Exemplo n.º 1
0
def submitBuyOrder(stockObject, stockIndex):
    # Submit Order on Alpaca

    currentOrders = api.list_orders()
    for order in currentOrders:
        if order.symbol == stockObject.symbol:
            return False

    api.submit_order(symbol=stockObject.symbol,
                     side='buy',
                     type='limit',
                     qty=stockObject.shares,
                     time_in_force='day',
                     limit_price=stockObject.buyPrice)

    time.sleep(4)
    currentOrders = api.list_orders()
    for order in currentOrders:
        if order.symbol == stockObject.symbol and order.qty == stockObject.shares:
            print('Order not filled')
            api.cancel_order(order.id)
            return False

    print('Bought ' + str(stockObject.symbol) + ' ' +
          str(stockObject.buyPrice))
    positionsOpen[stockIndex].currentPosition = 1
    connector.insertTrade(stockObject.symbol, floaty(stockObject.highPrice),
                          floaty(stockObject.lowPrice),
                          floaty(stockObject.openPrice),
                          floaty(stockObject.closePrice),
                          int(positionsOpen[stockIndex].shares),
                          int(stockObject.volume), 'none', 'senkouB_buy',
                          connection)

    return True
Exemplo n.º 2
0
def submitSellOrder(stockObject, stockIndex):
    # Submit Order on Alpaca
    global cash

    print(stockObject.symbol + ' Sell at: ' + str(stockObject.closePrice))
    cash += (positionsOpen[stockIndex].shares * stockObject.closePrice)
    positionsOpen[stockIndex].currentPosition = 0

    api.submit_order(
        symbol=stockObject.symbol,
        side='sell',
        type='market',
        qty=stockObject.shares,
        time_in_force='gtc',
    )

    connector.insertTrade(stockObject.symbol, floaty(stockObject.highPrice),
                          floaty(stockObject.lowPrice),
                          floaty(stockObject.openPrice),
                          floaty(stockObject.closePrice),
                          int(positionsOpen[stockIndex].shares),
                          int(stockObject.volume), 'none', 'senkouB_sell',
                          connection)

    positionsOpen[stockIndex].clearValues()
Exemplo n.º 3
0
def algoStart(api, stocks, from_time, to_time, cash, strat):
    positions = []
    cash = floaty(cash)

    if strat == 'bband_rsi_algo':
        for stock in stocks:
            alltrades, remaining = bband_rsi_algo(api, stock, from_time,
                                                  to_time, cash)
            profit = round((remaining - cash), 0)
            positions.append((stock, alltrades, profit))
    if strat == 'hammer':
        for stock in stocks:
            alltrades, remaining = hammer_algo(api, stock, from_time, to_time,
                                               cash)
            profit = round((remaining - cash), 0)
            positions.append((stock, alltrades, profit))
    if strat == 'morningStar':
        for stock in stocks:
            alltrades, remaining = morningstar_algo(api, stock, from_time,
                                                    to_time, cash)
            profit = round((remaining - cash), 0)
            positions.append((stock, alltrades, profit))
    if strat == 'senkouB':
        for stock in stocks:
            try:
                alltrades, remaining = senkouB(api, stock, from_time, to_time,
                                               cash)
                profit = round((remaining - cash), 0)
                positions.append((stock, alltrades, profit))
            except Exception as e:
                pass

    return positions
Exemplo n.º 4
0
def dashboard():
    if request.method == 'GET':
        global symbol
        connector = db.dbConnector()
        connection = connector.createConnection()

        scrapedStocks = connector.getMentions(connection)
        symbols = []
        for x in scrapedStocks:
            symbols.append(x['symbol'])

        this = datetime.datetime.today() - timedelta(days=5)
        time = str(this.year) + "-" + str(this.month) + "-" + str(
            this.day) + " " + str(datetime.time(9, 35))
        day = str(this.year) + "-" + str(this.month) + "-" + str(this.day)
        print(day)
        trades = connector.getTradeRecents(connection, time)
        trades = trades[0:25]
        stonks = connector.getBarsByTime(connection, time)
        stonks = stonks[0:25]
        results = connector.getResultsByDate(connection, day)
        for x in results:
            diff = x['endCash'] - x['startCash']
            percentChange = diff / floaty(x['startCash']) + 1
            x['percentChange'] = percentChange
        strategy = ad.Strategy()
        hammerChanges = strategy.calculateProfits(connector, connection,
                                                  'hammer')
        morningStarChanges = strategy.calculateProfits(connector, connection,
                                                       'morningStar')
        senkouBChanges = strategy.calculateProfits(connector, connection,
                                                   'senkouB_')
    if request.method == 'POST':
        symbol = request.form.get('symbol')

        df = api.polygon.historic_agg_v2(symbol,
                                         1,
                                         'minute',
                                         _from='2020-07-01',
                                         to='2020-07-01').df
        df['timestamp'] = df.index
        df = df.reset_index(drop=True)
        return render_template('graph.html', df=df.to_json(), symbol=symbol)

    return render_template('dashboard_copy.html',
                           symbols=symbols,
                           trades=trades,
                           stonks=stonks,
                           results=results,
                           hammerChanges=hammerChanges,
                           morningStarChanges=morningStarChanges,
                           senkouBChanges=senkouBChanges)
Exemplo n.º 5
0
 def clearValues(self):
     self.symbol = self.symbol
     self.currentPosition = False
     self.buyPrice = floaty()
     self.shares = 0
     self.takeProfit = floaty()
     self.lossProfit = floaty()
     self.closePrice = floaty()
     self.volume = int()
     self.high = floaty()
     self.low = floaty()
     self.open = floaty()
Exemplo n.º 6
0
 def __init__(self, stock, currentPosition):
     self.symbol = stock
     self.currentPosition = currentPosition
     self.buyPrice = floaty()
     self.shares = 0
     self.takeProfit = floaty()
     self.lossProfit = floaty()
     self.closePrice = floaty()
     self.volume = int()
     self.high = floaty()
     self.low = floaty()
     self.open = floaty()
    for x in symbols:
        stocks.append(x['symbol'])
    positions = bt.algoStart(api, stocks, fromTime, toTime, 25000)
    #print(positions)
    trades = []
    for x in positions:
        if x[2] != 0.0:
            trades.append(x)
    csvRows = []
    row = []
    #print(trades)
    for x in trades:
        row.append(takeLoss)
        row.append(takeProfit)
        row.append(x[3][1])
        row.append(floaty(x[3][0]['close']) - floaty(x[3][0]['low']))
        row.append(floaty(x[3][0]['volume']))
        row.append(x[1][0][11:13])
        row.append(x[1][0][14:16])
        if x[2] > 0:
            row.append(1)
        else:
            row.append(0)
        csvRows.append(row)
        row = []
    with open(filename, 'a') as csvfile:
        # creating a csv writer object
        csvwriter = csv.writer(csvfile)

        # writing the fields
        #csvwriter.writerow(fields)
Exemplo n.º 8
0
def algo(stock):
    global cash
    maxTrade = cash * .07

    # Add to list if it is not in it
    if not (any(x for x in positionsOpen if x.symbol == stock)):
        positionsOpen.append(position(stock, 0))

    stockIndex = 0

    for x in positionsOpen:
        if x.symbol == stock:
            break
        stockIndex = stockIndex + 1

    # Market variables
    marketOpen = datetime.time(hour=9, minute=30, second=0, microsecond=0)
    buyClose = datetime.time(hour=15, minute=30, second=0, microsecond=0)

    # Risk ratios
    takeProfitPercent = 1.07
    lossProfitPercent = .97

    try:
        df = api.polygon.historic_agg_v2(stock,
                                         1,
                                         'minute',
                                         _from=str(datetime.datetime.today()),
                                         to=str(datetime.datetime.today())).df
    except Exception as e:
        print(e)
        return False

    askPrice = round(api.polygon.last_quote(stock).askprice, 2)

    df.at[df.tail(1).index.item(), 'close'] = askPrice

    # Senkou Span B Calculation
    period52_high = df['high'].rolling(window=26).max()
    period52_low = df['low'].rolling(window=26).min()
    df['senkouB'] = ((period52_high + period52_low) / 2).shift(13)
    df['senkouB'] = df['senkouB'].fillna(df.iloc[1]['close'])
    df['volume'] = df['volume'].values.astype(floaty)

    # VWAP calculations
    df['vwap'] = ta.volume.VolumeWeightedAveragePrice(
        high=df['high'],
        low=df['low'],
        close=df['close'],
        volume=df['volume'],
        n=1000,
        fillna=True).volume_weighted_average_price()
    # Volume is at least 50% the previous 20 minutes
    df['volume20avg'] = df['volume'].rolling(window=20).mean()
    df['volume20avg'] = df['volume20avg'].fillna(df.iloc[1]['volume'])

    #Assign all the variables we will need for the algo
    lastRow = (df.tail(1))
    lastRowTime = lastRow.index[0].time()
    closePrice = lastRow.iloc[-1]['close']
    highPrice = lastRow.iloc[-1]['high']
    lowPrice = lastRow.iloc[-1]['low']
    openPrice = lastRow.iloc[-1]['open']
    volume = (lastRow.iloc[-1]['volume'])
    volumeavg = (lastRow.iloc[-1]['volume20avg'])
    vwapPrice = (lastRow.iloc[-1]['vwap'])
    senkouPrice = (lastRow.iloc[-1]['senkouB'])

    if vwapPrice > senkouPrice: higherValue = vwapPrice

    #Make sure it has recenty crossed (last 5 mins)
    in_20 = False
    for index, row in df[['senkouB', 'vwap', 'close']].tail(5).iterrows():
        if row.close <= row.vwap or row.close <= row.senkouB:
            in_20 = True

    firstValue = df[['close']].tail(15).head(1).close[0]
    highestValue = df[['close']].tail(15).head(1).close[0]
    three_percent_gain = False
    #Make sure it has a gain of at least 3% in the last 15 minutes
    for index, row in df[['close']].tail(15).iterrows():
        if row.close > highestValue:
            highestValue = row.close
    if floaty(highestValue / firstValue) - 1.00 > .025:
        three_percent_gain = True

    try:
        if (lastRowTime > marketOpen):  #and lastRowTime < buyClose):

            # Buy check ----------
            # first check if open position
            # Next check if volume is greater than 50% of 20 min moving average,
            # if current price is above the VWAP,
            # if the price crossed senkou and vwap within last 20 minutes
            # and current price is above Senkou B

            if volume >= volumeavg / 3.0 and closePrice > vwapPrice and in_20 and closePrice > senkouPrice and three_percent_gain and not positionsOpen[
                    stockIndex].currentPosition:
                #print('Stock %s vwapPrice %s senkouPrice %s closePrice %s' % (stock, vwapPrice, senkouPrice, closePrice))
                updateValues(stockIndex, closePrice, highPrice, lowPrice,
                             openPrice, volume)
                try:
                    if api.get_asset(stock).tradable:
                        positionsOpen[stockIndex].buyPrice = closePrice
                        positionsOpen[stockIndex].shares = int(maxTrade /
                                                               askPrice)
                        cash = cash - (positionsOpen[stockIndex].shares *
                                       askPrice)
                        positionsOpen[
                            stockIndex].takeProfit = takeProfitPercent * askPrice
                        positionsOpen[
                            stockIndex].lossProfit = lossProfitPercent * askPrice
                        submitBuyOrder(positionsOpen[stockIndex], stockIndex)

                except Exception as e:
                    print(e)
                    pass

            #Sell check ---------
            #First check if open position
            elif (positionsOpen[stockIndex].currentPosition):

                #Check if we have hit our take profit mark
                if closePrice >= positionsOpen[stockIndex].takeProfit:
                    updateValues(stockIndex, closePrice, highPrice, lowPrice,
                                 openPrice, volume)
                    submitSellOrder(positionsOpen[stockIndex], stockIndex)
                elif closePrice <= positionsOpen[stockIndex].lossProfit:
                    updateValues(stockIndex, closePrice, highPrice, lowPrice,
                                 openPrice, volume)
                    submitSellOrder(positionsOpen[stockIndex], stockIndex)
                elif buyClose <= lastRowTime:
                    updateValues(stockIndex, closePrice, highPrice, lowPrice,
                                 openPrice, volume)
                    submitSellOrder(positionsOpen[stockIndex], stockIndex)

    except Exception as e:
        print(str(e.args))
Exemplo n.º 9
0
                    updateValues(stockIndex, closePrice, highPrice, lowPrice,
                                 openPrice, volume)
                    submitSellOrder(positionsOpen[stockIndex], stockIndex)
                elif buyClose <= lastRowTime:
                    updateValues(stockIndex, closePrice, highPrice, lowPrice,
                                 openPrice, volume)
                    submitSellOrder(positionsOpen[stockIndex], stockIndex)

    except Exception as e:
        print(str(e.args))


if __name__ == '__main__':

    connector = db.dbConnector()
    connection = connector.createConnection()
    allStocks = finvizScrape.scrape()

    while True:
        for stock in allStocks:
            account = (api.get_account())
            cash = floaty(account.cash)
            if float(stock.changePercent) >= 3:
                print(stock.symbol)
                algo(stock.symbol)
        for p in positionsOpen:
            if p.currentPosition == 1:
                print(p.symbol + ' ' + str(p.buyPrice) + ' ' + str(p.shares))
        print('Waiting. . .')
        time.sleep(10)
Exemplo n.º 10
0
        # Connect to the database
        connector = db.dbConnector()
        connection = connector.createConnection()

        #Create time window to make api call for
        window = datetime.datetime.now() - datetime.timedelta(minutes=1)
        unscreened_stocks = connector.getMentions(connection)
        strategy = ad.Strategy()
        aggregateData = []
        # iterate through symbols getting bar info for each symbol of last minute
        for x in unscreened_stocks[0:len(unscreened_stocks)-1]:
            df = pd.DataFrame()
            tryCounter = 0
            data = []
            # check if df has a value to account for API response time
            while df.empty and tryCounter < 5:
                df = api.get_barset(x["symbol"], '1Min', limit=1, after=window).df
                tryCounter +=1
            if not df.empty:
                data.append(x['symbol'])
                data.append(floaty(df.iloc[0][0]))
                data.append(floaty(df.iloc[0][1]))
                data.append(floaty(df.iloc[0][2]))
                data.append(floaty(df.iloc[0][3]))
                data.append(floaty(df.iloc[0][4]))
                data.append(window)
                aggregateData.append(data)
    connector.insertBars(aggregateData,connection)

    print("--- %s seconds ---" % (datetime.datetime.now() - start))
Exemplo n.º 11
0
        connection = connector.createConnection()

        #create time window (5min intervals updated each minute)
        now = datetime.datetime.now()
        window = datetime.datetime.now() - datetime.timedelta(minutes=5)
        symbols = connector.getMentions(connection)
        strategy = ad.Strategy()
        sma = 0
        shares = 0
        takeProfitPercent = 1.04
        lossProfitPercent = .98
        buyClose = datetime.time(14, 00)
        marketClose = datetime.time(15, 30)
        alltrades = []

        takeProfit = floaty()
        lossProfit = floaty()
        for x in symbols[0:50]:
            workingSet = connector.getBarsByTimeWindow(connection, window, now,
                                                       x['symbol'])
            cash = connector.getCash(connection, 8)
            cash = cash[0]['cash']
            maxPosition = cash * .1
            if len(workingSet) >= 5:
                #print(workingSet)
                currentBar = len(workingSet) - 1
                #print(workingSet[0]['close'])
                sma = strategy.simpleMovingAverageAcrossTime(
                    workingSet, 0, currentBar)

                currentPosition = connector.getPosition(
Exemplo n.º 12
0
def morningstar_algo(api, stock, from_time, to_time, cash):
    alltrades = []
    cash = floaty(cash)

    currentPosition = None
    barNumber = 0
    buyPrice = 0
    shares = 0
    takeProfitPercent = 1.04
    lossProfitPercent = .99
    maxPosition = cash * .05

    takeProfit = floaty()
    lossProfit = floaty()

    marketOpen = datetime.time(hour=9, minute=45, second=0, microsecond=0)
    buyClose = datetime.time(hour=12, minute=0, second=0, microsecond=0)

    df = api.polygon.historic_agg_v2(stock,
                                     1,
                                     'minute',
                                     _from=from_time,
                                     to=to_time).df

    while barNumber <= len(df) - 1:

        if (df.index[barNumber].time() > marketOpen
                and df.index[barNumber].time() < buyClose) or currentPosition:
            closePrice = df.iloc[barNumber]['close']

            three_bar = [df.iloc[barNumber - 1]]

            set = [
                df.iloc[barNumber - 2], df.iloc[barNumber - 1],
                df.iloc[barNumber]
            ]

            if isMorningStar(set):
                alltrades.append(
                    str((df.index[barNumber])) + ' Buy at: ' + str(closePrice))
                buyPrice = df.iloc[barNumber]['close']
                shares = int(maxPosition / closePrice)
                cash = cash - shares * closePrice
                takeProfit = takeProfitPercent * buyPrice
                lossProfit = lossProfitPercent * buyPrice
                currentPosition = 1

            if currentPosition == 1:

                if closePrice >= takeProfit:
                    if (buyPrice < closePrice):
                        alltrades.append(
                            str((df.index[barNumber])) + ' Sell at: ' +
                            str(closePrice))
                        cash += (shares * closePrice)
                        currentPosition = 0

                elif closePrice <= lossProfit:
                    alltrades.append(
                        str((df.index[barNumber])) + ' Sell at: ' +
                        str(closePrice))
                    cash += (shares * closePrice)
                    currentPosition = 0

                elif buyClose <= df.index[barNumber].time():
                    alltrades.append(
                        str((df.index[barNumber])) + ' Sell at: ' +
                        str(closePrice))
                    cash += (shares * closePrice)
                    currentPosition = 0

        barNumber += 1
    return alltrades, floaty(cash)
Exemplo n.º 13
0
def hammer_algo(api, stock, from_time, to_time, cash):
    alltrades = []
    cash = floaty(cash)

    marketOpen = datetime.time(hour=9, minute=40, second=0, microsecond=0)
    buyClose = datetime.time(hour=12, minute=0, second=0, microsecond=0)

    currentPosition = None
    barNumber = 1
    buyPrice = 0
    shares = 0
    takeProfitPercent = 1.06
    lossProfitPercent = .96
    maxPosition = cash * .1

    takeProfit = floaty()
    lossProfit = floaty()

    df = api.polygon.historic_agg_v2(stock,
                                     1,
                                     'minute',
                                     _from=from_time,
                                     to=to_time).df

    strategy = ad.Strategy()
    try:
        while barNumber <= len(df) - 1:
            if (df.index[barNumber].time() > marketOpen and
                    df.index[barNumber].time() < buyClose) or currentPosition:
                if barNumber > 5:
                    closePrice = df.iloc[barNumber]['close']
                    start = barNumber - 5
                    sma = strategy.backtestSMA(df, start, barNumber)

                    if strategy.isHammerBar(df.iloc[barNumber]) and sma < 0:
                        alltrades.append(
                            str((df.index[barNumber])) + ' Buy at: ' +
                            str(closePrice))
                        buyPrice = df.iloc[barNumber]['close']
                        shares = int(maxPosition / closePrice)
                        cash = cash - shares * closePrice
                        takeProfit = takeProfitPercent * buyPrice
                        lossProfit = lossProfitPercent * buyPrice
                        currentPosition = 1

                    if currentPosition == 1:
                        if closePrice >= takeProfit:
                            if (buyPrice < closePrice):
                                alltrades.append(
                                    str((df.index[barNumber])) + ' Sell at: ' +
                                    str(closePrice))
                                cash += (shares * closePrice)
                                currentPosition = 0

                        elif closePrice <= lossProfit:
                            alltrades.append(
                                str((df.index[barNumber])) + ' Sell at: ' +
                                str(closePrice))
                            cash += (shares * closePrice)
                            currentPosition = 0

                        elif buyClose <= df.index[barNumber].time():
                            alltrades.append(
                                str((df.index[barNumber])) + ' Sell at: ' +
                                str(closePrice))
                            cash += (shares * closePrice)
                            currentPosition = 0
            barNumber += 1

    except Exception as e:
        print(str(e.args))

    return alltrades, floaty(cash)
Exemplo n.º 14
0
def bband_rsi_algo(api, stock, from_time, to_time, cash):
    alltrades = []
    cash = floaty(cash)

    marketOpen = datetime.time(hour=9, minute=45, second=0, microsecond=0)
    buyClose = datetime.time(hour=14, minute=0, second=0, microsecond=0)

    currentPosition = None
    barNumber = 0
    buyPrice = 0
    shares = 0
    takeProfitPercent = 1.03
    lossProfitPercent = .99
    maxPosition = cash * .05

    takeProfit = floaty()
    lossProfit = floaty()

    df = api.polygon.historic_agg_v2(stock,
                                     1,
                                     'minute',
                                     _from=from_time,
                                     to=to_time).df

    # BBANDS calculations
    indicator_bb = ta.volatility.BollingerBands(close=df["close"],
                                                n=20,
                                                ndev=1.5)
    df['bb_bbm'] = indicator_bb.bollinger_mavg()
    df['bb_bbh'] = indicator_bb.bollinger_hband()
    df['bb_bbl'] = indicator_bb.bollinger_lband()
    # RSI calculations
    df['RSI'] = ta.momentum.RSIIndicator(close=df["close"], n=14).rsi()

    try:

        while barNumber <= len(df) - 1:

            # Check if moving average is positive for the last 10 minutes

            if (df.index[barNumber].time() > marketOpen and
                    df.index[barNumber].time() < buyClose) or currentPosition:

                closePrice = df.iloc[barNumber]['close']

                # Make sure BBAND Values and RSI values are not NaN
                if not (pd.isnull((df.iloc[barNumber]['bb_bbm']))):

                    # buy check
                    if not currentPosition:
                        if closePrice <= df.iloc[barNumber][
                                'bb_bbl'] * 1.00:  # see if close price is less than or equal too lower band

                            if round(
                                    df.iloc[barNumber]['RSI']
                            ) <= 34:  # make sure RSI indicates oversold position
                                alltrades.append(
                                    str((df.index[barNumber])) + ' Buy at: ' +
                                    str(closePrice))
                                buyPrice = df.iloc[barNumber]['close']
                                shares = int(maxPosition / closePrice)
                                cash = cash - shares * closePrice
                                takeProfit = takeProfitPercent * buyPrice
                                lossProfit = lossProfitPercent * buyPrice
                                currentPosition = 1

                    # sell check
                    elif (currentPosition
                          and closePrice >= df.iloc[barNumber]['bb_bbh'] * .90
                          ) or (currentPosition
                                and round(df.iloc[barNumber]['RSI']) >= 60
                                ) or (currentPosition
                                      and closePrice <= lossProfit):

                        if closePrice >= takeProfit:
                            if (buyPrice < closePrice):
                                alltrades.append(
                                    str((df.index[barNumber])) + ' Sell at: ' +
                                    str(closePrice))
                                cash += (shares * closePrice)
                                currentPosition = 0

                        elif closePrice <= lossProfit:
                            alltrades.append(
                                str((df.index[barNumber])) + ' Sell at: ' +
                                str(closePrice))
                            cash += (shares * closePrice)
                            currentPosition = 0

                        elif buyClose <= df.index[barNumber].time():
                            alltrades.append(
                                str((df.index[barNumber])) + ' Sell at: ' +
                                str(closePrice))
                            cash += (shares * closePrice)
                            currentPosition = 0

            barNumber += 1

    except Exception as e:
        print(str(e.args))

    return alltrades, floaty(cash)
Exemplo n.º 15
0
def senkouB(api, stock, from_time, to_time, cash):
    alltrades = []
    cash = floaty(cash)

    marketOpen = datetime.time(hour=9, minute=35, second=0, microsecond=0)
    buyClose = datetime.time(hour=15, minute=00, second=0, microsecond=0)

    currentPosition = 0
    barNumber = 2
    shares = 0
    takeProfitPercent = 1.08
    lossProfitPercent = .96
    maxPosition = cash * .3

    takeProfit = floaty()
    lossProfit = floaty()

    try:
        df = api.polygon.historic_agg_v2(stock,
                                         1,
                                         'minute',
                                         _from=from_time,
                                         to=to_time).df
    except Exception as e:
        print('Invalid Stock')
        return False

    # Senkou Span B Calculation
    period52_high = df['high'].rolling(window=26).max()
    period52_low = df['low'].rolling(window=26).min()
    df['senkouB'] = ((period52_high + period52_low) / 2).shift(13)
    df['senkouB'] = df['senkouB'].fillna(df.iloc[0]['close'])
    df['volume'] = df['volume'].values.astype(floaty)

    # VWAP calculations
    df['vwap'] = ta.volume.VolumeWeightedAveragePrice(
        high=df['high'],
        low=df['low'],
        close=df['close'],
        volume=df['volume'],
        n=1000,
        fillna=True).volume_weighted_average_price()

    # Volume is at least 50% the previous 20 minutes
    df['volume20avg'] = df['volume'].rolling(window=20).mean()
    df['volume20avg'] = df['volume20avg'].fillna(df.iloc[0]['volume'])

    try:
        while barNumber <= len(df) - 1:

            # Assign all the variables we will need for the algo
            df2 = df.head(barNumber)
            lastRow = (df2.tail(1))
            closePrice = lastRow.iloc[0]['close']
            volume = lastRow.iloc[0]['volume']
            volumeavg = (lastRow.iloc[0]['volume20avg'])
            vwapPrice = (lastRow.iloc[0]['vwap'])
            senkouPrice = (lastRow.iloc[0]['senkouB'])

            if vwapPrice > senkouPrice: higherValue = vwapPrice

            if (df2.index[-1].time() > marketOpen
                    and df2.index[-1].time() < buyClose or currentPosition):
                # Make sure it has recenty crossed (last 20 mins)

                in_20 = False

                for index, row in df2[['senkouB', 'vwap', 'close'
                                       ]].head(barNumber).tail(5).iterrows():
                    if row.close <= row.vwap or row.close <= row.senkouB:
                        in_20 = True

                print(df2.index[-1].time())
                print(closePrice)
                print(senkouPrice)

                firstValue = df2[['close']].tail(15).head(1).close[0]
                highestValue = df2[['close']].tail(15).head(1).close[0]
                three_percent_gain = False
                # Make sure it has a gain of at least 3% in the last 15 minutes
                for index, row in df2[['close']].tail(15).iterrows():
                    if row.close > highestValue:
                        highestValue = row.close
                if floaty(highestValue / firstValue) - 1.00 > .025:
                    three_percent_gain = True

                if not currentPosition and volume >= volumeavg / 3.0 and closePrice > vwapPrice and in_20 and closePrice > senkouPrice and three_percent_gain:
                    alltrades.append(
                        str((df2.index[-1])) + ' Buy at: ' + str(closePrice))
                    shares = int(maxPosition / closePrice)
                    cash = cash - shares * closePrice
                    takeProfit = takeProfitPercent * closePrice
                    lossProfit = lossProfitPercent * closePrice
                    currentPosition = 1

                # sell check
                elif (currentPosition):
                    if closePrice >= takeProfit:
                        alltrades.append(
                            str((df2.index[-1])) + ' Sell at: ' +
                            str(closePrice))
                        cash += (shares * closePrice)
                        currentPosition = 0

                    elif closePrice <= vwapPrice - .05:
                        alltrades.append(
                            str((df2.index[-1])) + ' Sell at: ' +
                            str(closePrice))
                        cash += (shares * closePrice)
                        currentPosition = 0

                    elif closePrice <= lossProfit:
                        alltrades.append(
                            str((df2.index[-1])) + ' Sell at: ' +
                            str(closePrice))
                        cash += (shares * closePrice)
                        currentPosition = 0

                    elif buyClose <= df2.index[-1].time():
                        alltrades.append(
                            str((df2.index[-1])) + ' Sell at: ' +
                            str(closePrice))
                        cash += (shares * closePrice)
                        currentPosition = 0

            barNumber += 1

    except Exception as e:
        print(str(e.args))

    return alltrades, floaty(cash)
Exemplo n.º 16
0
        barType = 'barType'
        strategy = ad.Strategy()
        # iterate through symbols getting bar info for each symbol of last minute
        for x in unscreened_stocks[0:50]:
            df = pd.DataFrame()
            tryCounter = 0
            # check if df has a value to account for API response time
            while df.empty and tryCounter < 5:
                df = api.get_barset(unscreened_stocks[count]["symbol"],
                                    '1Min',
                                    limit=1,
                                    after=window).df
                tryCounter += 1
            if not df.empty:
                # symbol - high - low - open - close - volume - shareCount - timestamp - barType
                try:
                    symbol = unscreened_stocks[count]["symbol"]
                    count += 1
                    connector.insertBar(str(symbol),
                                        floaty(df[symbol]['high'][0]),
                                        floaty(df[symbol]['low'][0]),
                                        floaty(df[symbol]['open'][0]),
                                        floaty(df[symbol]['close'][0]),
                                        floaty(df[symbol]['volume'][0]),
                                        connection)

                except Exception as e:
                    print(str(e))

    print("--- %s seconds ---" % (datetime.datetime.now() - start))