Exemplo n.º 1
0
def block_average(timeseries, new_freq=''):
    """
    Reduce size of timeseries by taking averages of larger block size.
    Input: timeseries, new_freq (str) See scikits.timeseries doc
    Output: block averaged timeseries obj. in new frequency
    """
    # Label timeseries data with new frequency
    # ie: [5.5, 4.5] | [13-May-2009 11:40 13-May-2009 11:50] becomes
    #     [5.5, 4.5] | [13-May-2009 13-May-2009]
    timeseries = timeseries.asfreq(new_freq)

    # Create empty arrays, set first block_time
    current_block_values = []
    averages = []
    timesteps = []
    current_block_time = timeseries.dates[0]

    # For each index in timeseries, if the block of time has changed,
    # average the previous block values.  Otherwise keep adding
    # values to be averaged.
    for index in range(0, len(timeseries)):
        if current_block_time != timeseries.dates[index]:
            averages.append(npmean(current_block_values))
            timesteps.append(current_block_time)
            current_block_values = []
            current_block_time = timeseries.dates[index]
        current_block_values.append(timeseries[index])
    # Take average for last (or only) time block
    if current_block_values:
        averages.append(npmean(current_block_values))
        timesteps.append(current_block_time)

    # Return new block averages and timesteps as timeseries object
    return ts.time_series(averages, dates=timesteps)
Exemplo n.º 2
0
def block_average(timeseries, new_freq=''):
    """
    Reduce size of timeseries by taking averages of larger block size.
    Input: timeseries, new_freq (str) See scikits.timeseries doc
    Output: block averaged timeseries obj. in new frequency
    """
    # Label timeseries data with new frequency
    # ie: [5.5, 4.5] | [13-May-2009 11:40 13-May-2009 11:50] becomes
    #     [5.5, 4.5] | [13-May-2009 13-May-2009]
    timeseries = timeseries.asfreq(new_freq)

    # Create empty arrays, set first block_time
    current_block_values = []
    averages = []
    timesteps = []
    current_block_time = timeseries.dates[0]

    # For each index in timeseries, if the block of time has changed,
    # average the previous block values.  Otherwise keep adding
    # values to be averaged.
    for index in range(0,len(timeseries)):
        if current_block_time != timeseries.dates[index]:
            averages.append(npmean(current_block_values))
            timesteps.append(current_block_time)
            current_block_values = []
            current_block_time = timeseries.dates[index]
        current_block_values.append(timeseries[index])
    # Take average for last (or only) time block
    if current_block_values:
        averages.append(npmean(current_block_values))
        timesteps.append(current_block_time)
        

    # Return new block averages and timesteps as timeseries object
    return ts.time_series(averages,dates=timesteps)
Exemplo n.º 3
0
def scale_X(x_train, x_test, image=False):
    """
    Function to scale the sequences from cost
    Depending if the image arg is activated they are scaled
    as sequences or images

    Args
    ----
    x_train:
    x_test
    image: boolean, to standardize as an image or as a sequence

    Returns
    -----
    x_train_esc
    x_test_esc
    scaler: can be a Scaler object from sklearn or a list of [mean, std]
            depending on the arg image
    """
    if image:
        mean = npmean(vstack(x_train).reshape(-1, 8, 8), axis=0)
        std = npstd(vstack(x_train).reshape(-1, 8, 8), axis=0)
        x_train_esc = [(asarray(i).reshape(-1, 8, 8) - mean) / std
                       for i in x_train]
        x_test_esc = [(asarray(i).reshape(-1, 8, 8) - mean) / std
                      for i in x_test]
        scaler = [mean, std]
    else:
        scaler = StandardScaler()
        scaler.fit(vstack(x_train))
        x_train_esc = [scaler.transform(i).tolist() for i in x_train]
        x_test_esc = [scaler.transform(i).tolist() for i in x_test]
    return x_train_esc, x_test_esc, scaler
Exemplo n.º 4
0
def ClusterSummary(i, j, MaskedCluster):
	# print(str(i) + "," + str(j))
	# print(MaskedCluster.shape)
	Temp = MaskedCluster
	FinalClusterMean = 0
	FinalClusterSd = 0
	NonZeroIndex = npnonzero(Temp)
	if npsum(NonZeroIndex) == 0:
		return([FinalClusterMean,FinalClusterSd,i,j])
	#print(npsum(Temp > 0))
	TempNonZero = Temp[NonZeroIndex]
	#TempNonzeronan = TempNonZero[npisnan(TempNonZero, where=False)]
	TempNonzeronan = TempNonZero[~npisnan(TempNonZero)]
	if(TempNonzeronan.size > 0):
	# FinalClusterMean = npmean(TempNonzeronan)
	# FinalClusterSd = npstd(TempNonzeronan)
		with warnings.catch_warnings():
			warnings.filterwarnings('error')
			try:
				FinalClusterMean = npmean(TempNonZero)
				FinalClusterSd = npstd(TempNonZero)
			except RuntimeWarning:
				FinalClusterMean = 0
				FinalClusterSd = 0
	return([FinalClusterMean,FinalClusterSd,i,j])
Exemplo n.º 5
0
    def ave_power(self, mode="lin"):
        """
        事前にスライスされた帯域のスペクトルパワーの平均を算出
        :param mode:
        :return: 平均パワー[db]
        """
        from numpy import mean as npmean
        from numpy import log10 as nplog10

        power = self.get_pow()

        if mode == "lin":
            average_power = npmean(power)
            return 10 * nplog10(average_power)
        elif mode == "log":
            average_power = npmean(10 * nplog10(power))
            return average_power
Exemplo n.º 6
0
    def ave_power(self, mode="lin"):
        """
        事前にスライスされた帯域のスペクトルパワーの平均を算出
        :param mode:
        :return: 平均パワー[db]
        """
        from numpy import mean as npmean
        from numpy import log10 as nplog10

        power = self.get_pow()

        if mode == "lin":
            average_power = npmean(power)
            return 10*nplog10(average_power)
        elif mode == "log":
            average_power = npmean(10 * nplog10(power))
            return average_power
Exemplo n.º 7
0
def rigid_transform_3D(MatA, MatB):
    '''
    Pass in 2 numpy arrays to get the R and t
    '''
    assert len(MatA) == len(MatB)
    N = MatA.shape[0]
    comA = npmean(MatA, axis=0)
    comB = npmean(MatB, axis=0)
    A = MatA - nptile(comA, (N, 1))
    B = MatB - nptile(comB, (N, 1))
    H = npdot(nptranspose(A), B)
    U, S, V = nplinalgsvd(H)
    R = npdot(nptranspose(V), nptranspose(U))
    if nplinalgdet(R) < 0:
        V[2, :] *= -1
        R = npdot(nptranspose(V), nptranspose(U))
    t = -npdot(R, nptranspose(comA)) + nptranspose(comB)

    return R, t
	def silhouette(dataset, centers_coord, inst_cluster_id):
		# Silhouette is a way of summarize the BSS and SSE
		# metrics into a single measure value. So, obvious enough,
		# it is also a INNER CRITERION for unsupervised quality metrics.
		inst_num = dataset.shape[0]
		inst_sil = array([0.0] * inst_num)
		center_num = len(centers_coord)

		for center_id in range(center_num):
			this_cluster_insts = \
				where(inst_cluster_id == center_id)[0]

			for inst_id in this_cluster_insts:
				# Calculate average distance of this 
				# instance with every other instance
				# of the SAME cluster
				inst_avg_dist_intracluster = \
					max(abs(npmean(dataset[this_cluster_insts,:] -\
						dataset[inst_id,:], axis=0)))

				# Calculate the MINIMAL average distance
				# of this instance with every other ins-
				# tance of DIFFERENT clusters for each 
				# other cluster
				inst_min_avg_dist_intercluster = inf
				for i in range(center_num):
					if i != center_id:
						inst_min_avg_dist_intercluster =\
							min(inst_min_avg_dist_intercluster, \
								max(abs(npmean(dataset[inst_cluster_id == i,:] -\
									dataset[inst_id,:], axis=0))))

				# Calculate this instance silhouette 
				inst_sil[inst_id] = \
					(inst_min_avg_dist_intercluster - \
						inst_avg_dist_intracluster)/\
					max(inst_min_avg_dist_intercluster, \
						inst_avg_dist_intracluster)

		return npmean(inst_sil)
Exemplo n.º 9
0
def OLDClusterSummary(i, MaskedClusterAllBands, NumberOfBands):
	FinalClusterMean = zeros(NumberOfBands)
	FinalClusterSd = zeros(NumberOfBands)

	for j in range(0, NumberOfBands):
		#Mean = MaskedClusterAllBands(:,:,j)
		Temp = MaskedClusterAllBands[:, :, j]
		TempNonZero = Temp[npnonzero(Temp)]
		TempNonzeronan = TempNonZero[~npisnan(TempNonZero)]
		#TempNonan = Temp[!np.npisnan(Temp)]
		FinalClusterMean[j] = npmean(TempNonzeronan)
		FinalClusterSd[j] = npstd(TempNonzeronan)
	return([FinalClusterMean,FinalClusterSd,i])
Exemplo n.º 10
0
def _calc_accel(jack_dist):
    from numpy import mean as npmean
    from numpy import sum as npsum
    from numpy import errstate

    jack_mean = npmean(jack_dist)

    numer = npsum((jack_mean - jack_dist)**3)
    denom = 6.0 * (npsum((jack_mean - jack_dist)**2)**1.5)

    with errstate(invalid='ignore'):
        # does not raise warning if invalid division encountered.
        return numer / denom
	def sse(dataset, centers_coord, inst_cluster_id):
		# SEE : Sum of Squared Errors
		# It measures Cluster's Cohesion quality
		# It is a INNER CRITERION for unsupervised quality metrics

		center_num = len(centers_coord)

		sse_value = 0.0
		for center_id in range(center_num):
			this_cluster_insts = where(inst_cluster_id == center_id)[0]
			cluster_mean = npmean(dataset[this_cluster_insts,:], axis=0)
			sse_value += max(sum((dataset[this_cluster_insts,:] \
				- cluster_mean)**2.0))

		return sse_value
	def bss(dataset, centers_coord, inst_cluster_id):
		# BSS : Between Sum of Squares
		# It measures Separation between clusters
		# It is a INNER CRITERION for unsupervised quality metrics

		center_num = len(centers_coord)

		dataset_mean = dataset.mean(axis=0)

		bss_value = 0.0
		for center_id in range(center_num):
			this_cluster_insts = where(inst_cluster_id == center_id)[0]
			cluster_mean = npmean(dataset[this_cluster_insts,:], axis=0)
			sqr_coord_diffs = (dataset_mean - cluster_mean)**2.0
			bss_value += len(this_cluster_insts) * max(sqr_coord_diffs)

		return bss_value
Exemplo n.º 13
0
	def visit_polygon(self,polygon):
		""" Adds the fields to edit a polygon's basic qualities, like position """
		
		# grab the coordinates from the polygon
		coords = polygon.coordinates
		# back up its coordinates, if they are not already backed up
		try: polygon.pure_coordinates
		except: polygon.pure_coordinates = polygon.coordinates.copy()
		
		# define their center as their mean along each axis
		mcoords = npround(npmean(coords,0),0)
		
		coordview = tk.Label(self.window,text='Origin')
		coord_setter = tk.Frame(self.window)
		text_vars = tuple(StringVar() for i in range(4))
		
		# loops don't create new scopes but methods do
		# also it's pretty cool that i gets implied by the loop variable
		def add_entry(event=None): 
			""" Adds an entry field to modify a given axis """
			textVar = text_vars[i]
			textVar.set(str(mcoords[i]))
			e = tk.Entry(coord_setter,textvariable=textVar,width=12)
			e.grid(column=i,row=0)				
			def shift_poly(event = None):
				""" Applies the transformation to shift the polygon, does not redraw canvas """
				try: # it could be that they entered a non-float
					dx = tuple(mcoords[j] - float(text_vars[j].get()) for j in range(4))
				except Exception as e: # in which case, just ignore it
					dx = 0
				# shift each coordinate by the displacement implied by the entry field
				coords = [ [el + dx[j] for j,el in \
						enumerate(coord)] for coord in polygon.pure_coordinates]
				# update the polygon's coordinates (it expects a numpy object)
				polygon.coordinates = nparray(coords)
				polygon._dirty()
			
			# bind to the entry field update-on-entry
			e.bind('<Return>', shift_poly  )
			
		# add all four entry widgets to update 3 axes plus homogeneous	
		for i in range(4): add_entry(i)
		
		self.fields.append(coordview)
		self.fields.append(coord_setter)
Exemplo n.º 14
0
def apply_dilution(mdl_indexes, dilution_factors, calculated_concentrations):
    """
    Calculates the concentration before dilution
    :param mdl_indexes:
    :param dilution_factors:
    :param calculated_concentrations:
    :return:
    """
    cc = nparray(calculated_concentrations)
    df = nparray(dilution_factors[:-1])
    mdl_concs = cc[mdl_indexes]
    mdl = npmean(mdl_concs)

    cc_2 = cc * df - (df - 1) * mdl

    calculated_concentrations = list(cc_2)

    return calculated_concentrations
Exemplo n.º 15
0
    def summarizeValues(self, dictSelectedRegions):
        selectedRegions = [
            region.values()[0] for region in dictSelectedRegions
        ]

        if (self.summarizationMethod == "mean"):
            from numpy import mean as npmean
            return [{'mean': npmean(selectedRegions, axis=0).tolist()}]
        elif (self.summarizationMethod == "max"):
            import numpy as np
            #1. CALCULATE THE SUM OF THE ABS VALUES FOR EACH REGION
            valuesSum = np.sum(np.abs(selectedRegions), axis=1)
            #2. GET THE MAX
            maxSum = np.max(valuesSum)
            #3. FIND THE POSITION OF MAX VALUE
            #TODO: WHAT IF MORE THAN 1 MAX??
            indices = [i for i, x in enumerate(valuesSum) if x == maxSum]
            return [{'max': selectedRegions[indices[0]]}]
        else:
            return dictSelectedRegions
Exemplo n.º 16
0
def tem_match(dat, pars=(), template=None):
	try:
		tem=template.getElements("Data", "template", depth=1)[0]
	except:
		print "Matching requires a template. Defaulting to Mean"	
		return None				
	td=tem.getData()
	disc=zeros(dat.shape[0], dat.dtype)
	for i in range(dat.shape[1]):
		dc=dat[:,i]
		tem=td[:,2*i]
		err=match(dc, tem)		
		md=sum(tem**2)
		err=minimum(err, md)
		disc+=err
	lead, length = getLL(pars, template)
	mid = length - lead
	tempoff = npmean(npargmin(td[mid-15:mid+15,range(0,dat.shape[1],2)]*2, axis=0))#since the template tends to be offest a touch
	xtralen = length - (mid -(15-round(tempoff)))
	disc = concatenate([disc[xtralen:], max(disc)*ones(xtralen)])
	return disc
Exemplo n.º 17
0
def pdw_period_find(times,
                    mags,
                    errs,
                    autofreq=True,
                    init_p=None,
                    end_p=None,
                    f_step=1.0e-4,
                    phasebinsize=None,
                    sigclip=10.0,
                    nworkers=None,
                    verbose=False):
    '''This is the parallel version of the function above.

    Uses the string length method in Dworetsky 1983 to calculate the period of a
    time-series of magnitude measurements and associated magnitude errors. This
    can optionally bin in phase to try to speed up the calculation.

    PARAMETERS:

    time: series of times at which mags were measured (usually some form of JD)
    mag: timeseries of magnitudes (np.array)
    err: associated errs per magnitude measurement (np.array)
    init_p, end_p: interval to search for periods between (both ends inclusive)
    f_step: step in frequency [days^-1] to use

    RETURNS:

    tuple of the following form:

    (periods (np.array),
     string_lengths (np.array),
     good_period_mask (boolean array))

    '''

    # remove nans
    find = npisfinite(times) & npisfinite(mags) & npisfinite(errs)
    ftimes, fmags, ferrs = times[find], mags[find], errs[find]

    mod_mags = (fmags - npmin(fmags)) / (2.0 *
                                         (npmax(fmags) - npmin(fmags))) - 0.25

    if len(ftimes) > 9 and len(fmags) > 9 and len(ferrs) > 9:

        # get the median and stdev = 1.483 x MAD
        median_mag = np.median(fmags)
        stddev_mag = (np.median(np.abs(fmags - median_mag))) * 1.483

        # sigclip next
        if sigclip:

            sigind = (np.abs(fmags - median_mag)) < (sigclip * stddev_mag)

            stimes = ftimes[sigind]
            smags = fmags[sigind]
            serrs = ferrs[sigind]

            LOGINFO('sigclip = %s: before = %s observations, '
                    'after = %s observations' %
                    (sigclip, len(times), len(stimes)))

        else:

            stimes = ftimes
            smags = fmags
            serrs = ferrs

        # make sure there are enough points to calculate a spectrum
        if len(stimes) > 9 and len(smags) > 9 and len(serrs) > 9:

            # get the frequencies to use
            if init_p:
                endf = 1.0 / init_p
            else:
                # default start period is 0.1 day
                endf = 1.0 / 0.1

            if end_p:
                startf = 1.0 / end_p
            else:
                # default end period is length of time series
                startf = 1.0 / (stimes.max() - stimes.min())

            # if we're not using autofreq, then use the provided frequencies
            if not autofreq:
                frequencies = np.arange(startf, endf, stepsize)
                LOGINFO(
                    'using %s frequency points, start P = %.3f, end P = %.3f' %
                    (frequencies.size, 1.0 / endf, 1.0 / startf))
            else:
                # this gets an automatic grid of frequencies to use
                frequencies = get_frequency_grid(stimes,
                                                 minfreq=startf,
                                                 maxfreq=endf)
                LOGINFO('using autofreq with %s frequency points, '
                        'start P = %.3f, end P = %.3f' %
                        (frequencies.size, 1.0 / frequencies.max(),
                         1.0 / frequencies.min()))

            # set up some internal stuff
            fold_time = npmin(ftimes)  # fold at the first time element
            j_range = len(fmags) - 1
            epsilon = 2.0 * npmean(ferrs)
            delta_l = 0.34 * (epsilon - 0.5 *
                              (epsilon**2)) * (len(ftimes) -
                                               npsqrt(10.0 / epsilon))
            keep_threshold_1 = 1.6 + 1.2 * delta_l
            l = 0.212 * len(ftimes)
            sig_l = len(ftimes) / 37.5
            keep_threshold_2 = l + 4.0 * sig_l

            # generate the tasks
            tasks = [(x, ftimes, mod_mags, fold_time, j_range,
                      keep_threshold_1, keep_threshold_2, phasebinsize)
                     for x in frequencies]

            # fire up the pool and farm out the tasks
            if (not nworkers) or (nworkers > NCPUS):
                nworkers = NCPUS
                LOGINFO('using %s workers...' % nworkers)

            pool = Pool(nworkers)
            strlen_results = pool.map(pdw_worker, tasks)
            pool.close()
            pool.join()
            del pool

            periods, strlens, goodflags = zip(*strlen_results)
            periods, strlens, goodflags = (np.array(periods),
                                           np.array(strlens),
                                           np.array(goodflags))

            strlensort = npargsort(strlens)
            nbeststrlens = strlens[strlensort[:5]]
            nbestperiods = periods[strlensort[:5]]
            nbestflags = goodflags[strlensort[:5]]
            bestperiod = nbestperiods[0]
            beststrlen = nbeststrlens[0]
            bestflag = nbestflags[0]

            return {
                'bestperiod': bestperiod,
                'beststrlen': beststrlen,
                'bestflag': bestflag,
                'nbeststrlens': nbeststrlens,
                'nbestperiods': nbestperiods,
                'nbestflags': nbestflags,
                'strlens': strlens,
                'periods': periods,
                'goodflags': goodflags
            }

        else:

            LOGERROR(
                'no good detections for these times and mags, skipping...')
            return {
                'bestperiod': npnan,
                'beststrlen': npnan,
                'bestflag': npnan,
                'nbeststrlens': None,
                'nbestperiods': None,
                'nbestflags': None,
                'strlens': None,
                'periods': None,
                'goodflags': None
            }
    else:

        LOGERROR('no good detections for these times and mags, skipping...')
        return {
            'bestperiod': npnan,
            'beststrlen': npnan,
            'bestflag': npnan,
            'nbeststrlens': None,
            'nbestperiods': None,
            'nbestflags': None,
            'strlens': None,
            'periods': None,
            'goodflags': None
        }
Exemplo n.º 18
0
def mean(lst):
    if len(lst) == 0:
        return 0
    return npmean(lst)
Exemplo n.º 19
0
    def run(dataset,
            k,
            it_max=1000,
            min_variation=1.0e-4,
            labels=None,
            full_output=True):

        # Init centers_coord
        centers_id = random.randint(dataset.shape[0], size=k)
        centers_coord = dataset[centers_id, :]

        # Each instance will be put on a initial random cluster
        inst_cluster_id = random.randint(k, size=dataset.shape[0])

        # Auxiliary vectors to keep code cleaner
        auxvec_cur_distances = array([0.0] * k)

        prev_variation = 1.0 + min_variation
        it = 0
        while it < it_max and prev_variation >= min_variation:
            it += 1

            for inst_id in range(dataset.shape[0]):
                nearest_center = inst_cluster_id[inst_id]
                for center_id in range(k):
                    # For each instance, calculate the distance between
                    # each center
                    auxvec_cur_distances[center_id] = \
                     Kmeans.__euclideandist__(\
                      dataset[inst_id,:],
                      centers_coord[center_id,:])

                # For each instance, let it be part of the nearest
                # cluster
                inst_cluster_id[inst_id] = argmin(auxvec_cur_distances)

            # For each cluster, calculate the new center coordinates
            for center_id in range(k):

                part_aux = dataset[inst_cluster_id == center_id, :]

                if part_aux.shape[0] > 0:
                    new_cur_cluster_coords = npmean(part_aux, axis=0)

                    # Calculate variation between previous centers_coord and
                    # new ones (using infinite norm)
                    prev_variation = max(prev_variation, \
                     max(abs(centers_coord[center_id] - \
                      new_cur_cluster_coords)))

                    centers_coord[center_id] = new_cur_cluster_coords

        # Build up answer
        ans = {
            "inst_cluster_id": inst_cluster_id,
            "centers_coord": centers_coord,
        }

        if full_output:
            ans = {
             "clustering_method" : "K-Means",
             "k" : k,
             **ans,
             **ClusterMetrics.runall(
              dataset=dataset,
              centers_coord=centers_coord,
              inst_cluster_id=inst_cluster_id,
              labels=labels),
            }

        return ans
Exemplo n.º 20
0
def hit_rate((rule, support)):
   return npmean( map(lambda p: hit_rate_pair(rule, support, p)[0], support) )
Exemplo n.º 21
0
def lightcurve_ptp_measures(ftimes, fmags, ferrs):
    '''
    This calculates various point-to-point measures (eta in Kim+ 2014).

    '''

    ndet = len(fmags)

    if ndet > 9:

        timediffs = npdiff(ftimes)

        # get rid of stuff with time diff = 0.0
        nzind = npnonzero(timediffs)
        ftimes, fmags, ferrs = ftimes[nzind], fmags[nzind], ferrs[nzind]

        # recalculate ndet and diffs
        ndet = ftimes.size
        timediffs = npdiff(ftimes)

        # calculate the point to point measures
        p2p_abs_magdiffs = npabs(npdiff(fmags))
        p2p_squared_magdiffs = npdiff(fmags) * npdiff(fmags)

        robstd = npmedian(npabs(fmags - npmedian(fmags))) * 1.483
        robvar = robstd * robstd

        # these are eta from the Kim+ 2014 paper - ratio of point-to-point
        # difference to the variance of the entire series

        # this is the robust version
        eta_robust = npmedian(p2p_abs_magdiffs) / robvar
        eta_robust = eta_robust / (ndet - 1.0)

        # this is the usual version
        eta_normal = npsum(p2p_squared_magdiffs) / npvar(fmags)
        eta_normal = eta_normal / (ndet - 1.0)

        timeweights = 1.0 / (timediffs * timediffs)

        # this is eta_e modified for uneven sampling from the Kim+ 2014 paper
        eta_uneven_normal = ((npsum(timeweights * p2p_squared_magdiffs) /
                              (npvar(fmags) * npsum(timeweights))) *
                             npmean(timeweights) *
                             (ftimes.max() - ftimes.min()) *
                             (ftimes.max() - ftimes.min()))

        # this is robust eta_e modified for uneven sampling from the Kim+ 2014
        # paper
        eta_uneven_robust = ((npsum(timeweights * p2p_abs_magdiffs) /
                              (robvar * npsum(timeweights))) *
                             npmedian(timeweights) * (ftimes[-1] - ftimes[0]) *
                             (ftimes[-1] - ftimes[0]))

        return {
            'eta_normal': eta_normal,
            'eta_robust': eta_robust,
            'eta_uneven_normal': eta_uneven_normal,
            'eta_uneven_robust': eta_uneven_robust
        }

    else:

        return None
Exemplo n.º 22
0
def mean(numbers):
    if numpy:
        return npmean(numbers)
    elif py3statistics:
        return p3mean(numbers)
    return float(sum(numbers)) / max(len(numbers), 1)
Exemplo n.º 23
0
# log-returns
ret = diff(logprice_weekly)

# y = log(squared returns)
y = log(ret**2)
# -

# ## Fit the stochastic volatility model

# +
# initial parameters
phi0 = 0
phi1 = .99
sQ = 0.14
alpha = npmean(y)
sR0 = 0.9
mu1 = -2
sR1 = 2
initpar = [phi0, phi1, sQ, alpha, sR0, mu1, sR1]

param, fval, exitflag, output = FitStochasticVolatilityModel(y, initpar)
phi = param[0]
phi1 = param[1]
sQ = param[2]
alpha = param[3]
sR0 = param[4]
mu1 = param[5]
sR1 = param[6]
_, log_hiddenvol2 = FilterStochasticVolatility(y, phi0, phi1, sQ, alpha, sR0,
                                               mu1, sR1)
Exemplo n.º 24
0
def log_progress(sequence: list, every=None, size=None, name='Items', userProgress=None):
    '''Creates a progress bar in jupyter notebooks.
    
    Automatically detects the size of a list and estimates the best step
    size for progress bar updates. This function also automatically estimates
    the total time to completion of the iterations, updating the estimate using 
    the time that every step takes.
    
    If the sequence argument is an iterator, the total number of elements cannot 
    determined. In this case, the user must define the `every` parameter to indicate
    the update frequency of the progress bar.
    
    If the progress bar is used in a nested loop, passing a list to the `userProgress` 
    argument will force the re-utilization of `ipywidgets` objects, preventing the 
    creation of a new progress bar at every iteration of the inner loop.
    
    This progress bar was based on https://github.com/alexanderkuk/log-progress.
    
    Args:
        sequence : An iterable object.
        every (int): The update frequency.
        size (int): The number of elements in the sequence.
        name (str): The name of the progress bar.
        userProgress (list): List for creation of nested progress bars.
    
    '''
    from ipywidgets import IntProgress, HTML, HBox, Label
    from IPython.display import display
    from numpy import mean as npmean
    from collections import deque
    from math import floor
    from datetime import datetime
    from string import Template
    
    is_iterator = False
    if size is None:
        try:
            size = len(sequence)
        except TypeError:
            is_iterator = True
    if size is not None:
        if every is None:
            if size <= 200:
                every = 1
            else:
                every = floor(float(size)*0.005)     # every 0.5%, minimum is 1
    else:
        assert every is not None, 'sequence is iterator, set every'
    
    # For elapsed time
    initTime = datetime.now()
    totTime = "?"
    labTempl = Template(" (~ $min total time (min) ; $ell minutes elapsed)")
    
    # If provided, we use the objects already created.
    # If not provided, we create from scratch.
    if userProgress is None or userProgress == []:
        
        progress = IntProgress(min=0, max=1, value=1)

        label = HTML()
        labelTime = Label("")

        box = HBox(children=[label, progress, labelTime])
        
        if userProgress == []:
            userProgress.append(box)
        display(box)
    else:
        box = userProgress[0]
    
    if is_iterator:
        #progress = IntProgress(min=0, max=1, value=1)
        box.children[1].min = 0
        box.children[1].max = 1
        box.children[1].value = 1
        box.children[1].bar_style = 'info'
    else:
        #progress = IntProgress(min=0, max=size, value=0)
        box.children[1].min = 0
        box.children[1].max = size
        box.children[1].value = 0

        # For remaining time estimation
        deltas = deque()
        lastTime = None
        meandelta = 0
    
    index = 0
    try:
        for index, record in enumerate(sequence, 1):
            if index == 1 or index % every == 0:
                if is_iterator:
                    box.children[0].value = '{name}: {index} / ?'.format(
                        name=name,
                        index=index
                    )
                else:
                    box.children[1].value = index
                    box.children[0].value = u'{name}: {index} / {size}'.format(
                        name=name,
                        index=index,
                        size=size
                    )
                
                    # Estimates remaining time with average delta per iteration
                    # Uses (at most) the last 30 iterations
                    if len(deltas) == 101:
                        deltas.popleft()
                    
                    if lastTime:
                        deltas.append( (datetime.now() - lastTime).total_seconds() )
                        meandelta = npmean(deltas)/60.0    # From seconds to minute
                        totTime = round(meandelta*size/float(every), 3)  # Mean iteration for all iterations
                    else:
                        totTime = "?"       # First iteration has no time
                    
                    lastTime = datetime.now()
                
                # All ellapsed time in minutes
                elapsed = round( (datetime.now() - initTime).total_seconds()/60.0, 3)

                box.children[2].value = labTempl.safe_substitute({"min":totTime,
                                                       "ell":elapsed})
                
            yield record
    except:
        box.children[1].bar_style = 'danger'
        raise
    else:
        box.children[1].bar_style = 'success'
        box.children[1].value = index
        box.children[0].value = "{name}: {index}".format(
            name=name,
            index=str(index or '?')
        )
Exemplo n.º 25
0
    plt.ylabel("Rate (Hz)")

    plt.subplot(413)
    plt.plot(re1[500:], ri1[500:], label='phase plane', color='k')
    plt.legend(loc='best')
    plt.xlabel("r_e (Hz)")
    plt.ylabel("r_i (Hz)")

    plt.subplot(414)
    fs, psd = create_psd(re1[500:] + ri1[500:], 10000)
    plt.plot(fs[:100], psd[:100], label='r_e')
    plt.legend(loc='best')
    plt.xlabel("Freq (Hz)")
    plt.ylabel("PSD")

    print("Mean re1 : {0}".format(npmean(re1)))
    print("Mean ri1: {0}".format(npmean(ri1)))
    print("Max STIM F (Hz) {0}".format(fs[argmax(psd[:100])]))

    # 1
    plt.figure(figsize=(14, 10))
    plt.subplot(311)
    plt.plot(t, re2, label='1: E')
    plt.plot(t, ri2, label='1: I')
    plt.legend(loc='best')
    plt.xlabel("Time (ms)")
    plt.ylabel("Rate (Hz)")

    plt.subplot(312)
    plt.plot(re2[500:], ri2[500:], label='phase plane', color='k')
    plt.legend(loc='best')
Exemplo n.º 26
0
def mean(lst):
    if len(lst) == 0:
        return 0
    return npmean(lst)
Exemplo n.º 27
0
def lightcurve_ptp_measures(ftimes, fmags, ferrs):
    '''This calculates various point-to-point measures (`eta` in Kim+ 2014).

    Parameters
    ----------

    ftimes,fmags,ferrs : np.array
        The input mag/flux time-series with all non-finite elements removed.

    Returns
    -------

    dict
        A dict with values of the point-to-point measures, including the `eta`
        variability index (often used as its inverse `inveta` to have the same
        sense as increasing variability index -> more likely a variable star).

    '''

    ndet = len(fmags)

    if ndet > 9:

        timediffs = npdiff(ftimes)

        # get rid of stuff with time diff = 0.0
        nzind = npnonzero(timediffs)
        ftimes, fmags, ferrs = ftimes[nzind], fmags[nzind], ferrs[nzind]

        # recalculate ndet and diffs
        ndet = ftimes.size
        timediffs = npdiff(ftimes)

        # calculate the point to point measures
        p2p_abs_magdiffs = npabs(npdiff(fmags))
        p2p_squared_magdiffs = npdiff(fmags) * npdiff(fmags)

        robstd = npmedian(npabs(fmags - npmedian(fmags))) * 1.483
        robvar = robstd * robstd

        # these are eta from the Kim+ 2014 paper - ratio of point-to-point
        # difference to the variance of the entire series

        # this is the robust version
        eta_robust = npmedian(p2p_abs_magdiffs) / robvar
        eta_robust = eta_robust / (ndet - 1.0)

        # this is the usual version
        eta_normal = npsum(p2p_squared_magdiffs) / npvar(fmags)
        eta_normal = eta_normal / (ndet - 1.0)

        timeweights = 1.0 / (timediffs * timediffs)

        # this is eta_e modified for uneven sampling from the Kim+ 2014 paper
        eta_uneven_normal = ((npsum(timeweights * p2p_squared_magdiffs) /
                              (npvar(fmags) * npsum(timeweights))) *
                             npmean(timeweights) *
                             (ftimes.max() - ftimes.min()) *
                             (ftimes.max() - ftimes.min()))

        # this is robust eta_e modified for uneven sampling from the Kim+ 2014
        # paper
        eta_uneven_robust = ((npsum(timeweights * p2p_abs_magdiffs) /
                              (robvar * npsum(timeweights))) *
                             npmedian(timeweights) * (ftimes[-1] - ftimes[0]) *
                             (ftimes[-1] - ftimes[0]))

        return {
            'eta_normal': eta_normal,
            'eta_robust': eta_robust,
            'eta_uneven_normal': eta_uneven_normal,
            'eta_uneven_robust': eta_uneven_robust
        }

    else:

        return None
Exemplo n.º 28
0
def Chip_Classify(ImageLocation,SaveLocation,ImageFile,NumberOfClusters,InitialCluster):
	ticOverall = time.time()
	#sleep(random.beta(1,1)*30)
	# Reshape InitialCluster
	InitialCluster = array(InitialCluster).reshape((NumberOfClusters,-1))
	ImageIn = imread(ImageFile)
	with rio.open(ImageFile) as gtf_img:
		Info = gtf_img.profile
		Info.update(dtype=rio.int8)
	#print(time.time()-tic)
	ImageRow, ImageColumn, NumberOfBands = ImageIn.shape
	if NumberOfBands > 8:
		NumberOfBands = NumberOfBands - 1
	# prealocate
	Cluster = zeros((ImageRow, ImageColumn, NumberOfClusters))
	CountClusterPixels = zeros((NumberOfClusters, 1))
	MeanCluster = zeros((NumberOfClusters, NumberOfBands))
	EuclideanDistanceResultant = zeros((ImageRow, ImageColumn, NumberOfClusters))
	#os.mkdir('local/larry.leigh.temp/')
	directory = '/tmp/ChipS'
	if not os.path.exists(directory):
		os.makedirs(directory)
	print('starting big loop')
	tic = time.time()
	for j in range(0,ImageRow):
		# if(j % 10 == 0):
			# progbar(j, ImageRow)

		for k in range(0, ImageColumn):
			temp = ImageIn[j, k, 0:NumberOfBands]

			#EuclideanDistanceResultant[j, k, :] = np.npsqrt(np.npsum(np.nppower(np.subtract(np.matlib.repmat(temp, NumberOfClusters, 1), InitialCluster[: ,:]), 2), axis = 1))
			EuclideanDistanceResultant[j, k, :] = npsqrt(npsum(nppower((matlib.repmat(temp, NumberOfClusters, 1)) - InitialCluster, 2), axis=1))
			DistanceNearestCluster = min(EuclideanDistanceResultant[j, k, :])

			#print(str(j) +" "+ str(k))

			for l in range(0, NumberOfClusters):
				if DistanceNearestCluster != 0:
					if DistanceNearestCluster == EuclideanDistanceResultant[j, k, l]:
						CountClusterPixels[l] = CountClusterPixels[l] + 1
						for m in range(0, NumberOfBands):
							MeanCluster[l, m] = MeanCluster[l, m] + ImageIn[j, k, m]
						Cluster[j, k, l] = l

	# progbar(ImageRow, ImageRow)

	print('\n')
	# print(Cluster.shape)
	# print(CountClusterPixels.shape)
	# print(EuclideanDistanceResultant.shape)
	# print(MeanCluster.shape)
	print('\nfinished big loop')
	ImageDisplay = npsum(Cluster, axis = 2)
	print("Execution time: " + str(time.time() - tic))
	#print(globals())
	#shelver("big.loop",['Cluster','CountClusterPixels','EuclideanDistanceResultant','MeanCluster'])
	savez("big.loop.serial",Cluster=Cluster,
					 CountClusterPixels=CountClusterPixels,
					 EuclideanDistanceResultant=EuclideanDistanceResultant,
					 MeanCluster=MeanCluster)

	ClusterPixelCount = count_nonzero(Cluster, axis = 2)
	print("Non-zero cluster pixels: " + str(ClusterPixelCount))

	#Calculate TSSE within clusters
	TsseCluster = zeros((1, NumberOfClusters))
	CountTemporalUnstablePixel = 0
	# TSSECluster Serial
	print("Starting TSSE Cluster computation (Serial version)\n")
	tic = time.time()
	for j in range(0, ImageRow):
		for k in range(0, ImageColumn):
			FlagSwitch = int(max(Cluster[j, k, :]))
			#print(Cluster[j, k, :]) #This prints to the log

			#store SSE of related to each pixel
			if FlagSwitch == 0:
				CountTemporalUnstablePixel = CountTemporalUnstablePixel + 1
			else:
				#Might be TsseCluster[0,FlagSwitch-1]
				#TsseCluster[0,FlagSwitch - 1] = TsseCluster[0,FlagSwitch - 1] + np.sum(np.power(np.subtract(np.squeeze(ImageIn[j, k, 0:NumberOfBands - 1]), np.transpose(InitialCluster[FlagSwitch - 1, :])),2), axis = 0)

				TsseCluster[0,FlagSwitch] = TsseCluster[0,FlagSwitch] + npsum(nppower((squeeze(ImageIn[j, k, 0:NumberOfBands]) - transpose(InitialCluster[FlagSwitch, :])),2))

				#count the number of pixels in each cluster
				#Collected_ClusterPixelCount[FlagSwitch] = Collected_ClusterPixelCount[FlagSwitch] + 1
	Totalsse = npsum(TsseCluster)
	print("Execution time: " + str(time.time() - tic))
	savez("small.loop.serial",CountTemporalUnstablePixel=CountTemporalUnstablePixel,TsseCluster=TsseCluster)

	#get data for final stats....
	#calculate the spatial mean and standard deviation of each cluster

	ClusterMeanAllBands = zeros((NumberOfClusters, NumberOfBands))
	ClusterSdAllBands = zeros((NumberOfClusters, NumberOfBands))
	print('finished small loop')
	#print(time.time()-tic)

	# Cluster Summary Serial
	tic = time.time()
	FinalClusterMean = zeros(NumberOfBands)
	FinalClusterSd = zeros(NumberOfBands)

	for i in range(0, NumberOfClusters):
		Temp = Cluster[:, :, i]

		Temp[Temp == i] = 1

		MaskedClusterAllBands = Temp[:,:,None]*ImageIn[:, :, 0:NumberOfBands]

		for j in range(0, NumberOfBands):
			#Mean = MaskedClusterAllBands(:,:,j)
			Temp = MaskedClusterAllBands[:, :, j]
			TempNonZero = Temp[npnonzero(Temp)]
			TempNonzeronan = TempNonZero[~npisnan(TempNonZero)]
			#TempNonan = Temp[!np.isnan(Temp)]
			with warnings.catch_warnings():
				warnings.filterwarnings('error')
				try:
					FinalClusterMean[j] = npmean(TempNonZero)
					FinalClusterSd[j] = npstd(TempNonZero)
				except RuntimeWarning:
					FinalClusterMean[j] = 0
					FinalClusterSd[j] = 0

		ClusterMeanAllBands[i, :] = FinalClusterMean[:]
		ClusterSdAllBands[i, :] = FinalClusterSd[:]

	print("Execution time: " + str(time.time() - tic))
	savez("cluster.summary.serial",ClusterMeanAllBands=ClusterMeanAllBands,ClusterSdAllBands=ClusterSdAllBands)
	filename = str(SaveLocation) + 'ImageDisplay_' + ImageFile[len(ImageFile)-32:len(ImageFile)-3] + 'mat'
	print('Got filename. Now save the data')
	print(filename)
	save(filename, ImageDisplay)

	filename = str(SaveLocation) + 'ClusterCount' + str(NumberOfClusters) + '_' + ImageFile[len(ImageFile)-32:len(ImageFile)-4] + '.tif'

	#geotiffwrite(filename, int8(ImageDisplay), Info.RefMatrix);

	with rio.open(filename, 'w', **Info) as dst:
		dst.write(int8(ImageDisplay), 1)

	filename = str(SaveLocation) + 'Stats_' + ImageFile[len(ImageFile)-32:len(ImageFile)-3] + 'mat'
	savez(filename, [MeanCluster, CountClusterPixels, ClusterPixelCount, ClusterMeanAllBands, ClusterSdAllBands, Totalsse])
	print('done!')
	print(time.time()-ticOverall)
Exemplo n.º 29
0
def dworetsky_period_find(time,
                          mag,
                          err,
                          init_p,
                          end_p,
                          f_step,
                          verbose=False):
    '''

    This is the super-slow naive version taken from my thesis work.

    Uses the string length method in Dworetsky 1983 to calculate the period of a
    time-series of magnitude measurements and associated magnitude
    errors. Searches in linear frequency space (which obviously doesn't
    correspond to a linear period space).

    PARAMETERS:

    time: series of times at which mags were measured (usually some form of JD)
    mag: timeseries of magnitudes (np.array)
    err: associated errs per magnitude measurement (np.array)
    init_p, end_p: interval to search for periods between (both ends inclusive)
    f_step: step in frequency [days^-1] to use

    RETURNS:

    tuple of the following form:

    (periods (np.array),
     string_lengths (np.array),
     good_period_mask (boolean array))

    '''

    mod_mag = (mag - npmin(mag)) / (2.0 * (npmax(mag) - npmin(mag))) - 0.25
    fold_time = npmin(time)  # fold at the first time element

    init_f = 1.0 / end_p
    end_f = 1.0 / init_p

    n_freqs = npceil((end_f - init_f) / f_step)

    if verbose:
        print('searching %s frequencies between %s and %s days^-1...' %
              (n_freqs, init_f, end_f))

    out_periods = npempty(n_freqs, dtype=np.float64)
    out_strlens = npempty(n_freqs, dtype=np.float64)
    p_goodflags = npempty(n_freqs, dtype=bool)

    j_range = len(mag) - 1

    for i in range(int(n_freqs)):

        period = 1.0 / init_f

        # print('P: %s, f: %s, i: %s, n_freqs: %s, maxf: %s' %
        #       (period, init_f, i, n_freqs, end_f))

        phase = (time - fold_time) / period - npfloor(
            (time - fold_time) / period)
        phase_sort_ind = npargsort(phase)

        phase_sorted = phase[phase_sort_ind]
        mod_mag_sorted = mod_mag[phase_sort_ind]

        strlen = 0.0

        epsilon = 2.0 * npmean(err)
        delta_l = 0.34 * (epsilon - 0.5 *
                          (epsilon**2)) * (len(time) - npsqrt(10.0 / epsilon))
        keep_threshold_1 = 1.6 + 1.2 * delta_l

        l = 0.212 * len(time)
        sig_l = len(time) / 37.5
        keep_threshold_2 = l + 4.0 * sig_l

        # now calculate the string length
        for j in range(j_range):
            strlen += npsqrt((mod_mag_sorted[j + 1] - mod_mag_sorted[j])**2 +
                             (phase_sorted[j + 1] - phase_sorted[j])**2)

        strlen += npsqrt((mod_mag_sorted[0] - mod_mag_sorted[-1])**2 +
                         (phase_sorted[0] - phase_sorted[-1] + 1)**2)

        if ((strlen < keep_threshold_1) or (strlen < keep_threshold_2)):
            p_goodflags[i] = True

        out_periods[i] = period
        out_strlens[i] = strlen

        init_f += f_step

    return (out_periods, out_strlens, p_goodflags)
Exemplo n.º 30
0
    def _get_map_values(self,
                        structure_instance,
                        emmap,
                        res_map,
                        sim_sigma_coeff=0.187,
                        win=5):
        """
        
        Returns avg map density from voxels occupied by overlapping residue fragments.
        
        Arguments:
        
           *structure_instance*
               Structure instance of the model.
           *emmap*
               Map instance the model is to be placed on.
           *res_map*
               Resolution of the map
           *sim_sigma_coeff*
               Sigma factor used for blurring
           *win*
               Fragment length (odd values)
        """
        dict_chain_indices, dict_chain_res, dict_res_dist = self.get_indices(
            structure_instance, emmap, res_map, sim_sigma_coeff)
        origin = emmap.origin
        apix = emmap.apix
        box_size = emmap.box_size()
        nz, ny, nx = emmap.fullMap.shape
        zg, yg, xg = mgrid[0:nz, 0:ny, 0:nx]
        indi = zip(xg.ravel(), yg.ravel(), zg.ravel())
        #for residues not in rigid bodies: consider pentapeptides
        dict_chain_scores = {}
        for ch in dict_chain_indices:
            dict_res_scores = {}
            dict_res_indices = dict_chain_indices[ch]
            for res in dict_res_indices:
                if not dict_res_scores.has_key(res):
                    indices = dict_res_indices[res][:]
                    #consider residues on both sides. NOTE: wont work for insertion codes!
                    #need to rewite res numbers to avoid insertion codes
                    for ii in range(1, int(round((win + 1) / 2))):
                        try:
                            #get prev residue indices
                            indices.extend(dict_res_indices[dict_chain_res[ch][
                                dict_chain_res[ch].index(res) - ii]])
                        except:
                            pass
                    for ii in range(1, int(round((win + 1) / 2))):
                        try:
                            indices.extend(dict_res_indices[dict_chain_res[ch][
                                dict_chain_res[ch].index(res) + ii]])
                        except:
                            pass

                    tmplist = indices[:]
                    setlist = set(tmplist)
                    indices = list(setlist)
                    sc_indices = []
                    for ii in indices:
                        sc_indices.append(indi[ii])
                    '''
                    if len(indices) < 10:
                        try: 
                            dict_res_scores[res] = dict_res_scores[dict_chain_res[ch][dict_chain_res[ch].index(res)-1]]
                            try: dict_res_scores[res] = (dict_res_scores[res]+dict_res_scores[dict_chain_res[ch][dict_chain_res[ch].index(res)+1]])/2.0
                            except (IndexError,KeyError): pass
                        except (IndexError,KeyError): 
                            try: dict_res_scores[res] = dict_res_scores[dict_chain_res[ch][dict_chain_res[ch].index(res)+1]]
                            except (IndexError,KeyError): dict_res_scores[res] = 0.0
                        continue
                    '''
                    array_indices = array(sc_indices)
                    ind_arrxyz = transpose(array_indices)
                    ind_arrzyx = (ind_arrxyz[2], ind_arrxyz[1], ind_arrxyz[0])
                dict_res_scores[res] = npmean(emmap.fullMap[ind_arrzyx])
            dict_chain_scores[ch] = dict_res_scores.copy()
        return dict_chain_scores
Exemplo n.º 31
0
def sigclip_magseries(times,
                      mags,
                      errs,
                      sigclip=None,
                      iterative=False,
                      niterations=None,
                      meanormedian='median',
                      magsarefluxes=False):
    '''
    Select the finite times, magnitudes (or fluxes), and errors from the
    passed values, and apply symmetric or asymmetric sigma clipping to them.
    Returns sigma-clipped times, mags, and errs.

    Args:
        times (np.array): ...

        mags (np.array): numpy array to sigma-clip. Does not assume all values
        are finite. Does not assume anything about whether they're
        positive/negative.

        errs (np.array): ...

        iterative (bool): True if you want iterative sigma-clipping. If
        niterations is not set and this is True, sigma-clipping is iterated
        until no more points are removed.

        niterations (int): maximum number of iterations to perform for
        sigma-clipping. If None, the iterative arg takes precedence, and
        iterative=True will sigma-clip until no more points are removed.
        If niterations is not None and iterative is False, niterations takes
        precedence and iteration will occur.

        meanormedian (string): either 'mean' for sigma-clipping based on the
        mean value, or 'median' for sigma-clipping based on the median value.
        Default is 'median'.

        magsarefluxes (bool): True if your "mags" are in fact fluxes, i.e. if
        "dimming" corresponds to your "mags" getting smaller.

        sigclip (float or list): If float, apply symmetric sigma clipping. If
        list, e.g., [10., 3.], will sigclip out greater than 10-sigma dimmings
        and greater than 3-sigma brightenings. Here the meaning of "dimming"
        and "brightening" is set by *physics* (not the magnitude system), which
        is why the `magsarefluxes` kwarg must be correctly set.

    Returns:
        stimes, smags, serrs: (sigmaclipped values of each).
    '''

    returnerrs = True

    # fake the errors if they don't exist
    # this is inconsequential to sigma-clipping
    # we don't return these dummy values if the input errs are None
    if errs is None:
        # assume 0.1% errors if not given
        # this should work for mags and fluxes
        errs = 0.001 * mags
        returnerrs = False

    # filter the input times, mags, errs; do sigclipping and normalization
    find = npisfinite(times) & npisfinite(mags) & npisfinite(errs)
    ftimes, fmags, ferrs = times[find], mags[find], errs[find]

    # get the center value and stdev
    if meanormedian == 'median':  # stddev = 1.483 x MAD

        center_mag = npmedian(fmags)
        stddev_mag = (npmedian(npabs(fmags - center_mag))) * 1.483

    elif meanormedian == 'mean':

        center_mag = npmean(fmags)
        stddev_mag = npstddev(fmags)

    else:
        LOGWARNING("unrecognized meanormedian value given to "
                   "sigclip_magseries: %s, defaulting to 'median'" %
                   meanormedian)
        meanormedian = 'median'
        center_mag = npmedian(fmags)
        stddev_mag = (npmedian(npabs(fmags - center_mag))) * 1.483

    # sigclip next for a single sigclip value
    if sigclip and isinstance(sigclip, (float, int)):

        if not iterative and niterations is None:

            sigind = (npabs(fmags - center_mag)) < (sigclip * stddev_mag)

            stimes = ftimes[sigind]
            smags = fmags[sigind]
            serrs = ferrs[sigind]

        else:

            #
            # iterative version adapted from scipy.stats.sigmaclip
            #

            # First, if niterations is not set, iterate until covergence
            if niterations is None:

                delta = 1

                this_times = ftimes
                this_mags = fmags
                this_errs = ferrs

                while delta:

                    if meanormedian == 'mean':
                        this_center = npmean(this_mags)
                        this_stdev = npstddev(this_mags)
                    elif meanormedian == 'median':
                        this_center = npmedian(this_mags)
                        this_stdev = (npmedian(
                            npabs(this_mags - this_center))) * 1.483
                    this_size = this_mags.size

                    # apply the sigclip
                    tsi = ((npabs(this_mags - this_center)) <
                           (sigclip * this_stdev))

                    # update the arrays
                    this_times = this_times[tsi]
                    this_mags = this_mags[tsi]
                    this_errs = this_errs[tsi]

                    # update delta and go to the top of the loop
                    delta = this_size - this_mags.size

            else:  # If iterating only a certain number of times

                this_times = ftimes
                this_mags = fmags
                this_errs = ferrs

                iter_num = 0
                delta = 1
                while iter_num < niterations and delta:

                    if meanormedian == 'mean':

                        this_center = npmean(this_mags)
                        this_stdev = npstddev(this_mags)

                    elif meanormedian == 'median':

                        this_center = npmedian(this_mags)
                        this_stdev = (npmedian(
                            npabs(this_mags - this_center))) * 1.483
                    this_size = this_mags.size

                    # apply the sigclip
                    tsi = ((npabs(this_mags - this_center)) <
                           (sigclip * this_stdev))

                    # update the arrays
                    this_times = this_times[tsi]
                    this_mags = this_mags[tsi]
                    this_errs = this_errs[tsi]

                    # update the number of iterations and delta and
                    # go to the top of the loop
                    delta = this_size - this_mags.size
                    iter_num += 1

            # final sigclipped versions
            stimes, smags, serrs = this_times, this_mags, this_errs

    # this handles sigclipping for asymmetric +ve and -ve clip values
    elif sigclip and isinstance(sigclip, list) and len(sigclip) == 2:

        # sigclip is passed as [dimmingclip, brighteningclip]
        dimmingclip = sigclip[0]
        brighteningclip = sigclip[1]

        if not iterative and niterations is None:

            if magsarefluxes:
                nottoodimind = ((fmags - center_mag) >
                                (-dimmingclip * stddev_mag))
                nottoobrightind = ((fmags - center_mag) <
                                   (brighteningclip * stddev_mag))
            else:
                nottoodimind = ((fmags - center_mag) <
                                (dimmingclip * stddev_mag))
                nottoobrightind = ((fmags - center_mag) >
                                   (-brighteningclip * stddev_mag))

            sigind = nottoodimind & nottoobrightind

            stimes = ftimes[sigind]
            smags = fmags[sigind]
            serrs = ferrs[sigind]

        else:

            #
            # iterative version adapted from scipy.stats.sigmaclip
            #
            if niterations is None:

                delta = 1

                this_times = ftimes
                this_mags = fmags
                this_errs = ferrs

                while delta:

                    if meanormedian == 'mean':

                        this_center = npmean(this_mags)
                        this_stdev = npstddev(this_mags)

                    elif meanormedian == 'median':
                        this_center = npmedian(this_mags)
                        this_stdev = (npmedian(
                            npabs(this_mags - this_center))) * 1.483
                    this_size = this_mags.size

                    if magsarefluxes:
                        nottoodimind = ((this_mags - this_center) >
                                        (-dimmingclip * this_stdev))
                        nottoobrightind = ((this_mags - this_center) <
                                           (brighteningclip * this_stdev))
                    else:
                        nottoodimind = ((this_mags - this_center) <
                                        (dimmingclip * this_stdev))
                        nottoobrightind = ((this_mags - this_center) >
                                           (-brighteningclip * this_stdev))

                    # apply the sigclip
                    tsi = nottoodimind & nottoobrightind

                    # update the arrays
                    this_times = this_times[tsi]
                    this_mags = this_mags[tsi]
                    this_errs = this_errs[tsi]

                    # update delta and go to top of the loop
                    delta = this_size - this_mags.size

            else:  # If iterating only a certain number of times
                this_times = ftimes
                this_mags = fmags
                this_errs = ferrs

                iter_num = 0
                delta = 1

                while iter_num < niterations and delta:

                    if meanormedian == 'mean':
                        this_center = npmean(this_mags)
                        this_stdev = npstddev(this_mags)
                    elif meanormedian == 'median':
                        this_center = npmedian(this_mags)
                        this_stdev = (npmedian(
                            npabs(this_mags - this_center))) * 1.483
                    this_size = this_mags.size

                    if magsarefluxes:
                        nottoodimind = ((this_mags - this_center) >
                                        (-dimmingclip * this_stdev))
                        nottoobrightind = ((this_mags - this_center) <
                                           (brighteningclip * this_stdev))
                    else:
                        nottoodimind = ((this_mags - this_center) <
                                        (dimmingclip * this_stdev))
                        nottoobrightind = ((this_mags - this_center) >
                                           (-brighteningclip * this_stdev))

                    # apply the sigclip
                    tsi = nottoodimind & nottoobrightind

                    # update the arrays
                    this_times = this_times[tsi]
                    this_mags = this_mags[tsi]
                    this_errs = this_errs[tsi]

                    # update the number of iterations and delta
                    # and go to top of the loop
                    delta = this_size - this_mags.size
                    iter_num += 1

            # final sigclipped versions
            stimes, smags, serrs = this_times, this_mags, this_errs

    else:

        stimes = ftimes
        smags = fmags
        serrs = ferrs

    if returnerrs:
        return stimes, smags, serrs
    else:
        return stimes, smags, None
Exemplo n.º 32
0
def L2(input_path_L1, input_path_Compensate, output_path, E0_const):

	try:
		input_fp_Compensate = open(input_path_Compensate, 'r')
	except IOError:
		print "IO error;Check the input File: ", input_path_Compensate
	except:
		print "Unexpected Open Error: ", input_path_Compensate
		input_fp_Compensate.close()
		
	
	try:
		input_fp_L1 = open(input_path_L1, 'r')
	except IOError:
		print "IO error;Check the input File: ", input_path_L1
	except Error:
		print "Unexpected Open Error: ", input_path_L1
		input_fp_L1.close()
	
	#output file path
	output_file_path = os.path.join(output_path, 'ResultL2.csv')
	try:
		output_fp = open(output_file_path, 'w+')
	except IOError:
		print "IO error;Check the output File: ", output_file_path
		return 'L2 failed'

	#output_plot_1�� Reynold-Taylor Equation����
	
	output_plot_2_file_path = os.path.join(output_path, 'Plot_L2_2.csv')
	try:
		output_plot_2_fp = open(output_plot_2_file_path, 'w+')
	except IOError:
		print "IO error;Check the output File: ", output_plot_2_file_path
		return 'L2 failed'	
	
	
	try:
		Compensate_csv = csv.reader(input_fp_Compensate, delimiter = ',')
	except csv.Error:    
		print "Parse ErrorCheck the input File: ", input_path_Compensate
	except StandardError:
		print "Unexpected Read Error: ", input_path_Compensate
	
	try:
		L1_csv = csv.reader(input_fp_L1, delimiter = ',')
	except csv.Error:    
		print "Parse ErrorCheck the input File: ", input_path_L1
	except StandardError:
		print "Unexpected Read Error: ", input_path_L1
	n_Compensate = 0
	n_L1 = 0
	
	data_Compensate = []
	data_L1 = []
	
	for row in Compensate_csv:
		data_Compensate.append(row)
		n_Compensate = n_Compensate + 1
	for row in L1_csv:
		data_L1.append(row)
		n_L1 = n_L1 + 1
		
	#Data count check
	if(n_Compensate != n_L1):
		print 'Count Error;Process count dismatch between Compensate and L1'
		return 'L2 failed'

	#initialize
	date = []
	rsdn = npzeros(n_Compensate)
	Ta = npzeros(n_Compensate)
	h2o = npzeros(n_Compensate)
	#press = npzeros(n_Compensate)
	
	#Read Input Data
	i = 0
	for row in data_Compensate:
		rsdn[i] = float(row[0])
		Ta[i] = float(row[1])
		h2o[i] = float(row[2])
		
		i = i + 1

	press = 998.0	
	#initialize    
	Fs = npzeros(n_L1)
	Fc = npzeros(n_L1)
	Fsc = npzeros(n_L1)
	
	Hs = npzeros(n_L1)
	Hc = npzeros(n_L1)
	Hsc = npzeros(n_L1)
	
	LEs = npzeros(n_L1)
	LEc = npzeros(n_L1)
	LEsc = npzeros(n_L1)
	
	co2 = npzeros(n_L1)
	ustar = npzeros(n_L1)
	itime = npzeros(n_L1)
	iustar = npzeros(n_L1)
	date = []
	
	i = 0
	for row in data_L1:
		date.append(row[0])
		Fs[i] = float(row[1])
		Fc[i] = float(row[2])
		Fsc[i] = float(row[3])
		
		Hs[i] = float(row[4])
		Hc[i] = float(row[5])
		Hsc[i] = float(row[6])
		
		LEs[i] = float(row[7])
		LEc[i] = float(row[8])
		LEsc[i] = float(row[9])
		
		co2[i] = float(row[10])
		ustar[i] = float(row[14])
		itime[i] = float(row[15])
		iustar[i] = float(row[16])
		i = i + 1
	# Define constants and parameters for gap filling
	#--------------------------------------------------------------------------
	num_day = 28
	ni = 36
	nd = 10
	n1 = 2         	# how many the largest points are considered for respiration
					# DO NOT Modify!
	#num_point_per_day = 24          # number of data points per day (48 -> 30 min avg time)
	#avgtime = 30
	#determine num_point_per_day automatically . using datetime module
	date_1st = datetime.datetime.strptime(date[0], "%Y-%m-%d %H:%M")
	date_2nd = datetime.datetime.strptime(date[1], "%Y-%m-%d %H:%M")
	date_diff = date_2nd - date_1st
	avgtime = int(date_diff.seconds / 60) # averaging time (minutes)
	
	num_point_per_day = 1440 / avgtime # number of data points per day (1440 : minutes of a day)
	num_segment = num_point_per_day * num_day
	num_avg = int(n_L1 / num_segment)
	num_day_2 = 7
	# nday_re = 20
	# noverlap = 5
	num_day_re = 20
	noverlap = 5
	
	ni = int(num_point_per_day * 3 / 4) # the data point that night starts
	nd = 300 / avgtime 					# how many the largest points are considered for respiration (300 : minitues of 5 hours)
	
	#--------------------------------------------------------------------------
	#E0_const = True # Do you want to use constant E0 for one year? Y/N

	
	beta0 = nparray([2, 200])
	Tref = 10.0
	T0 = -46.02
	gap_limit = 0.025
	ustar_limit = 0.5
	upper_Fc = 0.35   # upper limit of nighttime CO2 flux (mg/m2/s)
	Fc_limit = 0.005
	
	## Information for MLT
	drsdn = 50.0   # W/m2
	dta = 2.5      # oC
	dvpd = 5.0     # 5 hPa
	rv = 461.51
	#--------------------------------------------------------------------------
	
	upper_co2 = 1000.0 # upper limit of CO2 concent.(mg/m3)
	upper_h2o = 60.0  # upper limit of H2O concent. (g/m3)
	upper_Ta = 60.0   # upper limit of air temperature (oC)
	lower_Fc = -3.0   # lower limit of daytime CO2 flux (mg/m2/s)
	lower_LE = -200    # lower limit of LE (W/m2)
	lower_H = -300     # lower limit of H (W/m2)
	upper_Fc = 3   # upper limit of nighttime CO2 flux (mg/m2/s)
	upper_LE = 800    # upper limit of LE (W/m2)
	upper_H = 800     # upper limit of H (W/m2)
	upper_agc = 95.0  # upper limit of AGC value
	ustar_limit = 0.03 # minimum ustar for filtering out nighttime fluxes
	Fc_limit = 0.005  # lower limit of Re (ecosystem respiration) (mg/m2/s)
	gap_limit = 0.025 # 0.025 --> 95# confidence interval

	Tak = npzeros(len(Ta))
	tr = npzeros(len(Ta))
	ea = npzeros(len(Ta))
	es = npzeros(len(Ta))
	vpd = npzeros(len(Ta))
	#--------------------------------------------------------------------------
	# calculation of vapor pressure deficit
	a = [13.3185, 1.9760, 0.6445, 0.1299]
	
	for i in range(n_Compensate):
		Tak[i] = Ta[i] + 273.15
		tr[i] = 1.0-(373.15/Tak[i])
		es[i] = 1013.25*exp(a[0]*tr[i]-a[1]*(tr[i]**2)-(a[2]*(tr[i]**3))-a[3]*(tr[i]**4)) # hPa
	
	for i in range(n_L1):
		ea[i] = h2o[i]
		vpd[i]= float(es[i]) - float(ea[i])  #unit is hPa
	
		
	Fc_filled = copy.deepcopy(Fsc)
	
	print 'Gap Filling Process'
	print 'Before running this program, '
	print '   please make sure that you correctly set all parameters'
	#print 'E0_const'. E0_const
	#print 'nn', nn
	#print 'num_point_per_day', num_point_per_day
	#print 'num_day_2', num_day_2
	#print 'num_day_re', num_day_re
	#print 'noverlap', noverlap
	#print 'drsdn', drsdn
	#print 'dta', dta
	#print 'dvpd', dvpd
	#print '-------------------------------------------------------------------'
	index = []

	for main_j in range(num_avg):       # loop for gap-filling of CO2 fluxes           
		
		seg_start_i = main_j * num_segment
		seg_fin_i = seg_start_i + num_segment
		
		if((seg_start_i + 2 * num_segment) > n_L1):
			seg_fin_i = n_L1
		x2 = []
		x3 = []
	#--------------------------------------------------------------------------
		if(main_j == 0):
			print 'Application of modified lookup table method'
	#--------------------------------------------------------------------------
		for i in range(seg_start_i, seg_fin_i):
			if(itime[i] == 1):
				ii = 0                
				if(isnan(Fsc[i]) == True):
					jj = 0
					while ((ii < 1) and (jj <= 4)):
						ta_f = Ta[i]
						rsdn_f = rsdn[i]
						vpd_f = vpd[i]

						i0 = i - jj * num_day_2 * num_point_per_day
						i1 = i + jj * num_day_2 * num_point_per_day+1
						
						if(i0 < 1): 
							i0 = 0
							i1 = 2 * jj * num_day_2 * num_point_per_day+1
						if(i1 >= n_L1):
							i0 = n_L1 - 2 * jj * num_day_2 * num_point_per_day
							i1 = n_L1
							if(i0 < 1):
								i0 = 0	
						ks = 0
						for j in range(i0, i1):
							if((fabs(vpd_f - vpd[j]) 	< dvpd) and \
								(fabs(rsdn_f - rsdn[j]) < drsdn) and \
								(fabs(ta_f - Ta[j]) 	< dta) and \
								(isnan(Fsc[j]) 			== False)):
								ks = ks + 1
								x3_temp = []
								
								x2.append(Fsc[j])
								x3_temp.append(j)
								x3_temp.append(vpd[j])
								x3_temp.append(rsdn[j])
								x3_temp.append(Ta[j])
								x3_temp.append(ks)
								x3.append(x3_temp)
								
						ii = ks
						
						#index_temp = []
						#index_temp.append(i)
						#index_temp.append(i0)
						#index_temp.append(i1)
						#index_temp.append(ks)
						#index_temp.append(main_j)
						#index.append(index_temp)
						
						if(ks >= 1):
							Fc_filled[i] = npmedian(nparray(x2))

						jj = jj + 1
						x2 = []
						x3 = []

					if(ii < 1):
						jj = 0
						while(ii < 1):
							rsdn_f = rsdn[i]

							i0 = i - jj * num_day_2 * num_point_per_day
							i1 = i + jj * num_day_2 * num_point_per_day+1
							if(i0 < 1): 
								i0 = 0
								i1 = 2 * jj * num_day_2 * num_point_per_day+1
							
							if(i1 >= n_L1):
								i0 = n_L1 - 2 * jj * num_day_2 * num_point_per_day
								i1 = n_L1
								if(i0 < 0):
									i0 = 0

							ks = 0
							for j in range(i0, i1):
								if((fabs(rsdn_f - rsdn[j]) 	< drsdn) and \
								(isnan(Fsc[j]) 				== False)):
									ks = ks + 1                      
									x3_temp = []
								
									x2.append(Fsc[j])
									x3_temp.append(j)
									x3_temp.append(vpd[j])
									x3_temp.append(rsdn[j])
									x3_temp.append(Ta[j])
									x3_temp.append(ks)
									x3.append(x3_temp)

							ii = ks
							
							#index_temp = []
							#index_temp.append(i)
							#index_temp.append(i0)
							#index_temp.append(i1)
							#index_temp.append(ks)
							#index_temp.append(main_j)
							#index.append(index_temp)
							
							if(ks >= 1):
								Fc_filled[i] = npmedian(nparray(x2))
								
							jj = jj + 1
							x2 = []
							x3 = []
							
		x2 = []
		x3 = []

		ks = 0
		
	d = npzeros((n_L1, 5))
	d2 = npzeros((n_L1, 5))
	dd = npzeros((n_L1, 5))
	x4 = []
	#Regression to Lloyd-Taylor equation
	print 'Regression to Lloyd-Taylor equation'
	if(E0_const == True):
		for i in range(ni-1, n_Compensate, num_point_per_day):
			t1 = npzeros(nd)
			
			for j in range(nd):
				t1[j] = Fsc[i + j]
			
			#Set to 'descend'
			t2, IX = Common.matlab_sort(t1)

			k2 = 0
			for k in range(nd-1):
				if((isnan(t2[k]) 	== False) and \
						(t2[k] 		< upper_Fc) and \
						(t2[k+1] 	> Fc_limit)):
					k2 = k2 + 1
			
			if(k2 >= 2):
				for j in range(nd-1):
					
					if((itime[i+1 + IX[j]]      == 0) and \
					(isnan(t2[j])           	== False) and \
					(isnan(Ta[i+1 + IX[j]])  	== False) and \
					(t2[j]                  	< upper_Fc) and \
					(t2[j + 1]					> Fc_limit) and \
					(iustar[i + IX[j]]      	== 0) and \
					(iustar[i + IX[j+1]]    	== 0)):
						x3.append(t2[j])
						x3.append(t2[j+1])
						x2.append(Ta[i + IX[j]])
						x2.append(Ta[i + IX[j+1]])
						x4.append(date[i + IX[j]])
						x4.append(date[i + IX[j+1]])
			
						ks = ks + n1
						break	
		TC = copy.deepcopy(nparray(x2))
		PV = copy.deepcopy(nparray(x3))
	
		
		betafit = spfmin(Common.Reco, beta0, args = (TC, PV), disp=False)
		A = betafit[0]
		B = betafit[1]
		yfit = npzeros(len(TC))
		for i in range(len(TC)):
			yfit[i] = A * exp(B * (1 / (10 + 46.02) - 1 / (TC[i] + 46.02)))
		E0 = betafit[1]
		E0l = copy.deepcopy(E0)
		

		
		#    figure(1)
		#   plot(TC][PV,'ko',TC][yfit,'or')
		#    grid
		#    xlabel('air temperature (^oC)')
		#    ylabel('Ecosystem respiration(mgm^{-2}s^{-1})')

		#     TC = x2'
		#     PV = x3'
		#     
		#     [beta][resnorm] = lsqcurvefit(@myfun][beta0][TC][PV)
		#     
		#     A=beta(1)
		#     B=beta(2)
		#     yfit=A.*exp(B.*(1./(10.+46.02)-1./(TC+46.02)))
		#     E0 = betafit(2)
		#     E0l = E0
		# 
		# 
		#     figure(5)
		#     plot(TC][PV,'ko',TC][yfit,'or')
		#     grid
		#     xlabel('air temperature (^oC)')
		#     ylabel('Ecosystem respiration(mgm^{-2}s^{-1})')
		x2 = []
		x3 = []
		t1 = []
		t2 = []
		TC = []
		PV = []
		yfit = npzeros(len(TC))

	#num_day_re = 20
	#noverlap = 5
	#avgtime = 30
	delta = (60 / avgtime) * 24 * num_day_re
	dnoverlap = (60 / avgtime) * 24 * noverlap
	jj = 0
	sday = []
	Rref = []
	RE_limit = []
	stdev_E0 = []
	E0v = []
	REs = []
	Taylor_date = []
	yfit_array = []
	for i in range(0, n_L1, dnoverlap):
		i0 = int(i - delta / 2)
		i1 = int(i + delta / 2)
		
		if(i0 < 1):
			i0 = 0
			i1 = int(i0 + delta)
		if(i1 >= n_L1):
			i0 = int(n_L1 - delta) - 1
			i1 = n_L1
		
		ks = 1
		for j in range(i0+ni-1, i1, num_point_per_day):
			t1 = npzeros(nd)
			for k in range(nd):
				t1[k] = Fsc[j + k]
			#Set to 'descend'
			t2, IX = Common.matlab_sort(t1)
			
			k2 = 1
			for k in range(nd-1):
				if((isnan(t2[k])    ==  False) and \
					(t2[k]          <   upper_Fc) and \
					(t2[k+1]        >   Fc_limit)):
					k2 = k2 + 1
			
			if(k2 >= n1):
				for k in range(nd-1):
					if((itime[j+1 +IX[k]]  	== 0) and \
					(isnan(t2[k])           == False) and \
					(isnan(Ta[j + IX[k]])	== False) and \
					(t2[k]                  < upper_Fc) and \
					(t2[k+1]                > Fc_limit) and \
					(iustar[j +IX[k]]      == 0) and \
					(iustar[j +IX[k+1]]    == 0)):
						x3.append(t2[k])
						x3.append(t2[k+1])
						x2.append(Ta[j + IX[k]])
						x2.append(Ta[j + IX[k+1]])
						Taylor_date.append(str(date[j + IX[k]]))
						Taylor_date.append(str(date[j + IX[k+1]]))
					
						ks = ks + n1
						break
			
		ks = ks - 1
		
		if(ks < 6):
			if(E0_const == True):
				Rref.append(float('NaN'))
				RE_limit.append(float('NaN'))
				jj = jj + 1
			else:
				Rref.append(float('NaN'))
				E0v.append(float('NaN'))
				stdev_E0.append(float('NaN'))
				RE_limit.append(float('NaN'))
				jj = jj + 1
		else:
			TC = copy.deepcopy(nparray(x2))
			PV = copy.deepcopy(nparray(x3))
			
			if(E0_const == True):
				betafit = spfmin(Common.Reco2, beta0, args = (TC, PV, E0l), disp=False)
				A = betafit[0]
				Rref.append(A)
				
				for j in range(len(TC)):
					yfit = A * exp(E0 * (1.0/(10.0+46.02) - 1.0/(TC[j] + 46.02)))
					yfit_array.append(yfit)
					REs.append(PV[j] - yfit)
				
				sz = nparray(REs).shape
				upper = fabs(Common.tq(gap_limit, sz[0]-1 ) )
				RE_limit.append(upper*Common.stdn1(nparray(REs))/sqrt(sz[0]))
				
				jj = jj + 1
			else:
				betafit=spfmin(Common.Reco2, beta0, args = (TC, PV, E0))
				
				A=betafit[0]
				B=betafit[1]
				Rref.append(A)
				E0v.append(B)
				
				if((B < 0) or (B > 450)):
					E0v.append(float('NaN'))
				
				for j in range(len(TC)):
					yfit = A * exp(E0v[jj] * (1.0 / (10.0 + 46.02) - 1.0 / (TC[j] + 46.02)))
					yfit_array.append(yfit)
					REs.append(PV[j] - yfit)
				
				sz = nparray(REs).shape
				upper = abs(Common.tq(gap_limit, sz[0]-1))
				stdev_E0.append(Common.stdn1(REs) / sqrt(sz[0]))
				RE_limit.append(upper * Common.stdn1(nparray(REs)) / sqrt(sz[0]))
				
				jj = jj + 1
			#Regression to Lloyd-Taylor equation with 28-day segmentation
			date_extracted = re.search('^(\d{4}[-]\d{2}[-]\d{2})',str(Taylor_date[0]))
			#print date_extracted.group(0)
			if(date_extracted != None):
				fname = 'Plot_L2_1_'+str(date_extracted.group(0))+'.csv'
				output_plot_1_file_path = os.path.join(output_path, fname)	
				
				try:
					output_plot_1_fp = open(output_plot_1_file_path, 'w+')
				except IOError:
					print "IO error;Check the output File: ", output_plot_1_file_path
					return 'L2 failed'	
				
				for i in range(len(TC)):
					file_plot_str = StringIO()
					file_plot_str.write(Taylor_date[i]		+ ',')		#1	
					file_plot_str.write(str(A)	 			+ ',') 		#2
					file_plot_str.write(str(B)	 			+ ',') 		#3
					file_plot_str.write(str(TC[i]) 			+ ',') 		#4
					file_plot_str.write(str(PV[i]) 			+ ',' )		#5
					file_plot_str.write(str(yfit_array[i])	+ '\n' )	#6
					
					output_plot_string = file_plot_str.getvalue()
					
					output_plot_1_fp.write(output_plot_string)
				output_plot_1_fp.close()
			
				
		sday_temp = []
		sday_temp.append(i)
		sday_temp.append(i0)
		sday_temp.append(i1)
		sday.append(sday_temp)
		
		
		
		x2 = []
		x3 = []
		t1 = []
		t2 = []
		TC = []
		PV = []
		Taylor_date = []
		REs = []
		yfit = []

	sday = nparray(sday)
	if(E0_const == True):
		print 'Long-term E0 '
		E0s = copy.deepcopy(E0l)
	else:
		E0v_s = []
		stdev_E0_s = []
		for k in range(len(E0v)):
			E0v_s.append(E0v[k]/stdev_E0[k])
			stdev_E0_s.append(1/stdev_E0[k])
		print 'Short-term E0 '
		E0s = npnansum(E0v_s)/npnansum(stdev_E0_s)
	Rref = []
	#REs = []
	#RE_limit = []
	
	
	jj = 0
	for i in range(0, n_L1, dnoverlap):

		i0 = i - delta / 2
		i1 = i + delta / 2
	
		if(i0 < 1):
			i0 = 0
			i1 = i0 + delta
		if(i1 >= n_L1):
			i0 = n_L1 - delta - 1
			i1 = n_L1
		ks = 1
		for j in range(i0+ni-1,  i1,  num_point_per_day):
			t1 = npzeros(nd)
			for k in range(nd):
				t1[k] = Fsc[j + k]
			#Set to 'descend'
			t2, IX = Common.matlab_sort(t1)

			k2 = 1
			
			for k in range(nd-1):
				if((isnan(t2[k])	== 	False) and \
					(t2[k]			< 	upper_Fc) and \
					(t2[k+1]		> 	Fc_limit)):
					
					k2 = k2 + 1
				
			if(k2 >= n1):
				for k in range(nd-1):
					if((itime[j+1 + IX[k]]		== 0) and \
					(isnan(t2[k])               == False) and \
					(isnan(Ta[j + IX[k]])    	== False) and \
					(t2[k]                    	< upper_Fc) and \
					(t2[k+1]                   	> Fc_limit) and \
					(iustar[j + IX[k]]        	==  0) and \
					(iustar[j + IX[k+1]]        ==  0)):
						x3.append(t2[k])
						x3.append(t2[k + 1])
						x2.append(Ta[j + IX[k]])
						x2.append(Ta[j + IX[k+1]])
						
						ks = ks + n1
						break
					
		ks = ks - 1

		if(ks < 6):
			
#			Rref.append(Rref[jj])
#			RE_limit.append(RE_limit[jj])
			
			Rref.append(Rref[-1])
			RE_limit.append(RE_limit[-1])
			
			if(E0_const != True):
				stdev_E0.append(stdev_E0[jj])
				
			jj = jj + 1
            
			
		else:

			TC = nparray(x2)
			PV = nparray(x3)
			
			betafit = spfmin(Common.Reco2, beta0, args = (TC, PV, E0s), disp=False)
			
			A=betafit[0]
			Rref.append(A)
			
			for j in range(len(TC)):
				yfit = Rref[jj] * exp(E0s * (1 / (10 + 46.02) - 1 / (TC[j] + 46.02)))
				REs.append(PV[j]-yfit)
				
			sz = nparray(REs).shape
			upper = abs(Common.tq(gap_limit, sz[0]-1))
			RE_limit.append(upper*Common.stdn1(REs)/sqrt(sz[0]))
            
			jj = jj + 1
	
		x2 = []
		x3 = []
		t1 = []
		t2 = []
		TC = []
		PV = []
		
		#for k in REs:
		#	print k
		REs = []
	#for k in Rref:
	#	print k
	##    
	
	ks = 0
	nsp2 = npzeros((n_L1 / num_point_per_day))
	RE = npzeros(n_L1) 
	GPP = npzeros(n_L1)
	for i in range(n_L1):
		RE[i] = float('NaN')
		GPP[i] = float('NaN')
	
	for i in range(0, n_L1, num_point_per_day):
		i0 = i
		i1 = i + num_point_per_day
		if(i0 >=sday[ks][1]):
			ks = ks + 1
			if(i0 >= sday[len(sday)-1][1]):
				ks = len(sday)-1
		
		for j in range(i0, i1):
			if(E0_const == True):
				yfit=Rref[ks-1] * exp(E0l * (1.0 / (10 + 46.02) - 1.0 / (Ta[j] + 46.02)))
			else:
				yfit=Rref[ks-1] * exp(E0s * (1.0 / (10 + 46.02) - 1.0 / (Ta[j] + 46.02)))
			
			RE[j] = yfit
			if(itime[j]==0):                 # nighttime condition
				RE[j] = Fc_filled[j]
				
				if((isnan(Fsc[j])    	==  True) or \
					((Fsc[j]-yfit)		<   RE_limit[ks-1]) or \
					((Fsc[j]-yfit)  	>   1.0 * RE_limit[ks-1]) or \
					(iustar[j]      	==  1)):
					nsp2[ks-1] = nsp2[ks-1] + 1
					Fc_filled[j] = yfit
					RE[j] = Fc_filled[j]
			
			GPP[j] = RE[j]- Fc_filled[j]
			
	
	#figure(2)
	#plot(time][Fsc][time][Fc_filled[:],'or')
	#set(gca,'XTick',[year0:1/12:year0+0.9999999])
	#set(gca,'xticklabel',xticks)            
	#ylim = [-1.5][1.5]
	#set(gca,'xLim',xlim(:))
	#ylabel('F_c (mgm^{-2}s^{-1})')
	#--------------------------------------------------------------------------


	#--------------------------------------------------------------------------
	print 'Gap-filling of LE'
	#--------------------------------------------------------------------------
	x2 = []
	x3 = []
	index = []
	LE_filled = copy.deepcopy(LEsc)
	for main_j in range(num_avg):       # loop for gap-filling of H2O fluxes           
		
		
		seg_start_i = main_j * num_segment
		seg_fin_i = seg_start_i + num_segment
		
		if((seg_start_i + 2 * num_segment) > n_L1):
			seg_fin_i = n_L1
			
		x2 = []
		x3 = []

		for i in range(seg_start_i, seg_fin_i):
			
			ii = 0               
			
			if(isnan(LEsc[i]) == True):
				jj = 0
				while((ii < 1) and (jj <= 4)):
					ta_f = Ta[i]
					rsdn_f = rsdn[i]
					vpd_f = vpd[i]

					i0 = i - jj * num_day_2 * num_point_per_day
					i1 = i + jj * num_day_2 * num_point_per_day+1
					if(i0 < 1):
						i0 = 0
						i1 = 2 * jj * num_day_2 * num_point_per_day+1
					if(i1 >= n_L1):
						i0 = n_L1 - 2 * jj * num_day_2 * num_point_per_day - 1
						i1 = n_L1
						if(i0 < 1):
							i0 = 0
					ks = 0
					for j in range(i0, i1):
						if((fabs(vpd_f-vpd[j])	< dvpd) and \
						(fabs(rsdn_f-rsdn[j])	< drsdn)  and \
						(fabs(ta_f-Ta[j])   	< dta) and \
						(isnan(LEsc[j])    		== False)):
							x3_temp = []
							x2.append(LEsc[j])
							x3_temp.append(j)
							x3_temp.append(vpd[j])
							x3_temp.append(rsdn[j])
							x3_temp.append(Ta[j])
							x3_temp.append(ks)
							x3.append(x3_temp)                                
							ks = ks + 1
							
					ii = ks
					#index_temp = []
					#index_temp.append(i)
					#index_temp.append(i0)
					#index_temp.append(i1)
					#index_temp.append(ks)
					#index_temp.append(main_j)
					#index.append(index_temp)

					if(ks >= 1):
						LE_filled[i] = npmedian(nparray(x2))
					jj = jj + 1
					x2 = [] 
					x3 = [] 
					
				if(ii < 1):
					jj = 0
					while(ii < 1):
						rsdn_f = rsdn[i]

						i0 = i - jj * num_day_2 * num_point_per_day 
						i1 = i + jj * num_day_2 * num_point_per_day + 1
						if(i0 < 1):
							i0 = 0
							i1 = 2 * jj * num_day_2 * num_point_per_day + 1
						if(i1 >= n_L1):
							i0 = n_L1 - 2 * jj * num_day_2 * num_point_per_day - 1
							i1 = n_L1
							if(i0 < 1):
								i0 = 0
								
						ks = 0
						for j in range(i0, i1):
							if((fabs(rsdn_f-rsdn[j]) 	< drsdn)  and \
								(isnan(LEsc[j])       		== False)):
								
								x3_temp = []
								x2.append(LEsc[j])
								x3_temp.append(j)
								x3_temp.append(vpd[j])
								x3_temp.append(rsdn[j])
								x3_temp.append(Ta[j])
								x3_temp.append(ks)
								x3.append(x3_temp)
								ks = ks + 1
							
						ii = ks
						#index_temp = []
						#index_temp.append(i)
						#index_temp.append(i0)
						#index_temp.append(i1)
						#index_temp.append(ks)
						#index_temp.append(main_j)
						#index.append(index_temp)

						if(ks >= 1):
							LE_filled[i] = npmedian(nparray(x2))
						jj = jj + 1
						x2 = []
						x3 = []
		
		x2 = []
		x3 = []
		ks = 0

	#figure(3)
	#plot(time][LEsc][time][LE_filled[:],'or')
	#set(gca,'XTick',[year0:1/12:year0+0.9999999])
	#set(gca,'xticklabel',xticks)            
	#ylim = [-100][600]
	#set(gca,'xLim',xlim(:))
	#ylabel('LE (Wm^{-2})')

	##
	#--------------------------------------------------------------------------
	
	print 'Gap-filling of H (sensible heat flux)'
	
	#--------------------------------------------------------------------------
	x2 = []
	x3 = []
	index = []
	H_filled = copy.deepcopy(Hsc)

	for main_j in range(num_avg):       # loop for gap-filling of H2O fluxes           
		seg_start_i = main_j * num_segment
		seg_fin_i = seg_start_i + num_segment
		
		if((seg_start_i + 2 * num_segment) >= n_L1):
			seg_fin_i = n_L1
		
		x2 = []
		x3 = []

		for i in range(seg_start_i, seg_fin_i):
			ii = 0                
			if(isnan(Hsc[i])	== True):
				jj = 0
				while ((ii < 1) and (jj <= 4)):
					ta_f = Ta[i]
					rsdn_f = rsdn[i]
					vpd_f = vpd[i]

					i0 = i - jj * num_day_2 * num_point_per_day
					i1 = i + jj * num_day_2 * num_point_per_day+1
					if(i0 < 1):
						i0 = 0
						i1 = 2 * jj * num_day_2 * num_point_per_day+1
					if(i1 >= n_L1):
						i0 = n_L1 - 2 * jj * num_day_2 * num_point_per_day - 1
						i1 = n_L1
						if(i0 < 1):
							i0 = 0
						
					ks = 0
					for j in range(i0, i1):
						if((fabs(vpd_f-vpd[j])	< dvpd) and \
						(fabs(rsdn_f-rsdn[j])  	< drsdn)  and \
						(fabs(ta_f-Ta[j])      	< dta) and \
						(isnan(Hsc[j])        	== False)):
							                   
							x3_temp = []
							x2.append(Hsc[j])
							x3_temp.append(j)
							x3_temp.append(vpd[j])
							x3_temp.append(rsdn[j])
							x3_temp.append(Ta[j])
							x3_temp.append(ks)
							ks = ks + 1   
							x3.append(x3_temp)    
					ii = ks
					#index_temp = []
					#index_temp.append(i)
					#index_temp.append(i0)
					#index_temp.append(i1)
					#index_temp.append(ks)
					#index_temp.append(main_j)
					#index.append(index_temp)

					if(ks >= 1):
						H_filled[i] = npmedian(nparray(x2))
					jj = jj + 1
					x2 = [] 
					x3 = []

				if(ii < 1):
					jj = 0
					while(ii < 1):
						rsdn_f = rsdn[i]

						i0 = i - jj * num_day_2 * num_point_per_day
						i1 = i + jj * num_day_2 * num_point_per_day+1
						if(i0 < 1):
							i0 = 0
							i1 = 2 * jj * num_day_2 * num_point_per_day+1
						if(i1 >= n_L1):
							i0 = n_L1 - 2 * jj * num_day_2 * num_point_per_day - 1
							i1 = n_L1
							if(i0 < 1):
								i0 = 0
							
						ks = 0
						for j in range(i0, i1): 
							if((fabs(rsdn_f-rsdn[j])    <  drsdn)  and \
							(isnan(Hsc[j])            	== False)):
								ks = ks + 1                      
								x3_temp = []
								x2.append(Hsc[j])
								x3_temp.append(j)
								x3_temp.append(vpd[j])
								x3_temp.append(rsdn[j])
								x3_temp.append(Ta[j])
								x3_temp.append(ks)
								x3.append(x3_temp)    
						
						ii = ks
						#index_temp = []
						#index_temp.append(i)
						#index_temp.append(i0)
						#index_temp.append(i1)
						#index_temp.append(ks)
						#index_temp.append(main_j)
						#index.append(index_temp)
						

						if(ks >= 1):
							H_filled[i] = npmedian(nparray(x2))

						jj = jj + 1
						x2 = []
						x3 = []
					
		x2 = []
		x3 = []
		ks = 0

	#figure(4)
	#plot(time,Hsc,time,H_filled[:],'or')
	#set(gca,'XTick',[year0:1/12:year0+0.9999999])
	#set(gca,'xticklabel',xticks)            
	#ylim = [-100,600]
	#set(gca,'xLim',xlim(:))
	#ylabel('H (Wm^{-2})')
	
	##
	print '-------------------------------------------------------------------'
	print 'Calculating daily mean values'
	print '-------------------------------------------------------------------'
	# disp('Press any key to calculate daily mean values')
	# pause
	print '-------------------------------------------------------------------'
	print 'calculation of daily mean. Unit seg_start_i [C g/m2/day].'
	print '-------------------------------------------------------------------'

	Fsc_daily = npzeros(n_L1/num_point_per_day)
	GPP_daily = npzeros(n_L1/num_point_per_day)
	RE_daily = npzeros(n_L1/num_point_per_day)
	ET_daily = npzeros(n_L1/num_point_per_day)
	H_daily = npzeros(n_L1/num_point_per_day)
	LE_daily = npzeros(n_L1/num_point_per_day)
	H_daily = npzeros(n_L1/num_point_per_day)
	
	k = 0
	for i in range(0, n_L1, num_point_per_day):
		for j in range(i,i + num_point_per_day):
			Fsc_daily[k] = Fsc_daily[k] + Fc_filled[j]
			GPP_daily[k] = GPP_daily[k] + GPP[j]
			RE_daily[k] = RE_daily[k] + RE[j]
			ET_daily[k] = ET_daily[k] + LE_filled[j]
		Fsc_daily[k] = Fsc_daily[k]	*	(60*float(avgtime)/1000*12/44)
		GPP_daily[k] = GPP_daily[k]	*	(60*float(avgtime)/1000*12/44)    
		RE_daily[k] = RE_daily[k]	*	(60*float(avgtime)/1000*12/44)        
		ET_daily[k] = ET_daily[k]	*	(60*float(avgtime)/(2440)/1000)
		
		k = k + 1
	NEE_annual= npmean(Fc_filled)*float((1800*48*(n_L1/(60.0/avgtime*24))*12/44/1000.0))
	GPP_annual = npmean(GPP)*float((1800*48*(n_L1/(60.0/avgtime*24))*12/44/1000.0))
	RE_annual = npmean(RE)*float((1800*48*(n_L1/(60.0/avgtime*24))*12/44/1000.0))
	NEE_std_annual = Common.stdn1(Fsc_daily)/sqrt(n_L1/(60.0/avgtime*24))*(n_L1/(60.0/avgtime*24))
	GPP_std_annual = Common.stdn1(GPP_daily)/sqrt(n_L1/(60.0/avgtime*24))*(n_L1/(60.0/avgtime*24))
	RE_std_annual = Common.stdn1(RE_daily)/sqrt(n_L1/(60.0/avgtime*24))*(n_L1/(60.0/avgtime*24))
	
	print 'NEE_annual', NEE_annual
	print 'GPP_annual', GPP_annual
	print 'RE_annual', RE_annual
	print 'NEE_std_annual', NEE_std_annual
	print 'GPP_std_annual', GPP_std_annual
	print 'RE_std_annual', RE_std_annual
	
	print '-------------------------------------------------------------------'
	print 'Calculating daily mean ETs'
	print '-------------------------------------------------------------------'
	print 'calculation of daily mean. Unit seg_start_i [C g/m2/day].'
	print '-------------------------------------------------------------------'

	
	k = 0
	for i in range(0, n_L1, num_point_per_day):
		for j in range(i,i + num_point_per_day):
			LE_daily[k] = LE_daily[k] \
				+ LE_filled[j]*(60*float(avgtime)/(2440*1000))
		k = k + 1    


	# npmean(Fc_filled)
	LE_annual = npmean(LE_filled)*(1800.0*48.0*float(n_L1/(60.0/avgtime*24))/2440.0/1000.0)
	LE_std_annual = Common.stdn1(LE_daily)/sqrt(n_L1/float(60.0/avgtime*24.0))*float(n_L1/(60.0/avgtime*24.0))

	print 'LE_annaul', LE_annual
	print 'LE_std_annaul', LE_std_annual
	
	print '-------------------------------------------------------------------'
	print 'Calculating daily npmean heating rate'
	print '-------------------------------------------------------------------'
	print 'calculation of daily npmean heating rate. Unit seg_start_i [MJ/m2/day].'
	print '-------------------------------------------------------------------'

	k = 0
	for i in range(0, n_L1, num_point_per_day):
		for j in range(i,i + num_point_per_day):
			H_daily[k] = H_daily[k] \
				+ H_filled[j]*(60*float(avgtime)/(1004*1.0))/(10E6)
		k = k + 1

	H_annual = sum(H_daily)
	H_std_annual = Common.stdn1(H_daily)
	
	print 'H_annaul', H_annual
	print 'H_std_annaul', H_std_annual

	
	for i in range(len(Fsc)):
		file_plot_str = StringIO()
		file_plot_str.write(str(date[i])			+ ',') 		#1
		file_plot_str.write(str(Fsc[i]) 			+ ',') 		#2
		file_plot_str.write(str(Fc_filled[i]) 		+ ',') 		#3
		file_plot_str.write(str(LEsc[i]) 			+ ',') 		#4
		file_plot_str.write(str(LE_filled[i]) 		+ ',') 		#5
		file_plot_str.write(str(Hsc[i]) 			+ ',') 		#6
		file_plot_str.write(str(H_filled[i]) 		+ '\n') 	#7
		

		output_plot_string = file_plot_str.getvalue()
		
		output_plot_2_fp.write(output_plot_string)
	output_plot_2_fp.close()
	
	
	#For output
	#Assume data start from 0:00
	output_Fsc_daily = npzeros(n_L1)
	output_GPP_daily = npzeros(n_L1)
	output_RE_daily = npzeros(n_L1)
	output_ET_daily = npzeros(n_L1)
	output_LE_daily = npzeros(n_L1)
	output_H_daily = npzeros(n_L1)
	
	j = 0
	for i in range(n_L1):
		output_Fsc_daily[i] = Fsc_daily[j]
		output_GPP_daily[i] = GPP_daily[j]
		output_RE_daily[i] = RE_daily[j]
		output_ET_daily[i] = ET_daily[j]
		output_H_daily[i] = H_daily[j]
		output_LE_daily[i] = LE_daily[j]
		if((i+1) % num_point_per_day == 0):
			j = j + 1
			

	for i in range(n_L1):
		file_str = StringIO()

		file_str.write(str(output_ET_daily[i]) + ',') 		#1
		
		file_str.write(str(Fc_filled[i]) + ',' )			#2
		file_str.write(str(output_Fsc_daily[i])   + ',' )	#3
		
		file_str.write(str(GPP[i]) + ',' )					#4
		file_str.write(str(output_GPP_daily[i]) + ',')		#5
		file_str.write(str(GPP_annual) + ',')				#6
		file_str.write(str(GPP_std_annual) + ',')			#7
		
		file_str.write(str(H_filled[i]) + ',')				#8
		file_str.write(str(output_H_daily[i]) + ',')		#9
		file_str.write(str(H_annual) + ',')					#10
		file_str.write(str(H_std_annual) + ',')				#11
		
		file_str.write(str(LE_filled[i]) + ',')				#12
		file_str.write(str(output_LE_daily[i]) + ',')		#13
		file_str.write(str(LE_annual) + ',')				#14
		file_str.write(str(LE_std_annual) + ',')			#15
		
		file_str.write(str(NEE_annual) + ',')				#16
		file_str.write(str(NEE_std_annual) + ',')			#17
		
		file_str.write(str(output_RE_daily[i]) + ',')		#18
		file_str.write(str(RE_annual) + ',')				#19
		file_str.write(str(RE_std_annual) + ',')			#20
		
		file_str.write(str(co2[i]) + ',')					#21
		file_str.write(str(rsdn[i]) + ',')					#22
		file_str.write(str(ea[i]) + ',')					#23
		file_str.write(str(h2o[i]) + ',')					#24
		file_str.write(str(Ta[i]) + ',')					#25
		file_str.write(str(vpd[i]) + '\n' )					#26
	
		output_string = file_str.getvalue()
		
		output_fp.write(output_string)

	output_fp.close()
	
	return 'L2 Done'