Exemplo n.º 1
0
def stetson_jindex(ftimes, fmags, ferrs, weightbytimediff=False):
    '''This calculates the Stetson index for the magseries, based on consecutive
    pairs of observations. Based on Nicole Loncke's work for her Planets and
    Life certificate at Princeton.

    This requires finite times, mags, and errs.

    If weightbytimediff is True, the Stetson index for any pair of mags will be
    reweighted by the difference in times between them using the scheme in
    Fruth+ 2012 and Zhange+ 2003 (as seen in Sokolovsky+ 2017).

    w_i = exp(- (t_i+1 - t_i)/ delta_t )

    '''

    ndet = len(fmags)

    if ndet > 9:

        # get the median and ndet
        medmag = npmedian(fmags)

        # get the stetson index elements
        delta_prefactor = (ndet / (ndet - 1))
        sigma_i = delta_prefactor * (fmags - medmag) / ferrs
        sigma_j = nproll(sigma_i,
                         1)  # Nicole's clever trick to advance indices
        # by 1 and do x_i*x_(i+1)

        if weightbytimediff:

            time_i = ftimes
            time_j = nproll(ftimes, 1)
            difft = npdiff(ftimes)
            deltat = npmedian(difft)

            weights_i = npexp(-difft / deltat)
            products = (weights_i * sigma_i[1:] * sigma_j[1:])
        else:
            # ignore first elem since it's actually x_0*x_n
            products = (sigma_i * sigma_j)[1:]

        stetsonj = (npsum(npsign(products) * npsqrt(npabs(products)))) / ndet

        return stetsonj

    else:

        LOGERROR('not enough detections in this magseries '
                 'to calculate stetson J index')
        return npnan
Exemplo n.º 2
0
def pdw_worker(task):
    '''
    This is the parallel worker for the function below.

    task[0] = frequency for this worker
    task[1] = times array
    task[2] = mags array
    task[3] = fold_time
    task[4] = j_range
    task[5] = keep_threshold_1
    task[6] = keep_threshold_2
    task[7] = phasebinsize

    we don't need errs for the worker.

    '''

    frequency = task[0]
    times, modmags = task[1], task[2]
    fold_time = task[3]
    j_range = range(task[4])
    keep_threshold_1 = task[5]
    keep_threshold_2 = task[6]
    phasebinsize = task[7]

    try:

        period = 1.0 / frequency

        # use the common phaser to phase and sort the mag
        phased = phase_magseries(times,
                                 modmags,
                                 period,
                                 fold_time,
                                 wrap=False,
                                 sort=True)

        # bin in phase if requested, this turns this into a sort of PDM method
        if phasebinsize is not None and phasebinsize > 0:
            bphased = pwd_phasebin(phased['phase'],
                                   phased['mags'],
                                   binsize=phasebinsize)
            phase_sorted = bphased[0]
            mod_mag_sorted = bphased[1]
            j_range = range(len(mod_mag_sorted) - 1)
        else:
            phase_sorted = phased['phase']
            mod_mag_sorted = phased['mags']

        # now calculate the string length
        rolledmags = nproll(mod_mag_sorted, 1)
        rolledphases = nproll(phase_sorted, 1)
        strings = ((rolledmags - mod_mag_sorted) *
                   (rolledmags - mod_mag_sorted) +
                   (rolledphases - phase_sorted) *
                   (rolledphases - phase_sorted))
        strings[0] = (((mod_mag_sorted[0] - mod_mag_sorted[-1]) *
                       (mod_mag_sorted[0] - mod_mag_sorted[-1])) +
                      ((phase_sorted[0] - phase_sorted[-1] + 1) *
                       (phase_sorted[0] - phase_sorted[-1] + 1)))
        strlen = npsum(npsqrt(strings))

        if (keep_threshold_1 < strlen < keep_threshold_2):
            p_goodflag = True
        else:
            p_goodflag = False

        return (period, strlen, p_goodflag)

    except Exception as e:

        LOGEXCEPTION('error in DWP')
        return (period, npnan, False)
Exemplo n.º 3
0
def stetson_jindex(ftimes, fmags, ferrs, weightbytimediff=False):
    '''This calculates the Stetson index for the magseries, based on consecutive
    pairs of observations.

    Based on Nicole Loncke's work for her Planets and Life certificate at
    Princeton in 2014.

    Parameters
    ----------

    ftimes,fmags,ferrs : np.array
        The input mag/flux time-series with all non-finite elements removed.

    weightbytimediff : bool
        If this is True, the Stetson index for any pair of mags will be
        reweighted by the difference in times between them using the scheme in
        Fruth+ 2012 and Zhange+ 2003 (as seen in Sokolovsky+ 2017)::

            w_i = exp(- (t_i+1 - t_i)/ delta_t )

    Returns
    -------

    float
        The calculated Stetson J variability index.

    '''

    ndet = len(fmags)

    if ndet > 9:

        # get the median and ndet
        medmag = npmedian(fmags)

        # get the stetson index elements
        delta_prefactor = (ndet / (ndet - 1))
        sigma_i = delta_prefactor * (fmags - medmag) / ferrs

        # Nicole's clever trick to advance indices by 1 and do x_i*x_(i+1)
        sigma_j = nproll(sigma_i, 1)

        if weightbytimediff:

            difft = npdiff(ftimes)
            deltat = npmedian(difft)

            weights_i = npexp(-difft / deltat)
            products = (weights_i * sigma_i[1:] * sigma_j[1:])
        else:
            # ignore first elem since it's actually x_0*x_n
            products = (sigma_i * sigma_j)[1:]

        stetsonj = (npsum(npsign(products) * npsqrt(npabs(products)))) / ndet

        return stetsonj

    else:

        LOGERROR('not enough detections in this magseries '
                 'to calculate stetson J index')
        return npnan
Exemplo n.º 4
0
def nonperiodic_lightcurve_features(times, mags, errs, magsarefluxes=False):
    '''This calculates the following nonperiodic features of the light curve,
    listed in Richards, et al. 2011):

    - amplitude
    - beyond1std
    - flux_percentile_ratio_mid20
    - flux_percentile_ratio_mid35
    - flux_percentile_ratio_mid50
    - flux_percentile_ratio_mid65
    - flux_percentile_ratio_mid80
    - linear_trend
    - max_slope
    - median_absolute_deviation
    - median_buffer_range_percentage
    - pair_slope_trend
    - percent_amplitude
    - percent_difference_flux_percentile
    - skew
    - stdev
    - timelength
    - mintime
    - maxtime

    Parameters
    ----------

    times,mags,errs : np.array
        The input mag/flux time-series to process.

    magsarefluxes : bool
        If True, will treat values in `mags` as fluxes instead of magnitudes.

    Returns
    -------

    dict
        A dict containing all of the features listed above.

    '''

    # remove nans first
    finiteind = npisfinite(times) & npisfinite(mags) & npisfinite(errs)
    ftimes, fmags, ferrs = times[finiteind], mags[finiteind], errs[finiteind]

    # remove zero errors
    nzind = npnonzero(ferrs)
    ftimes, fmags, ferrs = ftimes[nzind], fmags[nzind], ferrs[nzind]

    ndet = len(fmags)

    if ndet > 9:

        # calculate the moments
        moments = lightcurve_moments(ftimes, fmags, ferrs)

        # calculate the flux measures
        fluxmeasures = lightcurve_flux_measures(ftimes,
                                                fmags,
                                                ferrs,
                                                magsarefluxes=magsarefluxes)

        # calculate the point-to-point measures
        ptpmeasures = lightcurve_ptp_measures(ftimes, fmags, ferrs)

        # get the length in time
        mintime, maxtime = npmin(ftimes), npmax(ftimes)
        timelength = maxtime - mintime

        # get the amplitude
        series_amplitude = 0.5 * (npmax(fmags) - npmin(fmags))

        # calculate the linear fit to the entire mag series
        fitcoeffs = nppolyfit(ftimes, fmags, 1, w=1.0 / (ferrs * ferrs))
        series_linear_slope = fitcoeffs[1]

        # roll fmags by 1
        rolled_fmags = nproll(fmags, 1)

        # calculate the magnitude ratio (from the WISE paper)
        series_magratio = ((npmax(fmags) - moments['median']) /
                           (npmax(fmags) - npmin(fmags)))

        # this is the dictionary returned containing all the measures
        measures = {
            'ndet': fmags.size,
            'mintime': mintime,
            'maxtime': maxtime,
            'timelength': timelength,
            'amplitude': series_amplitude,
            'ndetobslength_ratio': ndet / timelength,
            'linear_fit_slope': series_linear_slope,
            'magnitude_ratio': series_magratio,
        }
        if moments:
            measures.update(moments)
        if ptpmeasures:
            measures.update(ptpmeasures)
        if fluxmeasures:
            measures.update(fluxmeasures)

        return measures

    else:

        LOGERROR('not enough detections in this magseries '
                 'to calculate non-periodic features')
        return None
    # Move Fader of the second channel down
    dj.moves.move_fader_down(next_side)
    print('Moved Fader -', next_side, 'down.')
    sleep(2)

    cue_point1 = playlist_db[0, 1][0]
    mix_point1 = playlist_db[0, 1][2]

    # Move down by one song on library panel
    dj.pressings.scroll_down(1)  # prepare for next song

    # Setup the second song on the second deck
    dj.get_next_song_ready(2, playlist_db[1])

    # Move the playlist by two songs - Roll is used in order to have the correct number of loops
    playlist_db = nproll(a=playlist_db, shift=-2, axis=0)
    print(playlist_db)

    # Press the 'Play'-button of the first deck
    dj.pressings.press_play(current_side)

    print('sleeping for:', mix_point1 - cue_point1)
    sleep(mix_point1 - cue_point1)

    for track in playlist_db:
        latency = dj.pressings.press_play(next_side)
        print('Pressed play (deck-' + str(next_side) + ')')

        latency += dj.moves.move_fader_up(next_side)
        print('Fader Up (channel-' + str(next_side) + ')')
        latency += dj.pressings.press_beat_sync(next_side)