def partition_by_team(self): # get the unique teams in this current data frame teams = self.historical_data["standardHomeTeamName"].unique() teams = numpy_sort(teams) games_by_team = {team: [] for team in teams} # for each team setup an empty collection for team in teams: by_home_team = self.historical_data[ self.historical_data["standardHomeTeamName"].isin([team])] by_away_team = self.historical_data[ self.historical_data["standardAwayTeamName"].isin([team])] by_team = pd.concat([by_home_team, by_away_team]) games_by_team[team] = by_team return games_by_team
def idealfourths(data, axis=None): """This function returns an estimate of the lower and upper quartiles of the data along the given axis, as computed with the ideal fourths. This function was taken from scipy.stats.mstat_extra.py (http://projects.scipy.org/scipy/browser/trunk/scipy/stats/mstats_extras.py?rev=6392) """ def _idf(data): x = data.compressed() n = len(x) if n < 3: return [numpy_nan,numpy_nan] (j,h) = divmod(n/4. + 5/12.,1) qlo = (1-h)*x[j-1] + h*x[j] k = n - j qup = (1-h)*x[k] + h*x[k-1] return [qlo, qup] data = numpy_sort(data, axis=axis).view(MaskedArray) if (axis is None): return _idf(data) else: return apply_along_axis(_idf, axis, data)
def idealfourths(data, axis=None): """This function returns an estimate of the lower and upper quartiles of the data along the given axis, as computed with the ideal fourths. This function was taken from scipy.stats.mstat_extra.py (http://projects.scipy.org/scipy/browser/trunk/scipy/stats/mstats_extras.py?rev=6392) """ def _idf(data): x = data.compressed() n = len(x) if n < 3: return [numpy_nan, numpy_nan] (j, h) = divmod(n / 4. + 5 / 12., 1) qlo = (1 - h) * x[j - 1] + h * x[j] k = n - j qup = (1 - h) * x[k] + h * x[k - 1] return [qlo, qup] data = numpy_sort(data, axis=axis).view(MaskedArray) if (axis is None): return _idf(data) else: return apply_along_axis(_idf, axis, data)