real
Exemplo n.º 10
0
    def test_save_longcomplex(self):
        val = np.complex256(1.01 + 2.3j)
        data = {'val': val}
        with pytest.warns(UserWarning) as record:
            save_data(data, 'bubu' + HEN_FILE_EXTENSION)
        assert "complex256 yet unsupported" in record[0].message.args[0]
        data_out = load_data('bubu' + HEN_FILE_EXTENSION)

        assert np.allclose(data['val'], data_out['val'])
Exemplo n.º 11
0
    def check_numpy_scalar_argument_return_complex(self):
        f = PyCFunction('foo')
        f += Variable('a1', numpy.complex64, 'in, out')
        f += Variable('a2', numpy.complex128, 'in, out')
        f += Variable('a3', numpy.complex256, 'in, out')
        foo = f.build()
        args = 1+2j,1+2j,1+2j
        results = (numpy.complex64(1+2j),numpy.complex128(1+2j),numpy.complex256(1+2j))
        assert_equal(foo(*args),results)

        f = PyCFunction('foo')
        f += Variable('a1', 'npy_complex64', 'in, out')
        f += Variable('a2', 'npy_complex128', 'in, out')
        f += Variable('a3', 'npy_complex256', 'in, out')

        foo = f.build()
        args = (1+2j, 1+2j, 1+2j)
        results = (numpy.complex64(1+2j),numpy.complex128(1+2j),numpy.complex256(1+2j))
        assert_equal(foo(*args),results)
Exemplo n.º 12
0
    def check_numpy_scalar_argument_return_complex(self):
        f = PyCFunction('foo')
        f += Variable('a1', numpy.complex64, 'in, out')
        f += Variable('a2', numpy.complex128, 'in, out')
        f += Variable('a3', numpy.complex256, 'in, out')
        foo = f.build()
        args = 1 + 2j, 1 + 2j, 1 + 2j
        results = (numpy.complex64(1 + 2j), numpy.complex128(1 + 2j),
                   numpy.complex256(1 + 2j))
        assert_equal(foo(*args), results)

        f = PyCFunction('foo')
        f += Variable('a1', 'npy_complex64', 'in, out')
        f += Variable('a2', 'npy_complex128', 'in, out')
        f += Variable('a3', 'npy_complex256', 'in, out')

        foo = f.build()
        args = (1 + 2j, 1 + 2j, 1 + 2j)
        results = (numpy.complex64(1 + 2j), numpy.complex128(1 + 2j),
                   numpy.complex256(1 + 2j))
        assert_equal(foo(*args), results)
def test_approx_eq_mixed_types():
    assert cirq.approx_eq(np.float32(1), 1.0 + 1e-10, atol=1e-9)
    assert cirq.approx_eq(np.float64(1), np.complex64(1 + 1e-8j), atol=1e-4)
    assert cirq.approx_eq(np.uint8(1), np.complex64(1 + 1e-8j), atol=1e-4)
    if hasattr(np, 'complex256'):
        assert cirq.approx_eq(np.complex256(1), complex(1, 1e-8), atol=1e-4)
    assert cirq.approx_eq(np.int32(1), 1, atol=1e-9)
    assert cirq.approx_eq(complex(0.5, 0), Fraction(1, 2), atol=0.0)
    assert cirq.approx_eq(0.5 + 1e-4j, Fraction(1, 2), atol=1e-4)
    assert cirq.approx_eq(0, Fraction(1, 100000000), atol=1e-8)
    assert cirq.approx_eq(np.uint16(1), Decimal('1'), atol=0.0)
    assert cirq.approx_eq(np.float64(1.0), Decimal('1.00000001'), atol=1e-8)
    assert not cirq.approx_eq(np.complex64(1e-5j), Decimal('0.001'), atol=1e-4)
Exemplo n.º 14
0
    def test_Complex(self):
        prop = Complex()

        self.assertTrue(prop.is_valid(None))
        # TODO: self.assertFalse(prop.is_valid(False))
        # TODO: self.assertFalse(prop.is_valid(True))
        self.assertTrue(prop.is_valid(0))
        self.assertTrue(prop.is_valid(1))
        self.assertTrue(prop.is_valid(0.0))
        self.assertTrue(prop.is_valid(1.0))
        self.assertTrue(prop.is_valid(1.0 + 1.0j))
        self.assertFalse(prop.is_valid(""))
        self.assertFalse(prop.is_valid(()))
        self.assertFalse(prop.is_valid([]))
        self.assertFalse(prop.is_valid({}))
        self.assertFalse(prop.is_valid(Foo()))

        try:
            import numpy as np

            # TODO: self.assertFalse(prop.is_valid(np.bool8(False)))
            # TODO: self.assertFalse(prop.is_valid(np.bool8(True)))
            self.assertTrue(prop.is_valid(np.int8(0)))
            self.assertTrue(prop.is_valid(np.int8(1)))
            self.assertTrue(prop.is_valid(np.int16(0)))
            self.assertTrue(prop.is_valid(np.int16(1)))
            self.assertTrue(prop.is_valid(np.int32(0)))
            self.assertTrue(prop.is_valid(np.int32(1)))
            self.assertTrue(prop.is_valid(np.int64(0)))
            self.assertTrue(prop.is_valid(np.int64(1)))
            self.assertTrue(prop.is_valid(np.uint8(0)))
            self.assertTrue(prop.is_valid(np.uint8(1)))
            self.assertTrue(prop.is_valid(np.uint16(0)))
            self.assertTrue(prop.is_valid(np.uint16(1)))
            self.assertTrue(prop.is_valid(np.uint32(0)))
            self.assertTrue(prop.is_valid(np.uint32(1)))
            self.assertTrue(prop.is_valid(np.uint64(0)))
            self.assertTrue(prop.is_valid(np.uint64(1)))
            self.assertTrue(prop.is_valid(np.float16(0)))
            self.assertTrue(prop.is_valid(np.float16(1)))
            self.assertTrue(prop.is_valid(np.float32(0)))
            self.assertTrue(prop.is_valid(np.float32(1)))
            self.assertTrue(prop.is_valid(np.float64(0)))
            self.assertTrue(prop.is_valid(np.float64(1)))
            self.assertTrue(prop.is_valid(np.complex64(1.0 + 1.0j)))
            self.assertTrue(prop.is_valid(np.complex128(1.0 + 1.0j)))
            self.assertTrue(prop.is_valid(np.complex256(1.0 + 1.0j)))
        except ImportError:
            pass
Exemplo n.º 15
0
    def test_Complex(self):
        prop = Complex()

        self.assertTrue(prop.is_valid(None))
        # TODO: self.assertFalse(prop.is_valid(False))
        # TODO: self.assertFalse(prop.is_valid(True))
        self.assertTrue(prop.is_valid(0))
        self.assertTrue(prop.is_valid(1))
        self.assertTrue(prop.is_valid(0.0))
        self.assertTrue(prop.is_valid(1.0))
        self.assertTrue(prop.is_valid(1.0+1.0j))
        self.assertFalse(prop.is_valid(""))
        self.assertFalse(prop.is_valid(()))
        self.assertFalse(prop.is_valid([]))
        self.assertFalse(prop.is_valid({}))
        self.assertFalse(prop.is_valid(Foo()))

        try:
            import numpy as np
            # TODO: self.assertFalse(prop.is_valid(np.bool8(False)))
            # TODO: self.assertFalse(prop.is_valid(np.bool8(True)))
            self.assertTrue(prop.is_valid(np.int8(0)))
            self.assertTrue(prop.is_valid(np.int8(1)))
            self.assertTrue(prop.is_valid(np.int16(0)))
            self.assertTrue(prop.is_valid(np.int16(1)))
            self.assertTrue(prop.is_valid(np.int32(0)))
            self.assertTrue(prop.is_valid(np.int32(1)))
            self.assertTrue(prop.is_valid(np.int64(0)))
            self.assertTrue(prop.is_valid(np.int64(1)))
            self.assertTrue(prop.is_valid(np.uint8(0)))
            self.assertTrue(prop.is_valid(np.uint8(1)))
            self.assertTrue(prop.is_valid(np.uint16(0)))
            self.assertTrue(prop.is_valid(np.uint16(1)))
            self.assertTrue(prop.is_valid(np.uint32(0)))
            self.assertTrue(prop.is_valid(np.uint32(1)))
            self.assertTrue(prop.is_valid(np.uint64(0)))
            self.assertTrue(prop.is_valid(np.uint64(1)))
            self.assertTrue(prop.is_valid(np.float16(0)))
            self.assertTrue(prop.is_valid(np.float16(1)))
            self.assertTrue(prop.is_valid(np.float32(0)))
            self.assertTrue(prop.is_valid(np.float32(1)))
            self.assertTrue(prop.is_valid(np.float64(0)))
            self.assertTrue(prop.is_valid(np.float64(1)))
            self.assertTrue(prop.is_valid(np.complex64(1.0+1.0j)))
            self.assertTrue(prop.is_valid(np.complex128(1.0+1.0j)))
            self.assertTrue(prop.is_valid(np.complex256(1.0+1.0j)))
        except ImportError:
            pass
Exemplo n.º 16
0
    def test_invalid(self):
        prop = bcpp.Float()

        assert not prop.is_valid(1.0 + 1.0j)
        assert not prop.is_valid("")
        assert not prop.is_valid(())
        assert not prop.is_valid([])
        assert not prop.is_valid({})
        assert not prop.is_valid(_TestHasProps())
        assert not prop.is_valid(_TestModel())

        assert not prop.is_valid(np.bool8(False))
        assert not prop.is_valid(np.bool8(True))
        assert not prop.is_valid(np.complex64(1.0 + 1.0j))
        assert not prop.is_valid(np.complex128(1.0 + 1.0j))
        if hasattr(np, "complex256"):
            assert not prop.is_valid(np.complex256(1.0 + 1.0j))
Exemplo n.º 17
0
 def __read_coefComp_previ(self):
     fit = open("./coef/" + self.fit + ".cnf", "r")
     lis = fit.readlines()
     fit.close()
     coef = []
     nom = []
     for i, item in enumerate(lis):
         aux = []
         linia = item.replace("\n", "")
         tros = linia.split(" ")
         for j, jtem in enumerate(tros):
             if (is_real(jtem)):
                 aux.append(np.float128(jtem))
             elif (is_complex(jtem)):
                 aux.append(np.complex256(complex(jtem)))
             elif (j == 0):
                 nom.append(jtem[0])
         if (len(aux) > 0):
             coef.append(aux)
     return nom, coef
Exemplo n.º 18
0
    def test_valid(self):
        prop = bcpp.Complex()

        assert prop.is_valid(None)

        assert prop.is_valid(0)
        assert prop.is_valid(1)
        assert prop.is_valid(0.0)
        assert prop.is_valid(1.0)
        assert prop.is_valid(1.0+1.0j)

        assert prop.is_valid(np.int8(0))
        assert prop.is_valid(np.int8(1))
        assert prop.is_valid(np.int16(0))
        assert prop.is_valid(np.int16(1))
        assert prop.is_valid(np.int32(0))
        assert prop.is_valid(np.int32(1))
        assert prop.is_valid(np.int64(0))
        assert prop.is_valid(np.int64(1))
        assert prop.is_valid(np.uint8(0))
        assert prop.is_valid(np.uint8(1))
        assert prop.is_valid(np.uint16(0))
        assert prop.is_valid(np.uint16(1))
        assert prop.is_valid(np.uint32(0))
        assert prop.is_valid(np.uint32(1))
        assert prop.is_valid(np.uint64(0))
        assert prop.is_valid(np.uint64(1))
        assert prop.is_valid(np.float16(0))
        assert prop.is_valid(np.float16(1))
        assert prop.is_valid(np.float32(0))
        assert prop.is_valid(np.float32(1))
        assert prop.is_valid(np.float64(0))
        assert prop.is_valid(np.float64(1))
        assert prop.is_valid(np.complex64(1.0+1.0j))
        assert prop.is_valid(np.complex128(1.0+1.0j))
        if hasattr(np, "complex256"):
            assert prop.is_valid(np.complex256(1.0+1.0j))

        # TODO (bev) should fail
        assert prop.is_valid(False)
        assert prop.is_valid(True)
Exemplo n.º 19
0
    def test_invalid(self):
        prop = bcpp.Bool()

        assert not prop.is_valid(0)
        assert not prop.is_valid(1)
        assert not prop.is_valid(0.0)
        assert not prop.is_valid(1.0)
        assert not prop.is_valid(1.0 + 1.0j)
        assert not prop.is_valid("")
        assert not prop.is_valid(())
        assert not prop.is_valid([])
        assert not prop.is_valid({})
        assert not prop.is_valid(_TestHasProps())
        assert not prop.is_valid(_TestModel())

        assert not prop.is_valid(np.int8(0))
        assert not prop.is_valid(np.int8(1))
        assert not prop.is_valid(np.int16(0))
        assert not prop.is_valid(np.int16(1))
        assert not prop.is_valid(np.int32(0))
        assert not prop.is_valid(np.int32(1))
        assert not prop.is_valid(np.int64(0))
        assert not prop.is_valid(np.int64(1))
        assert not prop.is_valid(np.uint8(0))
        assert not prop.is_valid(np.uint8(1))
        assert not prop.is_valid(np.uint16(0))
        assert not prop.is_valid(np.uint16(1))
        assert not prop.is_valid(np.uint32(0))
        assert not prop.is_valid(np.uint32(1))
        assert not prop.is_valid(np.uint64(0))
        assert not prop.is_valid(np.uint64(1))
        assert not prop.is_valid(np.float16(0))
        assert not prop.is_valid(np.float16(1))
        assert not prop.is_valid(np.float32(0))
        assert not prop.is_valid(np.float32(1))
        assert not prop.is_valid(np.float64(0))
        assert not prop.is_valid(np.float64(1))
        assert not prop.is_valid(np.complex64(1.0 + 1.0j))
        assert not prop.is_valid(np.complex128(1.0 + 1.0j))
        if hasattr(np, "complex256"):
            assert not prop.is_valid(np.complex256(1.0 + 1.0j))
Exemplo n.º 20
0
    def test_valid(self):
        prop = bcpp.Complex()

        assert prop.is_valid(None)

        assert prop.is_valid(0)
        assert prop.is_valid(1)
        assert prop.is_valid(0.0)
        assert prop.is_valid(1.0)
        assert prop.is_valid(1.0 + 1.0j)

        assert prop.is_valid(np.int8(0))
        assert prop.is_valid(np.int8(1))
        assert prop.is_valid(np.int16(0))
        assert prop.is_valid(np.int16(1))
        assert prop.is_valid(np.int32(0))
        assert prop.is_valid(np.int32(1))
        assert prop.is_valid(np.int64(0))
        assert prop.is_valid(np.int64(1))
        assert prop.is_valid(np.uint8(0))
        assert prop.is_valid(np.uint8(1))
        assert prop.is_valid(np.uint16(0))
        assert prop.is_valid(np.uint16(1))
        assert prop.is_valid(np.uint32(0))
        assert prop.is_valid(np.uint32(1))
        assert prop.is_valid(np.uint64(0))
        assert prop.is_valid(np.uint64(1))
        assert prop.is_valid(np.float16(0))
        assert prop.is_valid(np.float16(1))
        assert prop.is_valid(np.float32(0))
        assert prop.is_valid(np.float32(1))
        assert prop.is_valid(np.float64(0))
        assert prop.is_valid(np.float64(1))
        assert prop.is_valid(np.complex64(1.0 + 1.0j))
        assert prop.is_valid(np.complex128(1.0 + 1.0j))
        if hasattr(np, "complex256"):
            assert prop.is_valid(np.complex256(1.0 + 1.0j))

        # TODO (bev) should fail
        assert prop.is_valid(False)
        assert prop.is_valid(True)
Exemplo n.º 21
0
 def full_source_from_model(self, m, nix, **kwargs):
     """Use the data from a model at a timestep nix to calculate the full source term S."""
     #Get background values
     bgvars = m.yresult[nix, 0:3, 0]
     a = m.ainit*np.exp(m.tresult[nix])
     
     if np.any(np.isnan(bgvars[0])):
         raise AttributeError("Background values not available for this timestep.")
                    
     k = self.srceqns.k
             #Get potentials
     potentials = m.potentials(np.array([bgvars[0]]), m.pot_params)
     Cterms = self.calculate_Cterms(bgvars, a, potentials)
     
     results = np.complex256(self.J_terms[0](k, Cterms, **kwargs))
     #Get component integrals
     for term in self.J_terms[1:]:
         results += term(k, Cterms, **kwargs)
             
     src = 1 / ((2*np.pi)**2) * results
     return src
Exemplo n.º 22
0
def rdft(td_data, exp_array = None, return_double = False, return_full = False):

	N = len(td_data)
	N_out = N // 2 + 1

	if exp_array is None:
		# Make array of exp(-2 pi i f t) to multiply.  This is expensive, so only make
		# the code do it once.
		exp_array = find_exp_array(N)

	if return_full:
		fd_data = np.zeros(N, dtype = np.complex256)
	else:
		fd_data = np.zeros(N_out, dtype = np.complex256)

	# The first term is the DC component, which is just the sum.
	fd_data[0] = sum(np.complex256(td_data))

	# Since this function is most often called by fft(), N is most likely a prime, so assume
	# there are no more trivial multiplications
	if N == 2:
		fd_data[1] += td_data[0]
		fd_data[1] -= td_data[1]
	else:
		for i in range(1, N_out):
			fd_data[i] += td_data[0]
			for j in range(1, N):
				fd_data[i] += td_data[j] * exp_array[i * j % N]

	if return_full and N > 2:
		# Then fill in the second half
		fd_data[N_out : N] = np.conj(fd_data[1 : N - N_out + 1][::-1])

	if return_double:
		return np.complex128(fd_data)
	else:
		return fd_data
Exemplo n.º 23
0
def fft(td_data, prime_factors = None, exp_array = None, return_double = False, inverse = False, M = None, M_prime_factors = None, M_exp_array2 = None, M_exp_array = None):

	N = len(td_data)

	if N < 2:
		if return_double:
			return np.complex128(td_data)
		else:
			return np.complex256(td_data)

	if prime_factors is None:
		# Find prime factors
		prime_factors = find_prime_factors(N)

		# Check if we will need to use prime_fft() for this
		if prime_factors[-2] >= 37:
			# Find the first member greater than or equal to 37
			i = 0
			while prime_factors[i] < 37:
				i += 1
			M, M_prime_factors = find_M(2 * np.product(prime_factors[i:]) - 1)

			M_exp_array2 = find_exp_array2(np.product(prime_factors[i:]), inverse = inverse)
			M_exp_array = find_exp_array(M)

	if exp_array is None and prime_factors[0] < 37:
		# Make array of exp(-2 pi i f t) to multiply.  This is expensive, so only make
		# the code do it once.
		exp_array = find_exp_array(N, inverse = inverse)

	if prime_factors[0] >= 37:
		# Use Bluestein's algorithm for a prime-length fft
		return prime_fft(td_data, return_double = return_double, inverse = inverse, exp_array2 = M_exp_array2, M = M, prime_factors = M_prime_factors, exp_array = M_exp_array)
	elif prime_factors[0] == N:
		# Do an ordinary DFT
		return dft(td_data, exp_array = exp_array, return_double = return_double)
	else:
		# We will break this up into smaller Fourier transforms
		fd_data = np.zeros(N, dtype = np.complex256)
		num_ffts = prime_factors[0]
		N_mini = N // num_ffts
		for i in range(num_ffts):
			fd_data[i * N_mini : (i + 1) * N_mini] = fft(td_data[i::num_ffts], prime_factors = prime_factors[1:], exp_array = exp_array[::num_ffts], return_double = False, M = M, M_prime_factors = M_prime_factors, M_exp_array2 = M_exp_array2, M_exp_array = M_exp_array)

		# Now we need to "mix" the output appropriately.  First, copy all but the first fft.
		fd_data_copy = np.copy(fd_data[N_mini:])

		# Apply phase rotations to all but the first fft
		for i in range(N_mini, N):
			exp_index = (i * (i // N_mini)) % N
			# Do a multiplication only if we have to
			if(exp_index):
				fd_data[i] *= exp_array[exp_index]

		# Add the first fft to all the others
		for i in range(N_mini, N, N_mini):
			fd_data[i : i + N_mini] += fd_data[:N_mini]

		# Now we have to use the copied data.  Apply phase rotations and add to all other locations.
		for i in range(N_mini, N):
			copy_index = i - N_mini
			dst_indices = list(range(i % N_mini, N, N_mini))
			# We've already taken care of the below contribution (2 for loops ago), so remove it
			dst_indices.remove(i)
			for j in dst_indices:
				exp_index = (j * (i // N_mini)) % N
				# Do a multiplication only if we have to
				if(exp_index):
					fd_data[j] += fd_data_copy[copy_index] * exp_array[exp_index]
				else:
					fd_data[j] += fd_data_copy[copy_index]
		# Done
		if return_double:
			return np.complex128(fd_data)
		else:
			return fd_data
Exemplo n.º 24
0
 def ei(x):
     return np.complex256(np.exp(1j*x))
Exemplo n.º 25
0
def resample(data, N_out, return_double = False):

	N_out = int(N_out)

	# Number of input samples
	N_in = len(data)

	# Max and min
	N_max = max(N_in, N_out)
	N_min = min(N_in, N_out)

	if N_in < 2 or N_in == N_out:
		return data

	# Is the input data complex?  If so, the output should be as well.
	is_complex = isinstance(data[0], complex)

	if N_out == 0:
		if is_complex:
			if return_double:
				return np.array([], dtype = np.complex128)
			else:
				return np.array([], dtype = np.complex256)
		else:
			if return_double:
				return np.array([], dtype = np.float64)
			else:
				return np.array([], dtype = np.float128)

	if N_out == 1:
		# Return the average
		return np.array([sum(data) / N_in])

	if is_complex:
		resampled = np.zeros(N_out, dtype = np.complex256)
	else:
		resampled = np.zeros(N_out, dtype = np.float128)

	if N_in == 2:
		# Linear interpolation.  If we've reached this point, we know that N_out >= 3.
		if is_complex:
			diff = np.complex256(data[1]) - np.complex256(data[0])
		else:
			diff = np.float128(data[1]) - np.float128(data[0])
		resampled = diff * np.array(range(N_out)) / (N_out - 1) + data[0]

	else:
		# Are we upsampling or downsampling?
		upordown = 'up' if N_in < N_out else 'down'

		# Find the least common multiple of input and output lengths to determine the
		# lenth of the sinc array.
		short_length = N_min - 1
		long_length = N_max - 1
		LCM = long_length
		while LCM % short_length:
			LCM += long_length

		# Number of sinc taps per sample at the higher sample rate
		sinc_taps_per_sample = LCM // long_length
		# Number of sinc taps per sample at the lower sample rate
		long_sinc_taps_per_sample = LCM // short_length

		sinc_length = min(N_min, 192) * long_sinc_taps_per_sample
		sinc_length -= (sinc_length + 1) % 2
		sinc = np.zeros(sinc_length, dtype = np.float128)
		sinc[sinc_length // 2] = 1.0

		# Frequency resolution in units of frequency bins of sinc
		alpha = (1 + min(192, N_min) / 24.0)
		# Low-pass cutoff frequency as a fraction of the sampling frequency of sinc
		f_cut = 0.5 / long_sinc_taps_per_sample - alpha / sinc_length
		if f_cut > 0:
			for i in range(1, sinc_length // 2 + 1):
				sinc[sinc_length // 2 + i] = sinc[sinc_length // 2 - i] = np.sin(two_pi * ((f_cut * i) % 1)) / (two_pi * f_cut * i)
		else:
			sinc = np.ones(sinc_length, dtype = np.float128)

		# Apply a Kaiser window.  Note that the chosen cutoff frequency is below the
		# lower Nyquist rate just enough to be at the end of the main lobe.
		sinc *= kaiser(sinc_length, pi * alpha)

		# Normalize the sinc filter.  Since, in general, not every tap gets used for
		# each output sample, the normalization has to be done this way:
		if upordown == 'down':
			taps_per_input = sinc_taps_per_sample
			taps_per_output = long_sinc_taps_per_sample
		else:
			taps_per_input = long_sinc_taps_per_sample
			taps_per_output = sinc_taps_per_sample

		for i in range(taps_per_input):
			sinc[i::taps_per_input] /= np.sum(sinc[i::taps_per_input])

		# Extend the input array at the ends to prepare for filtering
		half_sinc_length = sinc_length // 2
		N_ext = half_sinc_length // taps_per_input
		data = np.concatenate((-data[1:1+N_ext][::-1] + 2 * np.real(data[0]), data, -data[-N_ext-1:-1][::-1] + 2 * np.real(data[-1])))

		# Filter.  The center of sinc should line up with the first and last input
		# at the first and last output, respectively.
		for i in range(N_out):
			sinc_start = (half_sinc_length - i * taps_per_output % taps_per_input) % taps_per_input
			data_start = (i * taps_per_output - half_sinc_length + N_ext * taps_per_input + taps_per_input - 1) // taps_per_input
			sinc_subset = sinc[sinc_start::taps_per_input]
			resampled[i] = np.sum(sinc_subset * data[data_start:data_start+len(sinc_subset)])

	if return_double:
		if is_complex:
			return np.complex128(resampled)
		else:
			return np.float64(resampled)
	else:
		return resampled
Exemplo n.º 26
0
import numpy as np
'''
np.int32
np.int16
np.int64
np.uint8

вещественные типы
np.float32
np.float64

комплескные числа
np.complex128
np.complex256 (мб его нет)

булевский тип
np.bool

___________________________________________
'''
# Создание массива:
# из списка
a = [1, 2, 3]
ar = np.array(a)
print(ar.shape)  # измерение = 3
print(ar.size)  # общее кол-во эл-тов

b = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
br = np.array(b, dtype=np.float64)
print(br.shape)
Exemplo n.º 27
0
 def test_complex256_array5(self):
     self.run_test('def complex256_array5(x): return x',
                   np.complex256(1 + 1j),
                   complex256_array5=[np.complex256])
Exemplo n.º 28
0
 def test_complex256_array5(self):
     self.run_test('def complex256_array5(x): return x',
                   np.complex256(1 + 1j),
                   complex256_array5=[np.complex256])
Exemplo n.º 29
0
# %%
arr = np.asanyarray(
    proxy_img.dataobj
)  # array will create a copy; asarray passes through arrays; asanyarray passes subclasses like memmap through
print(arr.dtype)
arr

# %% [markdown]
# Memory maps are arrays that remain on disk, rather than in RAM. This is only possible with uncompressed images.
#
# We can also cast to any type we please, however unwisely.

# %%
print(np.uint8(proxy_img.dataobj))  # Values over 255 will be truncated
print(np.complex256(proxy_img.dataobj))  # A life less ordinal

# %% [markdown] slideshow={"slide_type": "subslide"}
# ### Indexing and slicing array proxies
#
# One of the primary motivations for an array proxy is to avoid loading data unnecessarily. Accessing the array proxy with array indices or slices will return the requested values without loading other data:

# %% slideshow={"slide_type": "-"}
print(proxy_img.dataobj[0])
print(proxy_img.dataobj[..., 1:3])

# %% [markdown]
# For example, this is useful for fetching a single volume from a BOLD series:

# %%
vol0 = bold.dataobj[..., 0]
Exemplo n.º 30
0
def rfft(td_data, prime_factors = None, exp_array = None, return_double = False, return_full = False, M = None, M_prime_factors = None, M_exp_array2 = None, M_exp_array = None):

	N = len(td_data)
	N_out = N // 2 + 1

	if N < 2:
		if return_double:
			return np.complex128(td_data)
		else:
			return np.complex256(td_data)

	if prime_factors is None:
		# Find prime factors
		prime_factors = find_prime_factors(N)

		# Check if we will need to use prime_rfft() for this
		if prime_factors[-2] >= 61:
			# Find the first member greater than or equal to 61
			i = 0
			while prime_factors[i] < 61:
				i += 1
			M_in = np.product(prime_factors[i:])
			M_out = M_in // 2 + 1
			M, M_prime_factors = find_M(M_in + M_out - 1)
			M_exp_array2 = find_exp_array2(M_in)
			M_exp_array = find_exp_array(M)

	if exp_array is None and prime_factors[0] < 61:
		# Make array of exp(-2 pi i f t) to multiply.  This is expensive, so only make
		# the code do it once.
		exp_array = find_exp_array(N)

	if prime_factors[0] >= 61:
		# Use Bluestein's algorithm for a prime-length fft
		return prime_rfft(td_data, return_double = return_double, return_full = return_full, exp_array2 = M_exp_array2, M = M, prime_factors = M_prime_factors, exp_array = M_exp_array)
	elif prime_factors[0] == N:
		# Do an ordinary DFT
		return rdft(td_data, exp_array = exp_array, return_double = return_double, return_full = return_full)
	else:
		# We will break this up into smaller Fourier transforms.  Therefore, we still
		# need to allocate enough memory for N elements.
		fd_data = np.zeros(N, dtype = np.complex256)
		num_ffts = prime_factors[0]
		N_mini = N // num_ffts
		N_mini_out = N_mini // 2 + 1		
		for i in range(num_ffts):
			fd_data[i * N_mini : (i + 1) * N_mini] = rfft(td_data[i::num_ffts], prime_factors = prime_factors[1:], exp_array = exp_array[::num_ffts], return_double = False, return_full = True, M = M, M_prime_factors = M_prime_factors, M_exp_array2 = M_exp_array2, M_exp_array = M_exp_array)

		# Now we need to "mix" the output appropriately.  First, copy all but the first fft.
		populated_indices = [x for x in range(N_mini, N) if x % N_mini < N_mini_out]
		fd_data_copy = fd_data[populated_indices]

		# Apply phase rotations to all but the first fft
		for i in range(N_mini, N_out):
			exp_index = (i * (i // N_mini)) % N
			# Do a multiplication only if we have to
			if(exp_index):
				fd_data[i] *= exp_array[exp_index]

		# Add the first fft to all the others
		for i in range(N_mini, N_out, N_mini):
			fd_data[i : i + N_mini] += fd_data[:N_mini]

		# Now we have to use the copied data.  Apply phase rotations and add to all other locations.
		for i in range(len(fd_data_copy)):
			original_index = N_mini + i // N_mini_out * N_mini + i % N_mini_out
			dst_indices = list(range(original_index % N_mini, N_out, N_mini))
			if original_index in dst_indices:
				# We've already taken care of this contribution (2 for loops ago), so remove it
				dst_indices.remove(original_index)
			for j in dst_indices:
				exp_index = (j * (original_index // N_mini)) % N
				# Do a multiplication only if we have to
				if(exp_index):
					fd_data[j] += fd_data_copy[i] * exp_array[exp_index]
				else:
					fd_data[j] += fd_data_copy[i]

			if original_index % N_mini and original_index % N_mini < (N_mini + 1) // 2:
				# Then handle the contribution from the complex conjugate
				original_index += N_mini - 2 * (original_index % N_mini)
				dst_indices = list(range(original_index % N_mini, N_out, N_mini))
				if original_index in dst_indices:
					# We've already taken care of this contribution, so remove it
					dst_indices.remove(original_index)
				for j in dst_indices:
					exp_index = (j * (original_index // N_mini)) % N
					# Do a multiplication only if we have to
					if(exp_index):
						fd_data[j] += np.conj(fd_data_copy[i]) * exp_array[exp_index]
					else:
						fd_data[j] += np.conj(fd_data_copy[i])

		if not N % 2:
			# The Nyquist component is real
			fd_data[N_out - 1] = np.real(fd_data[N_out - 1]) + 0j

		if return_full and N > 2:
			# Then fill in the second half
			fd_data[N_out : N] = np.conj(fd_data[1 : N - N_out + 1][::-1])
			if return_double:
				return np.complex128(fd_data)
			else:
				return fd_data
		else:
			# Shorten the array
			if return_double:
				return np.complex128(fd_data[:N_out])
			else:
				return fd_data[:N_out]
 def ei(x): return np.complex256(np.exp(1j*x))
 non_zero_entries = {
Exemplo n.º 32
0

ax1 = pylab.subplot2grid((2, 2), (0, 0))
draw_pz("Unquantized Pairs", pairs)
pylab.subplot2grid((2, 2), (0, 1), sharex=ax1, sharey=ax1)
draw_pz("Quantized Pairs", fqpairs)

print("")
print(
    "***********************************************************************")
print("Quantized pole-zero pairs")
print(
    "***********************************************************************")
for (pair, qpair) in zip(pairs, fqpairs):
    print "Poles:"
    print map(np.abs, np.complex256(qpair[0]))
    print "Zeros:"
    print map(np.abs, np.complex256(qpair[1]))
    if max(map(abs, qpair[0])) > 1.0:
        print "Warning! Quantized pole outside of unit circle!"
        print "Unquantized Poles:"
        print map(np.abs, np.float128(pair[0]))
        print "Unquantized Zeros:"
        print map(np.abs, np.float128(pair[1]))

print("")
print(
    "***********************************************************************")
print("Quantized sections (Q{}.{}):".format(31 - frac_bits, frac_bits))
print(
    "***********************************************************************")
Exemplo n.º 33
0
    numpy_type_dict = {
        type(int()): '<i8',
        # type(np.float128()): '<f16',
        # type(np.complex256()): '<c32',
        type(complex()): '<c16',
        # type(str()): '|S1',  # added below depending on version
        type(bool()): '|b1',
        type(float()): '<f8',
    }

else:
    numpy_type_dict = {
        type(int()): '<i8',
        type(np.float128()): '<f16',
        type(np.complex256()): '<c32',
        type(complex()): '<c16',
        # type(str()): '|S1',  # added below depending on version
        type(bool()): '|b1',
        type(float()): '<f8',
    }

if sys.version_info[0] == 2:
    numpy_type_dict.update({
        type(long()): '<i8',
        type(unicode()): '|U1',
        type(str()): '|S1'
    })
else:
    numpy_type_dict.update({
        type(str()): '|U1',
Exemplo n.º 34
0
        # type(np.float128()): '<f16',
        # type(np.complex256()): '<c32',
        type(complex()):
        '<c16',
        # type(str()): '|S1',  # added below depending on version
        type(bool()):
        '|b1',
        type(float()):
        '<f8',
    }

else:
    numpy_type_dict = {
        type(int()): '<i8',
        type(np.float128()): '<f16',
        type(np.complex256()): '<c32',
        type(complex()): '<c16',
        # type(str()): '|S1',  # added below depending on version
        type(bool()): '|b1',
        type(float()): '<f8',
    }

if sys.version_info[0] == 2:
    numpy_type_dict.update({
        type(long()): '<i8',
        type(unicode()): '|U1',
        type(str()): '|S1'
    })
else:
    numpy_type_dict.update({type(str()): '|U1', type(bytes()): '|S1'})
Exemplo n.º 35
0
import numpy as np

reveal_type(np.uint128())
reveal_type(np.uint256())

reveal_type(np.int128())
reveal_type(np.int256())

reveal_type(np.float80())
reveal_type(np.float96())
reveal_type(np.float128())
reveal_type(np.float256())

reveal_type(np.complex160())
reveal_type(np.complex192())
reveal_type(np.complex256())
reveal_type(np.complex512())
Exemplo n.º 36
0
    def run(self):
        while self.isRunning():
            self.mutex.lock()
            devicePixelRatio = self.devicePixelRatio
            resultSize = self.resultSize * devicePixelRatio
            requestedScaleFactor = self.scaleFactor
            scaleFactor = requestedScaleFactor / devicePixelRatio
            centerX = self.centerX
            centerY = self.centerY
            self.mutex.unlock()

            halfWidth = resultSize.width() // 2
            halfHeight = resultSize.height() // 2
            image = QImage(resultSize, QImage.Format_RGB32)
            image.setDevicePixelRatio(devicePixelRatio)

            NumPasses = 8
            curpass = 0

            while curpass < NumPasses:
                Limit = int(BailoutRadius)
                allBlack = True

                for y in range(-halfHeight, halfHeight):
                    if self.restart:
                        break
                    if self.abort:
                        return

                    ay = (centerY + (y * scaleFactor))
                    ayy = 1j * (centerY + (y * scaleFactor))

                    for x in range(-halfWidth, halfWidth):
                        c0 = centerX + (x * scaleFactor) + ayy
                        c = complex(Decimal(StartRe), Decimal(StartIm))

                        ax = centerX + (x * scaleFactor)
                        a1 = ax
                        b1 = ay

                        if PrecisionVal == "Single":
                            c = np.complex64(c)
                            c0 = np.complex64(c0)
                        elif PrecisionVal == "Double":
                            c = np.complex128(c)
                            c0 = np.complex128(c0)
                        elif PrecisionVal == "Triple":
                            c = np.clongdouble(c)
                            c0 = np.clongdouble(c0)
                        elif PrecisionVal == "Quadruple":
                            c = np.complex256(c)
                            c0 = np.complex256(c0)
                        elif PrecisionVal == "Multiple":
                            c = mp.mpc(c)
                            c0 = mp.mpc(c0)
                            # print(c0)

                        numIterations = 0

                        while numIterations < int(MaxIterations):
                            numIterations += 1
                            if fractalType == "Mandelbrot":
                                c = pow(c, float(PowerRe)) + c0
                                if abs(c) > Limit:
                                    break
                            elif fractalType == "Fast Mandelbrot":
                                a2 = (a1 * a1) - (b1 * b1) + ax
                                b2 = (a1 * b1 * 2) + ay
                                if (a2 * a2) + (b2 * b2) > Limit * 2:
                                    break
                                numIterations += 1
                                a1 = (a2 * a2) - (b2 * b2) + ax
                                b1 = (a2 * b2 * 2) + ay
                                if (a1 * a1) + (b1 * b1) > Limit * 2:
                                    break
                            elif fractalType == "Tricorn / Mandelbar":
                                if not IsInverse:
                                    c = np.conj(pow(c, float(PowerRe))) + c0
                                else:
                                    c = np.conj(pow(c,
                                                    float(PowerRe))) + 1 / c0
                                if abs(c) >= Limit:
                                    break
                            elif fractalType == "Burning Ship":
                                if not IsInverse:
                                    c = pow((abs(c.real) + abs(c.imag) * 1j),
                                            float(PowerRe)) + c0
                                else:
                                    c = pow((abs(c.real) + abs(c.imag) * 1j),
                                            float(PowerRe)) + 1 / c0
                                if abs(c) >= Limit:
                                    break
                            elif fractalType == "MandelShip":
                                if not IsInverse:
                                    c = pow(c, float(PowerRe)) + c0
                                    if abs(c) >= Limit:
                                        break
                                    numIterations += 1
                                    c = pow((abs(c.real) + abs(c.imag) * 1j),
                                            float(PowerRe)) + c0
                                    if abs(c) >= Limit:
                                        break
                                    numIterations += 1
                                    c = pow(c, float(PowerRe)) + c0
                                    if abs(c) >= Limit:
                                        break
                                    numIterations += 1
                                    c = pow(c, float(PowerRe)) + c0
                                    if abs(c) >= Limit:
                                        break
                                else:
                                    c = pow(c, float(PowerRe)) + 1 / c0
                                    if abs(c) >= Limit:
                                        break
                                    numIterations += 1
                                    c = pow((abs(c.real) + abs(c.imag) * 1j),
                                            float(PowerRe)) + 1 / c0
                                    if abs(c) >= Limit:
                                        break
                                    numIterations += 1
                                    c = pow(c, float(PowerRe)) + 1 / c0
                                    if abs(c) >= Limit:
                                        break
                                    numIterations += 1
                                    c = pow(c, float(PowerRe)) + 1 / c0
                                    if abs(c) >= Limit:
                                        break
                            elif fractalType == "Perpendicular Mandelbrot":
                                c = pow((abs(c.real) - c.imag * 1j),
                                        float(PowerRe)) + c0
                                if abs(c) >= Limit:
                                    break
                            elif fractalType == "Perpendicular Burning Ship":
                                c = pow((c.real + abs(c.imag) * 1j),
                                        float(PowerRe)) + c0
                                if abs(c) >= Limit:
                                    break
                            elif fractalType == "Perpendicular Celtic":
                                a2 = abs((a1 * a1) - (b1 * b1)) + ax
                                b2 = abs(a1) * b1 * -2 + ay
                                if (a2 * a2) + (b2 * b2) > Limit * 2:
                                    break
                                numIterations += 1
                                a1 = abs((a2 * a2) - (b2 * b2)) + ax
                                b1 = abs(a2) * b2 * -2 + ay
                                if (a1 * a1) + (b1 * b1) > Limit * 2:
                                    break
                            elif fractalType == "Perpendicular Buffalo":
                                a1sqr = a1 * a1
                                b1sqr = b1 * b1
                                a2sqr = a2 * a2
                                b2sqr = b2 * b2

                                a2 = abs(a1sqr - b1sqr) + ax
                                b2 = a1 * abs(b1) * -2 + ay
                                if (a1 * a1) + (b1 * b1) > Limit * 2:
                                    break
                                numIterations += 1
                                a1 = abs(a2sqr - b2sqr) + ax
                                b1 = a2 * abs(b2) * -2 + ay
                                if (a2 * a2) + (b2 * b2) > Limit * 2:
                                    break
                            elif fractalType == "Mandelbrot Heart":
                                c = pow((abs(c.real) + c.imag * 1j),
                                        float(PowerRe)) + c0
                                if abs(c) >= Limit:
                                    break
                            elif fractalType == "Buffalo":
                                c = pow(((abs(c.real) + abs(c.imag) * 1j) +
                                         c0 / 2), float(PowerRe)) + pow(
                                             c0 / 2 +
                                             (abs(c.real) + abs(c.imag) * 1j),
                                             float(PowerRe))
                                if abs(c) >= Limit:
                                    break
                            elif fractalType == "Celtic Mandelbrot":
                                c = pow(
                                    ((abs(c.real) + c.imag * 1j) + c0 / 2),
                                    float(PowerRe)) + pow(
                                        c0 / 2 + (abs(c.real) + c.imag * 1j),
                                        float(PowerRe))
                                if abs(c) >= Limit:
                                    break
                            elif fractalType == "Celtic Mandelbar":
                                c = pow(
                                    ((abs(c.real) - c.imag * 1j) + c0 / 2),
                                    float(PowerRe)) + pow(
                                        c0 / 2 + (abs(c.real) - c.imag * 1j),
                                        float(PowerRe))
                                if abs(c) >= Limit:
                                    break
                            elif fractalType == "Celtic Heart":
                                a2 = abs((a1 * a1) - (b1 * b1)) + ax
                                b2 = abs(a1) * b1 * 2 + ay
                                if (a2 * a2) + (b2 * b2) > Limit * 2:
                                    break
                                numIterations += 1
                                a1 = abs((a2 * a2) - (b2 * b2)) + ax
                                b1 = abs(a2) * b2 * 2 + ay
                                if (a1 * a1) + (b1 * b1) > Limit * 2:
                                    break
                            elif fractalType == "Ultra Hybrid":
                                # Mandelbrot
                                c = pow(c, float(PowerRe)) + c0
                                if abs(c) >= Limit:
                                    break
                                numIterations += 1
                                # Burning Ship
                                c = pow(
                                    abs(c.real) + 1j * abs(c.imag),
                                    float(PowerRe)) + c0
                                if abs(c) >= Limit:
                                    break
                                numIterations += 1
                                # Tricorn / Mandelbar
                                c = pow(np.conj(c), float(PowerRe)) + c0
                                if abs(c) >= Limit:
                                    break
                                numIterations += 1
                                # Perpendicular Mandelbrot
                                c = pow((abs(c.real) - c.imag * 1j),
                                        float(PowerRe)) + c0
                                if abs(c) >= Limit:
                                    break
                                # Perpendicular Burning Ship
                                numIterations += 1
                                c = pow((c.real + abs(c.imag) * 1j),
                                        float(PowerRe)) + c0
                                if abs(c) >= Limit:
                                    break
                                numIterations += 1
                            elif fractalType == "Psuedo Mandelbrot":
                                # Basically the mandelbrot except using irrational power values can result in a different mandelbrot.
                                c = c0 - pow(c, float(PowerRe))
                                if abs(c) >= Limit:
                                    break

                            # Does not work, need a suggestion from contributors.

                            #elif fractalType == "Custom":
                            #    def custom(c, c0, Limit):
                            #        c = c+c0
                            #        if abs(c) >= Limit:
                            #            return 0
                            #        return c
                            #    custom(c*c, c0, Limit)

                        if numIterations < int(MaxIterations):
                            image.setPixel(
                                x + halfWidth, y + halfHeight,
                                self.colormap[numIterations %
                                              RenderThread.ColormapSize])
                            allBlack = False
                        else:
                            image.setPixel(x + halfWidth, y + halfHeight,
                                           qRgb(0, 0, 0))

                if allBlack and curpass == 0:
                    curpass = 4
                else:
                    if not self.restart:
                        self.renderedImage.emit(
                            image, np.float128(requestedScaleFactor))
                    curpass += 1

            self.mutex.lock()
            if not self.restart:
                self.condition.wait(self.mutex)
            self.restart = False
            self.mutex.unlock()