Exemplo n.º 1
1
    def __call__(self):
        "Return the locations of the ticks"
        b = self._transform.base

        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = self._transform.transform_point((vmin, vmax))
        if vmax < vmin:
            vmin, vmax = vmax, vmin
        numdec = math.floor(vmax) - math.ceil(vmin)

        if self._subs is None:
            if numdec > 10:
                subs = np.array([1.0])
            elif numdec > 6:
                subs = np.arange(2.0, b, 2.0)
            else:
                subs = np.arange(2.0, b)
        else:
            subs = np.asarray(self._subs)

        stride = 1
        while numdec / stride + 1 > self.numticks:
            stride += 1

        decades = np.arange(math.floor(vmin), math.ceil(vmax) + stride, stride)
        if len(subs) > 1 or subs[0] != 1.0:
            ticklocs = []
            for decade in decades:
                ticklocs.extend(subs * (np.sign(decade) * b ** np.abs(decade)))
        else:
            ticklocs = np.sign(decades) * b ** np.abs(decades)
        return np.array(ticklocs)
Exemplo n.º 2
0
def FWHM(X,Y):
    half_max = (max(Y)+min(Y)) / 2
    d = np.sign(half_max - np.array(Y[0:-1])) - np.sign(half_max - np.array(Y[1:]))
    #find the left and right most indexes
    left_idx = find(d > 0)[0]
    right_idx = find(d < 0)[-1]
    return X[right_idx], X[left_idx], half_max #return the difference (full width)
Exemplo n.º 3
0
 def __bisect(f, a, b, args):
     tol = 4.4408920985006262e-16
     fa = f(*(a,)+args)
     fb = f(*(b,)+args)
     if np.sign(fa) == np.sign(fb):
         raise RuntimeError('f(a) and f(b) must have different signs')
     while abs(fa) > tol and abs(fb) > tol:
         ab = (a + b) / 2.
         fab = f(*(ab,)+args)
         if cmp(fa, 0) != cmp(fab, 0):
             b = ab
             fb = fab
         elif cmp(fb, 0) != cmp(fab, 0):
             a = ab
             fa = fab
         else:
             raise RuntimeError('Something fishy happened during bisection')
     if abs(fa) < tol and abs(fb) < tol:
         return a if min(abs(fa), abs(fb)) == abs(fa) else b
     elif abs(fa) < tol:
         return a
     elif abs(fb) < tol:
         return b
     else:
         raise RuntimeError('Something fishy happened during bisection')
Exemplo n.º 4
0
 def get_N_mtx(self,r_pnt, node_ls_values, r_ls_value):
     '''
     Returns the matrix of the shape functions used for the field approximation
     containing zero entries. The number of rows corresponds to the number of nodal
     dofs. The matrix is evaluated for the specified local coordinate r.
     '''
     p_N_mtx = self.parent_fets.get_N_mtx(r_pnt)
     n_nodes = self.parent_fets.n_e_dofs/self.parent_fets.n_nodal_dofs
     p_nodal_dofs =  self.parent_fets.n_e_dofs/self.parent_fets.n_nodal_dofs
     p_value = sign(r_ls_value)
     N_e_list = [p_N_mtx[:,i*4:i*4+2]* \
                 (p_value-sign(node_ls_values[i]))\
              for i in range(0,n_nodes)]
     N_e_mtx = hstack(N_e_list)
     N_enr_mtx = zeros((2,self.parent_fets.n_e_dofs*6), dtype = 'float_')
     for i in range(0,p_nodal_dofs): 
         N_enr_mtx[0,i] = p_N_mtx[0,i]#s
         N_enr_mtx[1,i] = p_N_mtx[0,i]
         
         N_enr_mtx[0,i+2] = p_N_mtx[0,i]#m
         
         N_enr_mtx[1,i+4] = p_N_mtx[0,i]#f
         
         N_enr_mtx[0,i+6] = N_e_mtx[0,i]#sx
         N_enr_mtx[1,i+6] = N_e_mtx[0,i]#sx
         
         N_enr_mtx[0,i+8] = N_e_mtx[0,i]#mx
         
         N_enr_mtx[1,i+10] = N_e_mtx[0,i]#fx
     return N_enr_mtx
Exemplo n.º 5
0
    def get_ry0_distance(self, mesh):
        """
        :param mesh:
            :class:`~openquake.hazardlib.geo.mesh.Mesh` of points to calculate
            Ry0-distance to.
        :returns:
            Numpy array of distances in km.

        See also :meth:`superclass method <.base.BaseSurface.get_ry0_distance>`
        for spec of input and result values.

        This is version specific to the planar surface doesn't make use of the
        mesh
        """
        dst1 = geodetic.distance_to_arc(self.top_left.longitude,
                                        self.top_left.latitude,
                                        (self.strike + 90.) % 360,
                                        mesh.lons, mesh.lats)

        dst2 = geodetic.distance_to_arc(self.top_right.longitude,
                                        self.top_right.latitude,
                                        (self.strike + 90.) % 360,
                                        mesh.lons, mesh.lats)
        # Find the points on the rupture

        # Get the shortest distance from the two lines
        idx = numpy.sign(dst1) == numpy.sign(dst2)
        dst = numpy.zeros_like(dst1)
        dst[idx] = numpy.fmin(numpy.abs(dst1[idx]), numpy.abs(dst2[idx]))
        return dst
Exemplo n.º 6
0
    def addFace(self, du, dv, d, ru=0.5, rv=0.5):
        """ Creates a set of rectangular surfaces, their IDs, and face dims.
        nu,nv: number of surfaces in the u and v directions
        du,dv: {1,2,3} maps to {x,y,z}; negative sign means reverse order
        d: position of the surfaces in the remaining coordinate axis
        ru,rv: surfaces span -ru to +ru in u dir. and -rv to +rv in v dir.

        Adds to self.Ps and self.Ks
        """
        self.faces.append([du,dv])
        nP = 10
        ni = self.ms[abs(du)-1].shape[0]
        nj = self.ms[abs(dv)-1].shape[0]
        verts = numpy.zeros((2,2,3),order='F')
        verts[:,:,:] = d
        verts[0,:,abs(du)-1] = -ru*numpy.sign(du)
        verts[1,:,abs(du)-1] = ru*numpy.sign(du)
        verts[:,0,abs(dv)-1] = -rv*numpy.sign(dv)
        verts[:,1,abs(dv)-1] = rv*numpy.sign(dv)
        for j in range(nj):
            for i in range(ni):
                self.Ps.append(PGMlib.bilinearinterp(nP, ni, nj, i+1, j+1, verts))

        if len(self.Ks) > 0:
            counter = numpy.max(self.Ks[-1]) + 1
        else:
            counter = 0
        K = numpy.zeros((ni,nj),int)
        for j in range(nj):
            for i in range(ni):
                K[i,j] = counter
                counter += 1
        self.Ks.append(K)
            
        self.outers.append(numpy.ones((ni,nj),bool))
Exemplo n.º 7
0
    def forward(self, state, action, Reward, state_dash, episode_end):
        num_of_batch = state.shape[0]
        s = Variable(state)
        s_dash = Variable(state_dash)

        Q = self.Q_func(s)  # Get Q-value
        # Generate Target Signals
        tmp2 = self.Q_func(s_dash)
        tmp2 = list(map(np.argmax, tmp2.data.get()))  # argmaxQ(s',a)
        tmp = self.Q_func_target(s_dash)  # Q'(s',*)
        tmp = list(tmp.data.get())
        # select Q'(s',*) due to argmaxQ(s',a)
        res1 = []
        for i in range(num_of_batch):
            res1.append(tmp[i][tmp2[i]])

        #max_Q_dash = np.asanyarray(tmp, dtype=np.float32)
        max_Q_dash = np.asanyarray(res1, dtype=np.float32)
        target = np.asanyarray(Q.data.get(), dtype=np.float32)
        for i in xrange(num_of_batch):
            if not episode_end[i][0]:
                tmp_ = np.sign(Reward[i]) + self.gamma * max_Q_dash[i]
            else:
                tmp_ = np.sign(Reward[i])

            action_index = self.action_to_index(action[i])
            target[i, action_index] = tmp_
        # TD-error clipping
        td = Variable(cuda.to_gpu(target)) - Q  # TD error
        td_tmp = td.data + 1000.0 * (abs(td.data) <= 1)  # Avoid zero division
        td_clip = td * (abs(td.data) <= 1) + td/abs(td_tmp) * (abs(td.data) > 1)

        zero_val = Variable(cuda.to_gpu(np.zeros((self.replay_size, self.num_of_actions), dtype=np.float32)))
        loss = F.mean_squared_error(td_clip, zero_val)
        return loss, Q
Exemplo n.º 8
0
def _sym_ortho(a, b):
    """
    Stable implementation of Givens rotation.

    Notes
    -----
    The routine 'SymOrtho' was added for numerical stability. This is
    recommended by S.-C. Choi in [1]_.  It removes the unpleasant potential of
    ``1/eps`` in some important places (see, for example text following
    "Compute the next plane rotation Qk" in minres.py).

    References
    ----------
    .. [1] S.-C. Choi, "Iterative Methods for Singular Linear Equations
           and Least-Squares Problems", Dissertation,
           http://www.stanford.edu/group/SOL/dissertations/sou-cheng-choi-thesis.pdf

    """
    if b == 0:
        return np.sign(a), 0, abs(a)
    elif a == 0:
        return 0, np.sign(b), abs(b)
    elif abs(b) > abs(a):
        tau = a / b
        s = np.sign(b) / sqrt(1 + tau * tau)
        c = s * tau
        r = b / s
    else:
        tau = b / a
        c = np.sign(a) / sqrt(1+tau*tau)
        s = c * tau
        r = a / c
    return c, s, r
Exemplo n.º 9
0
    def start(self, f, a, b, args=()):
        r"""Prepare for the iterations."""
        self.function_calls = 0
        self.iterations = 0

        self.f = f
        self.args = args
        self.ab[:] = [a, b]
        if not np.isfinite(a) or np.imag(a) != 0:
            raise ValueError("Invalid x value: %s " % (a))
        if not np.isfinite(b) or np.imag(b) != 0:
            raise ValueError("Invalid x value: %s " % (b))

        fa = self._callf(a)
        if not np.isfinite(fa) or np.imag(fa) != 0:
            raise ValueError("Invalid function value: f(%f) -> %s " % (a, fa))
        if fa == 0:
            return _ECONVERGED, a
        fb = self._callf(b)
        if not np.isfinite(fb) or np.imag(fb) != 0:
            raise ValueError("Invalid function value: f(%f) -> %s " % (b, fb))
        if fb == 0:
            return _ECONVERGED, b

        if np.sign(fb) * np.sign(fa) > 0:
            raise ValueError("a, b must bracket a root f(%e)=%e, f(%e)=%e " %
                             (a, fa, b, fb))
        self.fab[:] = [fa, fb]

        return _EINPROGRESS, sum(self.ab) / 2.0
Exemplo n.º 10
0
def _newton_quadratic(ab, fab, d, fd, k):
    """Apply Newton-Raphson like steps, using divided differences to approximate f'

    ab is a real interval [a, b] containing a root,
    fab holds the real values of f(a), f(b)
    d is a real number outside [ab, b]
    k is the number of steps to apply
    """
    a, b = ab
    fa, fb = fab
    _, B, A = _compute_divided_differences([a, b, d], [fa, fb, fd],
                                           forward=True, full=False)

    # _P  is the quadratic polynomial through the 3 points
    def _P(x):
        # Horner evaluation of fa + B * (x - a) + A * (x - a) * (x - b)
        return (A * (x - b) + B) * (x - a) + fa

    if A == 0:
        r = a - fa / B
    else:
        r = (a if np.sign(A) * np.sign(fa) > 0 else b)
    # Apply k Newton-Raphson steps to _P(x), starting from x=r
    for i in range(k):
        r1 = r - _P(r) / (B + A * (2 * r - a - b))
        if not (ab[0] < r1 < ab[1]):
            if (ab[0] < r < ab[1]):
                return r
            r = sum(ab) / 2.0
            break
        r = r1

    return r
Exemplo n.º 11
0
Arquivo: trd.py Projeto: vanife/tia
 def increase(self, qty, px, fees=0, **kwargs):
     if not self.is_open():
         raise Exception('increase position failed: no position currently open')
     if np.sign(self._live_qty) != np.sign(qty):
         msg = 'increase position failed: trade quantity {0} is different sign as live quantity {1}'
         raise Exception(msg.format(qty, self._live_qty))
     self._order(qty, px, fees, **kwargs)
Exemplo n.º 12
0
def adaboost_clf(Y_train, X_train, Y_test, X_test, M, clf):
    n_train, n_test = len(X_train), len(X_test)
    # Initialize weights
    w = np.ones(n_train) / n_train
    pred_train, pred_test = [np.zeros(n_train), np.zeros(n_test)]
    
    for i in range(M):
        # Fit a classifier with the specific weights
        clf.fit(X_train, Y_train, sample_weight = w)
        pred_train_i = clf.predict(X_train)
        pred_test_i = clf.predict(X_test)
        # Indicator function
        miss = [int(x) for x in (pred_train_i != Y_train)]
        # Equivalent with 1/-1 to update weights
        miss2 = [x if x==1 else -1 for x in miss]
        # Error
        err_m = np.dot(w,miss) / sum(w)
        # Alpha
        alpha_m = 0.5 * np.log( (1 - err_m) / float(err_m))
        # New weights
        w = np.multiply(w, np.exp([float(x) * alpha_m for x in miss2]))
        # Add to prediction
        pred_train = [sum(x) for x in zip(pred_train, 
                                          [x * alpha_m for x in pred_train_i])]
        pred_test = [sum(x) for x in zip(pred_test, 
                                         [x * alpha_m for x in pred_test_i])]
    
    pred_train, pred_test = np.sign(pred_train), np.sign(pred_test)
    # Return error rate in train and test set
    return get_error_rate(pred_train, Y_train), \
           get_error_rate(pred_test, Y_test)
Exemplo n.º 13
0
 def slow_set_freq(self,freq,step):
 
     current_f=float(self.get_freq())/1000
     print(current_f)
     detun_f=freq-current_f
     ns=np.floor(detun_f/step)
     print('ns',ns)
     f_set=current_f
     for i in range(int(abs(ns))):
         f_set=f_set+np.sign(detun_f)*step
         print(f_set)    
         self.set_freq(f_set)
     print('Start moving cavity slowly...')
     current_f=float(self.get_freq())/1000
     detun_f=freq-current_f
     f_set=current_f
     print('fine moves')
     for i in range(int(abs(detun_f))):
         f_set=f_set+np.sign(detun_f)
         print(f_set)
         self.set_freq(f_set)
     
         
     print('Finish moving')
     print('Final freq',self.get_freq())
Exemplo n.º 14
0
    def turnStep(self, deg, blocking, anly):
        self.setStep(deg)
        if blocking: # If nudge
            steps = deg / (eleMaxStep / self.microsteps)
            self.wait = diode_wait / self.microsteps
            # If nudging would put elevation too high or low
            if -steps + self.cnt > ele_steps: # If nudging would put elevation too high
                steps = -ele_steps + self.cnt
            elif -steps + self.cnt < 0: # If nudging would put elevation too low
                steps = self.cnt
        else:
            if anly:
                steps = (np.sign(deg) * self.microsteps * deg_tol / eleMaxStep) / 2
            else:
                steps = np.sign(deg) * self.microsteps * deg_tol / eleMaxStep
            if steps:
                if anly:
                    self.wait = (diode_wait / abs(steps)) / 4
                else:
                    self.wait = (diode_wait / abs(steps))
        if abs(deg) >= deg_tol:
            if self.cnt >= 0:
                if self.cnt < ele_steps:
                    self.move(steps)
                elif self.cnt >= ele_steps and steps > 0:
                    self.move(steps)
                else:
                    time.sleep(diode_wait / 2)

            elif self.cnt < 0 and steps < 0:
                self.move(steps)
            else:
                time.sleep(diode_wait / 2)
        else:
            time.sleep(diode_wait / 2)
Exemplo n.º 15
0
def waypoints_to_commands(coords):
	#cmd = [[vx,az,time],etc]
	#Convert waypoints to value in stage
	lin_vel = 0.2
	ang_vel = math.radians(45)    #45 deg/s in rad/s
	init_ang = 0;
	move_ang = [0]
	move_dist = [0]
	for i in range(len(coords)-1):
		p1 = coords[i]
		p2 = coords[i+1]
		move_ang.append(math.atan2(p2[1]-p1[1],p2[0]-p1[0]))
		move_dist.append(math.sqrt((p2[1]-p1[1])**2+(p2[0]-p1[0])**2))

	print np.degrees(move_ang)
	print len(move_dist)
	move_cmd = []

	for i in range(len(move_ang)-1):
		ang_cmd = (move_ang[i+1]-move_ang[i])
		ang_time = ang_cmd/ang_vel
		dist_cmd =move_dist[i+1]-move_dist[i]
		dist_time = dist_cmd/lin_vel
		move_cmd.append([0,np.sign(ang_cmd),math.fabs(ang_time)])
		move_cmd.append([np.sign(dist_cmd),0,math.fabs(dist_time)])

	print move_cmd
	print len(move_cmd)
	return move_cmd
Exemplo n.º 16
0
def prob_flat(m1, m2, s1z, s2z, **kwargs):
    ''' Return probability density for uniform in component mass
        Parameters
        ----------
        m1: array
            Component masses 1
        m2: array
            Component masses 2
        s1z: array
            Aligned spin 1 (not in use currently)
        s2z:
            Aligned spin 2 (not in use currently)
        **kwargs: string
            Keyword arguments as model parameters

        Returns
        -------
        p_m1_m2: array
           the probability density for m1, m2 pair
    '''

    min_mass = kwargs.get('min_mass', 1.)
    max_mass = kwargs.get('max_mass', 2.)

    bound = np.sign(m1 - m2)
    bound += np.sign(max_mass - m1) * np.sign(m2 - min_mass)
    idx = np.where(bound != 2)

    p_m1_m2 = 2. / (max_mass - min_mass)**2
    p_m1_m2[idx] = 0

    return p_m1_m2
def example_classification(method='pa', classification_loss='hingeloss', initial_learning_rate=1e-4,
                            tol=0.01):
    noise = 0.1
    rng = np.random.RandomState(0)
    U_true = rng.randn(50, 2)
    V_true = rng.randn(40, 2)
    X = np.sign(np.dot(U_true, V_true.T) + noise * rng.randn(50, 40))
    print(X[:5, :5])

    # Put aside 1500 entries for testing
    row_mask = rng.randint(0, 50, size=1500)
    col_mask = rng.randint(0, 40, size=1500)
    # Get a mask for the remaining (training) observations
    mask = np.zeros((50, 40), dtype=np.bool)
    mask[row_mask, col_mask] = 1
    fit_mask = (~mask).nonzero()

    MF = MatrixCompletion(method=method, is_classification=True, 
                          classification_loss = classification_loss,
                          initial_learning_rate=initial_learning_rate,
                          n_components=2,random_state=0, alpha=0.1,
                          verbose=10, shuffle=True, tol=tol)

    MF.fit(X, mask=fit_mask)

    U, V = MF.U_, MF.V_
    X_pred = np.dot(U, V.T)
    test_acc = np.mean(np.sign(X_pred[row_mask, col_mask]) ==
                       X[row_mask, col_mask])

    print("Test accuracy:", test_acc)
    print(np.dot(U, V.T)[:5, :5])
Exemplo n.º 18
0
def _prepare_input_epr_mur(w,epb,mub,ange,angm,sigmadc,tau):
    epr = _np.zeros((len(epb),len(w)),dtype=complex)
    mur = _np.zeros((len(epb),len(w)),dtype=complex)
    for j in range(len(epb)):
        epr[j,:] = epb[j]*(1-1j*_np.sign(w)*_np.tan(ange[j])) + sigmadc[j]/(1+1j*w*tau[j])/(1j*w*_ep0)
        mur[j,:] = mub[j]*(1-1j*_np.sign(w)*_np.tan(angm[j]))
    return epr, mur
Exemplo n.º 19
0
    def __init__(self, direction, hp, **kwargs):
        """Initialize a Critter

        `direction`: direction in radians that the critter is facing initially
        `hp`: Health of the Critter
        """
        Widget.__init__(self, **kwargs)
        # Max health
        self.hp = hp
        # Direction we're facing currently
        self.direction = direction
        # Speed in tiles per second
        self.speed = CRITTER_SPEED
        # Damage done (accessed through .damage)
        self._damage = 0
        # Are we dead yet?
        self.dead = False
        # x-component of velocity
        self.xdir = int(numpy.sign(round(numpy.cos(direction))))
        # y-component of velocity
        self.ydir = int(numpy.sign(round(numpy.sin(direction))))
        # Initial velocity
        self.initial_dir = self.xdir, self.ydir

        self.draw()
        Clock.schedule_once(self.go)
        Clock.schedule_once(self.tick)
Exemplo n.º 20
0
def convertDec(deg, min, sec):
    if np.size(deg) == 1:
        sign = +1 if deg==0 else np.sign(deg)
    else:
        sign = np.sign(deg)
        sign[deg==0] = +1
    return sign * (np.abs(deg) + (min + sec/60.)/60.)
Exemplo n.º 21
0
def find_correct_sign(z1,z2,z_approx):
    '''
    Create new vector from z1, z2 choosing elements with sign matching z_approx
    
    This is used when you have to make a root choice on a complex number.
    and you know the approximate value of the root. 
    
    .. math:: 
        
        z1,z2 = \\pm \\sqrt(z^2)
        

    Parameters
    ------------
    z1 : array-like
        root 1
    z2 : array-like
        root 2
    z_approx : array-like
        approximate answer of z
    
    Returns 
    ----------
    z3 : npy.array
        array built from z1 and z2 by 
        z1 where sign(z1) == sign(z_approx), z2 else
    
    '''
    return npy.where(
    npy.sign(npy.angle(z1)) == npy.sign(npy.angle(z_approx)),z1, z2)    
Exemplo n.º 22
0
 def deflections(self, xin, yin):
     import numpy
     from math import cos, sin, pi
     from scipy.special import gammainc
     x, y = self.align_coords(xin, yin)
     q = self.q
     if q == 1.:
         q = 1. - 1e-7  # Avoid divide-by-zero errors
     b, n, re = self.b, self.n, self.re
     k = 2. * n - 1. / 3 + 4. / (405. * n) + 46 / (25515. * n**2)
     amp = (b / re)**2 / gammainc(2 * n, k * (b / re)**(1 / n))
     r0 = re / q**0.5
     o = numpy.ones(x.size).astype(x.dtype)
     eval = numpy.array(
         [abs(x).ravel() / r0,
          abs(y).ravel() / r0, n * o, q * o]).T
     xout = numpy.sign(x) * (amp * self.xmod.eval(eval) * r0).reshape(
         x.shape)
     yout = numpy.sign(y) * (amp * self.ymod.eval(eval) * r0).reshape(
         y.shape)
     theta = -(self.theta - pi / 2.)
     ctheta = cos(theta)
     stheta = sin(theta)
     x = xout * ctheta + yout * stheta
     y = yout * ctheta - xout * stheta
     return x, y
Exemplo n.º 23
0
    def get_corr_pred(self, eps, d_eps, sig, t_n, t_n1, alpha, q, kappa):
        #         g = lambda k: 0.8 - 0.8 * np.exp(-k)
        #         g = lambda k: 1. / (1 + np.exp(-2 * k + 6.))
        n_e, n_ip, n_s = eps.shape
        D = np.zeros((n_e, n_ip, 3, 3))
        D[:, :, 0, 0] = self.E_m
        D[:, :, 2, 2] = self.E_f
        sig_trial = sig[:, :, 1]/(1-self.g(kappa)) + self.E_b * d_eps[:,:, 1]
        xi_trial = sig_trial - q
        f_trial = abs(xi_trial) - (self.sigma_y + self.K_bar * alpha)
        elas = f_trial <= 1e-8
        plas = f_trial > 1e-8
        d_sig = np.einsum('...st,...t->...s', D, d_eps)
        sig += d_sig

        d_gamma = f_trial / (self.E_b + self.K_bar + self.H_bar) * plas
        alpha += d_gamma
        kappa += d_gamma
        q += d_gamma * self.H_bar * np.sign(xi_trial)
        w = self.g(kappa)

        sig_e = sig_trial - d_gamma * self.E_b * np.sign(xi_trial)
        sig[:, :, 1] = (1-w)*sig_e

        E_p = -self.E_b / (self.E_b + self.K_bar + self.H_bar) * derivative(self.g, kappa, dx=1e-6) * sig_e \
            + (1 - w) * self.E_b * (self.K_bar + self.H_bar) / \
            (self.E_b + self.K_bar + self.H_bar)

        D[:, :, 1, 1] = (1-w)*self.E_b*elas + E_p*plas

        return sig, D, alpha, q, kappa
Exemplo n.º 24
0
def main():

  file1 = sys.argv[1]
  
  data = numpy.loadtxt(file1)
  
  train = data[25:]
  
  valid = data[0:25]

  train_newx = transform(train[:,0:2])

  val_newx = transform(valid[:,0:2])

  file2 = sys.argv[2]

  out = numpy.loadtxt(file2)
  
  out_newx = transform(out[:,0:2])
  
  for i in range(0, train_newx.shape[1]):

    weights, E_in = linreg(train_newx[:,0:i+1], train[:,2])

    val_y = numpy.sign(numpy.dot(val_newx[:,0:i+1], weights))

    val_error = sum(val_y != valid[:,2])/float(len(valid))

    print 'Validation error for k =', i, ':', val_error

    out_y = numpy.sign(numpy.dot(out_newx[:,0:i+1], weights))
    
    out_error = sum(out_y != out[:,2])/float(len(out))
  
    print 'Out of sample error for k =', i, ':', out_error
def findspikes(t,x,dxdt):
    """Searching for spikes in a TODL LTC2442 data series. The algorithm
searches for the given threshold. If it is found and the subsequent
data exceeds the threshold as well with a negative sign its defined as
a spike

    Args:
        t: time 
        x: data
        dxdt: Threshold for rejection, a working rejection for FP07 is 0.1 [V/s]

    """
    #print('Despiking')
    dt = np.diff(t)
    dx = np.diff(x)
    spikes = np.zeros(np.shape(t))
    for i in range(1,len(dt)-1):
        dxdt1 = dx[i]/dt[i]
        dxdt2 = dx[i+1]/dt[i+1]
        if(abs(dxdt1) > dxdt):
            if(abs(dxdt1) > dxdt):
                if(np.sign(dxdt1) == -np.sign(dxdt2)):
                    spikes[i+1] = 1
                    
    #print('Done despiking')
    return spikes
Exemplo n.º 26
0
    def run( self, X, y, callback):

        # through the epochs
        for e in xrange(self.epochs):
            # compute gradients
            self.compute_dEdW(X, y, self.weights)
            # through the layers
            for i in xrange(self.nn_size-1):
                
                # select weights
                sel_pos = (self.dEdW_pre[i] * self.dEdW[i])>0.0
                sel_neg = (self.dEdW_pre[i] * self.dEdW[i])<0.0
                sel_equ = (self.dEdW_pre[i] * self.dEdW[i])==0.0
                
                # if dEdW[i]*dEdW_pre[i] > 0
                self.Delta[i][sel_pos] = np.minimum(self.Delta_pre[i][sel_pos]*self.eta_plus, self.Delta_max)
                self.Delta_w[i][sel_pos] = -np.sign(self.dEdW[i][sel_pos]) * self.Delta[i][sel_pos]               
                self.W[i][sel_pos] = self.W[i][sel_pos] + self.Delta_w[i][sel_pos]
                
                # if dEdW[i]*dEdW_pre[i] < 0
                self.Delta[i][sel_neg] = np.maximum(self.Delta_pre[i][sel_neg]*self.eta_minus, self.Delta_min)
                if self.E>self.E_pre: 
                    self.W[i][sel_neg] = self.W[i][sel_neg] - self.Delta_w_pre[i][sel_neg]
                self.dEdW[i][sel_neg] = 0.0

                # if dEdW[i]*dEdW_pre[i] == 0
                self.Delta_w[i][sel_equ] = -np.sign(self.dEdW[i][sel_equ]) * self.Delta[i][sel_equ]
                self.W[i][sel_equ] = self.W[i][sel_equ] + self.Delta_w[i][sel_equ]
                                
                # update
                self.dEdW_pre[i] = self.dEdW[i]
                self.Delta_pre[i] = self.Delta[i]
                self.Delta_w_pre[i] = self.Delta_w[i]
                self.E_pre = self.E
            self.E = callback(e)
Exemplo n.º 27
0
def testDigits(kTup=('rbf', 10)):
    data, labels = loadImages('trainingDigits')
    b, alphas = smo(data, labels, 200, 0.0001, 10000, kTup)
    dataMat = np.mat(data)
    labelMat = np.mat(labels).transpose()
    svInd = np.nonzero(alphas.A > 0)[0]
    sVs = dataMat[svInd]
    labelSV = labelMat[svInd]
    print "There are %d Support Vectors" % np.shape(sVs)[0]
    m, n = np.shape(dataMat)
    errorCount = 0
    for i in xrange(m):
        kernelEval = kernelTransform(sVs, dataMat[i, :], kTup)
        predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b
        if np.sign(predict) != np.sign(labels[i]):
            errorCount += 1
    print "The training error rate is %f " % (float(errorCount) / m)
    data, labels = loadImages('testDigits')
    dataMat = np.mat(data)
    labelMat = np.mat(labels).transpose()
    m, n = np.shape(dataMat)
    errorCount = 0
    for i in xrange(m):
        kernelEval = kernelTransform(sVs, dataMat[i, :], kTup)
        predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b
        if np.sign(predict) != np.sign(labels[i]):
            errorCount += 1
    print "The test error rate is %f " % (float(errorCount) / m)
Exemplo n.º 28
0
    def get_loss(self, state, action, reward, state_prime, episode_end):
        s = Variable(cuda.to_gpu(state))
        s_dash = Variable(cuda.to_gpu(state_prime))

        q = self.model.q_function(s)  # Get Q-value

        # Generate Target Signals
        tmp = self.model_target.q_function(s_dash)  # Q(s',*)
        tmp = list(map(np.max, tmp.data))  # max_a Q(s',a)
        max_q_prime = np.asanyarray(tmp, dtype=np.float32)
        target = np.asanyarray(copy.deepcopy(q.data.get()), dtype=np.float32)

        for i in range(self.replay_size):
            if episode_end[i][0] is True:
                tmp_ = np.sign(reward[i])
            else:
                #  The sign of reward is used as the reward of DQN!
                tmp_ = np.sign(reward[i]) + self.gamma * max_q_prime[i]

            target[i, action[i]] = tmp_

        # TD-error clipping
        td = Variable(cuda.to_gpu(target)) - q  # TD error
        td_tmp = td.data + 1000.0 * (abs(td.data) <= 1)  # Avoid zero division
        td_clip = td * (abs(td.data) <= 1) + td/abs(td_tmp) * (abs(td.data) > 1)

        zero_val = Variable(cuda.to_gpu(np.zeros((self.replay_size, self.n_act), dtype=np.float32)))
        loss = F.mean_squared_error(td_clip, zero_val)
        return loss, q
Exemplo n.º 29
0
    def __init__( self, sides, size, color,  position = (0.0, 0.0, 0.0) ):
        self.sides = sides
        self.color = color
        self.size = size
        self.position = np.array(position)
        
        height = LEGO_BIG_HEIGHT if self.size else LEGO_SMALL_HEIGHT
        length = self.bottom - self.top
        combine = lambda _points, _vertices, _weights: _points 
            
        self.__tess = GLU.gluNewTess()
        GLU.gluTessCallback(self.__tess, GLU.GLU_TESS_BEGIN, GL.glBegin)
        GLU.gluTessCallback(self.__tess,GLU.GLU_TESS_VERTEX,GL.glVertex3fv)
        GLU.gluTessCallback(self.__tess,GLU.GLU_TESS_COMBINE,combine)
        GLU.gluTessCallback(self.__tess, GLU.GLU_TESS_END, GL.glEnd)
        GLU.gluTessProperty(self.__tess, GLU.GLU_TESS_WINDING_RULE, GLU.GLU_TESS_WINDING_ODD)

        self.__gllist = GL.glGenLists(1)
        
        GL.glNewList(self.__gllist,GL.GL_COMPILE)
        GL.glColor3fv(self.color)
        GL.glBindTexture(GL.GL_TEXTURE_2D,0)
        
        GLU.gluTessNormal(self.__tess, 0.0, 1.0, 0.0)
        GL.glNormal3f(0.0, 1.0, 0.0)
        GLU.gluTessBeginPolygon(self.__tess,None)
        GLU.gluTessBeginContour(self.__tess)
        for i in range(0,len(self.coords)):
            vertex =  (self.coords[i][0]*LEGO_GRID, height, self.coords[i-1][1]*LEGO_GRID)
            GLU.gluTessVertex(self.__tess, vertex, vertex)
            vertex =  (self.coords[i][0]*LEGO_GRID, height, self.coords[i][1]*LEGO_GRID)
            GLU.gluTessVertex(self.__tess, vertex, vertex)
        GLU.gluTessEndContour(self.__tess)
        GLU.gluTessEndPolygon(self.__tess)
        
        for i in range(0,len(self.coords)):
            GL.glBegin(GL.GL_QUADS)
            sign = float(np.sign(self.sides[2*i-1]))
            GL.glNormal3f( sign, 0.0, 0.0 )
            GL.glVertex3f( self.coords[i][0] * LEGO_GRID, height, self.coords[i-1][1] * LEGO_GRID)
            GL.glVertex3f( self.coords[i][0] * LEGO_GRID, height, self.coords[i]  [1]   * LEGO_GRID)
            GL.glVertex3f( self.coords[i][0] * LEGO_GRID, 0.0,    self.coords[i]  [1]   * LEGO_GRID)
            GL.glVertex3f( self.coords[i][0] * LEGO_GRID, 0.0,    self.coords[i-1][1] * LEGO_GRID)
            sign = float(np.sign(self.sides[2*i-2]))
            GL.glNormal3f( 0.0, 0.0, -sign )
            GL.glVertex3f( self.coords[i-1][0] * LEGO_GRID, height, self.coords[i-1][1] * LEGO_GRID )
            GL.glVertex3f( self.coords[i]  [0] * LEGO_GRID, height, self.coords[i-1][1] * LEGO_GRID )
            GL.glVertex3f( self.coords[i]  [0] * LEGO_GRID, 0.0,    self.coords[i-1][1] * LEGO_GRID )
            GL.glVertex3f( self.coords[i-1][0] * LEGO_GRID, 0.0,    self.coords[i-1][1] * LEGO_GRID )
            GL.glEnd()
            
        GL.glTranslatef( self.left*LEGO_GRID + LEGO_GRID/2.0, (LEGO_BUMP_HEIGHT+height)/2.0 , self.bottom*LEGO_GRID - LEGO_GRID/2.0 )
        for i in range( self.left, self.right ):
            for j in range( self.bottom, self.top ):
                GL.glTranslatef( 0.0, 0.0, LEGO_GRID )
                if self.is_hit( (i+0.5,j+0.5) ):
                    _caped_cylinder( LEGO_BUMP_RADIUS, height+LEGO_BUMP_HEIGHT, 32 )
            GL.glTranslatef( 0.0, 0.0, length*LEGO_GRID )
            GL.glTranslatef( LEGO_GRID, 0.0, 0.0 )
        GL.glEndList()
Exemplo n.º 30
0
 def intercept_poly(self, r, p, k):
     S = r.__class__
     u = self.curvature*np.sign(self.offset[2])
     if u == 0.:
         r, f, fr, g = Element.intercept_poly(self, r, p, k)
     else:
         p1 = p.copy().shift(1)
         a = (-u*k).shift(1)
         a -= (a*a - p1*r*u**2)**.5
         a = a*p1**-1  # (44)
         f = a/u
         r = a*(-a).shift(2)  # (45)
         g = (-a).shift(1)  # (47)
         fr = .5*u*g**-1.  # (46)
     if self.aspherics:
         # FIXME: not curve/conic
         u = self.aspherics
         r0 = r
         for i in range(len(u)):  # (28)
             df = S()
             for uj in reversed(u):
                 df = df.shift(uj*np.sign(self.offset[2]))*r
             # FIXME: real Newton Raphson
             r = r0 + df*(2*k + df*p)
         dfr = S()
         for i in reversed(range(len(u))):
             dfr = (dfr*r).shift((i + 1)*u[i]*np.sign(self.offset[2]))
         # FIXME
         f += df
         fr += dfr
         g = (4*r*dfr*dfr).shift(1)**-.5
     return r, f, fr, g
Exemplo n.º 31
0
	def wheelEvent(self, event):
		self.screen.data.offsetCurrentFrame(numpy.sign(event.delta()) * int(self.screen.parameterDialog.getScrollSpeed()))
Exemplo n.º 32
0
 def alpha019(self):
     return ((-1 * sign((self.close - delay(self.close, 7)) + delta(self.close, 7))) *
             (1 + rank(1 + ts_sum(self.returns, 250))))
Exemplo n.º 33
0
    return np.dot(map_func(x1), map_func(x2).T)


# fit SVM with custom non-linear kernel
model = svm.SVC(kernel=my_kernel, C=1000, tol=1e-3)
model.fit(X,Y)

# coef : dual coefficients alpha_i*y_i per support vector in decision function
coef = model.dual_coef_[0]
# intercept in decision function
b = model.intercept_

# bug in sklearn versions before 0.16: https://github.com/scikit-learn/scikit-learn/issues/4262
# The first class to appear in the dataset, i.e. Y[0], is mapped to the class +1, even if it is labeled -1
version_check = re.match(r"0\.(\d+).", sklearn.__version__).group(1)
if np.sign(Y[0]) == -1 and int(version_check) < 16:
    coef = -coef

def calc_plane_norm(sv, coef):
    """
    Calculate the normal to the hyperplane (in mapped space)
    
    sv : matrix, contains mapped points, shape = [n_supportvectors, n_mappedfeatures]
    coef : array of floats, shape = [n_supportvectors, 1]
    """ 
    components = coef[:, np.newaxis]*sv
    return np.sum(components, axis = 0)

def calc_z_plane(x):
    """
    Calculate z-coordinates of the decision plane
Exemplo n.º 34
0
def generate_2D_edge_meshes(path, closed=False, limit=3, bevel=False):
    """Determines the triangulation of a path in 2D. The resulting `offsets`
    can be multiplied by a `width` scalar and be added to the resulting
    `centers` to generate the vertices of the triangles for the triangulation,
    i.e. `vertices = centers + width*offsets`. Using the `centers` and
    `offsets` representation thus allows for the computed triangulation to be
    independent of the line width.

    Parameters
    ----------
    path : np.ndarray
        Nx2 or Nx3 array of central coordinates of path to be triangulated
    closed : bool
        Bool which determines if the path is closed or not
    limit : float
        Miter limit which determines when to switch from a miter join to a
        bevel join
    bevel : bool
        Bool which if True causes a bevel join to always be used. If False
        a bevel join will only be used when the miter limit is exceeded

    Returns
    -------
    centers : np.ndarray
        Mx2 or Mx3 array central coordinates of path trinagles.
    offsets : np.ndarray
        Mx2 or Mx3 array of the offsets to the central coordinates that need to
        be scaled by the line width and then added to the centers to
        generate the actual vertices of the triangulation
    triangles : np.ndarray
        Px3 array of the indices of the vertices that will form the
        triangles of the triangulation
    """
    clean_path = np.array(path).astype(float)

    if closed:
        if np.all(clean_path[0] == clean_path[-1]) and len(clean_path) > 2:
            clean_path = clean_path[:-1]
        full_path = np.concatenate(
            ([clean_path[-1]], clean_path, [clean_path[0]]), axis=0)
        normals = [
            segment_normal(full_path[i], full_path[i + 1])
            for i in range(len(clean_path))
        ]
        normals = np.array(normals)
        full_path = np.concatenate((clean_path, [clean_path[0]]), axis=0)
        full_normals = np.concatenate((normals, [normals[0]]), axis=0)
    else:
        full_path = np.concatenate((clean_path, [clean_path[-2]]), axis=0)
        normals = [
            segment_normal(full_path[i], full_path[i + 1])
            for i in range(len(clean_path))
        ]
        normals[-1] = -normals[-1]
        normals = np.array(normals)
        full_path = clean_path
        full_normals = np.concatenate(([normals[0]], normals), axis=0)

    miters = np.array(
        [full_normals[i:i + 2].mean(axis=0) for i in range(len(full_path))])
    miters = np.array([
        miters[i] / np.dot(miters[i], full_normals[i])
        if np.dot(miters[i], full_normals[i]) != 0 else full_normals[i]
        for i in range(len(full_path))
    ])
    miter_lengths = np.linalg.norm(miters, axis=1)
    miters = 0.5 * miters
    vertex_offsets = []
    central_path = []
    triangles = []
    m = 0

    for i in range(len(full_path)):
        if i == 0:
            if (bevel or miter_lengths[i] > limit) and closed:
                offset = np.array([miters[i, 1], -miters[i, 0]])
                offset = 0.5 * offset / np.linalg.norm(offset)
                flip = np.sign(np.dot(offset, full_normals[i]))
                vertex_offsets.append(offset)
                vertex_offsets.append(-flip * miters[i] / miter_lengths[i] *
                                      limit)
                vertex_offsets.append(-offset)
                central_path.append(full_path[i])
                central_path.append(full_path[i])
                central_path.append(full_path[i])
                triangles.append([0, 1, 2])
                m = m + 1
            else:
                vertex_offsets.append(-miters[i])
                vertex_offsets.append(miters[i])
                central_path.append(full_path[i])
                central_path.append(full_path[i])
        elif i == len(full_path) - 1:
            if closed:
                a = vertex_offsets[m + 1]
                b = vertex_offsets[1]
                ray = full_path[i] - full_path[i - 1]
                if np.cross(a, ray) * np.cross(b, ray) > 0:
                    triangles.append([m, m + 1, 1])
                    triangles.append([m, 0, 1])
                else:
                    triangles.append([m, m + 1, 1])
                    triangles.append([m + 1, 0, 1])
            else:
                vertex_offsets.append(-miters[i])
                vertex_offsets.append(miters[i])
                central_path.append(full_path[i])
                central_path.append(full_path[i])
                a = vertex_offsets[m + 1]
                b = vertex_offsets[m + 3]
                ray = full_path[i] - full_path[i - 1]
                if np.cross(a, ray) * np.cross(b, ray) > 0:
                    triangles.append([m, m + 1, m + 3])
                    triangles.append([m, m + 2, m + 3])
                else:
                    triangles.append([m, m + 1, m + 3])
                    triangles.append([m + 1, m + 2, m + 3])
        elif bevel or miter_lengths[i] > limit:
            offset = np.array([miters[i, 1], -miters[i, 0]])
            offset = 0.5 * offset / np.linalg.norm(offset)
            flip = np.sign(np.dot(offset, full_normals[i]))
            vertex_offsets.append(offset)
            vertex_offsets.append(-flip * miters[i] / miter_lengths[i] * limit)
            vertex_offsets.append(-offset)
            central_path.append(full_path[i])
            central_path.append(full_path[i])
            central_path.append(full_path[i])
            a = vertex_offsets[m + 1]
            b = vertex_offsets[m + 3]
            ray = full_path[i] - full_path[i - 1]
            if np.cross(a, ray) * np.cross(b, ray) > 0:
                triangles.append([m, m + 1, m + 3])
                triangles.append([m, m + 2, m + 3])
            else:
                triangles.append([m, m + 1, m + 3])
                triangles.append([m + 1, m + 2, m + 3])
            triangles.append([m + 2, m + 3, m + 4])
            m = m + 3
        else:
            vertex_offsets.append(-miters[i])
            vertex_offsets.append(miters[i])
            central_path.append(full_path[i])
            central_path.append(full_path[i])
            a = vertex_offsets[m + 1]
            b = vertex_offsets[m + 3]
            ray = full_path[i] - full_path[i - 1]
            if np.cross(a, ray) * np.cross(b, ray) > 0:
                triangles.append([m, m + 1, m + 3])
                triangles.append([m, m + 2, m + 3])
            else:
                triangles.append([m, m + 1, m + 3])
                triangles.append([m + 1, m + 2, m + 3])
            m = m + 2
    centers = np.array(central_path)
    offsets = np.array(vertex_offsets)
    triangles = np.array(triangles)

    return centers, offsets, triangles
Exemplo n.º 35
0
 def reward(self, reward):
     """Bin reward to {+1, 0, -1} by its sign."""
     return np.sign(reward)
Exemplo n.º 36
0
    def predict(self, features):
        # sign(x.w + b)
        classification = np.sign(np.dot(np.array(features), self.w) + self.b)

        return classification
Exemplo n.º 37
0
segment_prod = utils.copy_docstring(
    'tf.math.segment_prod',
    _segment_prod)

segment_sum = utils.copy_docstring(
    'tf.math.segment_sum',
    _segment_sum)

sigmoid = utils.copy_docstring(
    'tf.math.sigmoid',
    lambda x, name=None: scipy_special.expit(x))

sign = utils.copy_docstring(
    'tf.math.sign',
    lambda x, name=None: np.sign(x))

sin = utils.copy_docstring(
    'tf.math.sin',
    lambda x, name=None: np.sin(x))

sinh = utils.copy_docstring(
    'tf.math.sinh',
    lambda x, name=None: np.sinh(x))

softmax = utils.copy_docstring(
    'tf.math.softmax',
    _softmax)


def _softplus(x, name=None):  # pylint: disable=unused-argument
Exemplo n.º 38
0
 def alpha030(self):
     delta_close = delta(self.close, 1)
     inner = sign(delta_close) + sign(delay(delta_close, 1)) + sign(delay(delta_close, 2))
     return ((1.0 - rank(inner)) * ts_sum(self.volume, 5)) / ts_sum(self.volume, 20)
Exemplo n.º 39
0
 def alpha007(self):
     adv20 = sma(self.volume, 20)
     alpha = -1 * ts_rank(abs(delta(self.close, 7)), 60) * sign(delta(self.close, 7))
     alpha[adv20 >= self.volume] = -1
     return alpha
Exemplo n.º 40
0
 def alpha012(self):
     return sign(delta(self.volume, 1)) * (-1 * delta(self.close, 1))
Exemplo n.º 41
0
def projSO3(M):   # return a rotation matrix close to M
    Q,R = np.linalg.qr(M)
    return Q@diag(diag(sign(R)))
Exemplo n.º 42
0
    def __updateParameters(self, x, y):
        """
        w_k = w_{k-1} - lr*dw
        b_k = b_{k-1} - lr*db
        """
        yt = self.__fit_predict(x)
        residuals = yt - y
        dW = 2/self.m * (x.T).dot(residuals) + self.lambda_ * (self.W != 0).astype(int)*np.sign(self.W)
        self.dws.append(dW)
        self.W = self.W - self.lr*dW

        if self.withBias:
            dB = 2/self.m * np.sum( residuals )
            self.B = self.B - self.lr*dB
theta_train = np.zeros(35, dtype=float)
converged = False
train_accuracy = 0
train_iter = 1000
eta = 0.05
error_train = []
error_test = []
while (converged != True and train_iter > 0):
    converged = True
    train_accuracy = len(data_train)
    sum = np.zeros(35, dtype=float)

    for i in range(len(data_train)):
        inner_product = np.inner(data_train[i], theta_train)
        result = int(np.sign(inner_product))
        if (result < 0 and label_train[i]
                == 1) or (result > 0 and label_train[i] == 0) or result == 0:
            train_accuracy -= 1
            converged = False
    error_train.append(1 - train_accuracy / float(len(data_train)))

    test_accuracy = len(data_test)
    for i in range(len(data_test)):
        inner_product = np.inner(data_test[i], theta_train)
        result = int(np.sign(inner_product))
        if (result < 0 and label_test[i] == 1) or (result > 0 and label_test[i]
                                                   == 0) or result == 0:
            test_accuracy -= 1
    error_test.append(1 - test_accuracy / float(len(data_test)))
Exemplo n.º 44
0
def test_sanity_check_pls_canonical_random():
    # Sanity check for PLSCanonical on random data
    # The results were checked against the R-package plspm
    n = 500
    p_noise = 10
    q_noise = 5
    # 2 latents vars:
    rng = check_random_state(11)
    l1 = rng.normal(size=n)
    l2 = rng.normal(size=n)
    latents = np.array([l1, l1, l2, l2]).T
    X = latents + rng.normal(size=4 * n).reshape((n, 4))
    Y = latents + rng.normal(size=4 * n).reshape((n, 4))
    X = np.concatenate((X, rng.normal(size=p_noise * n).reshape(n, p_noise)),
                       axis=1)
    Y = np.concatenate((Y, rng.normal(size=q_noise * n).reshape(n, q_noise)),
                       axis=1)

    pls = PLSCanonical(n_components=3)
    pls.fit(X, Y)

    expected_x_weights = np.array([
        [0.65803719, 0.19197924, 0.21769083],
        [0.7009113, 0.13303969, -0.15376699],
        [0.13528197, -0.68636408, 0.13856546],
        [0.16854574, -0.66788088, -0.12485304],
        [-0.03232333, -0.04189855, 0.40690153],
        [0.1148816, -0.09643158, 0.1613305],
        [0.04792138, -0.02384992, 0.17175319],
        [-0.06781, -0.01666137, -0.18556747],
        [-0.00266945, -0.00160224, 0.11893098],
        [-0.00849528, -0.07706095, 0.1570547],
        [-0.00949471, -0.02964127, 0.34657036],
        [-0.03572177, 0.0945091, 0.3414855],
        [0.05584937, -0.02028961, -0.57682568],
        [0.05744254, -0.01482333, -0.17431274],
    ])

    expected_x_loadings = np.array([
        [0.65649254, 0.1847647, 0.15270699],
        [0.67554234, 0.15237508, -0.09182247],
        [0.19219925, -0.67750975, 0.08673128],
        [0.2133631, -0.67034809, -0.08835483],
        [-0.03178912, -0.06668336, 0.43395268],
        [0.15684588, -0.13350241, 0.20578984],
        [0.03337736, -0.03807306, 0.09871553],
        [-0.06199844, 0.01559854, -0.1881785],
        [0.00406146, -0.00587025, 0.16413253],
        [-0.00374239, -0.05848466, 0.19140336],
        [0.00139214, -0.01033161, 0.32239136],
        [-0.05292828, 0.0953533, 0.31916881],
        [0.04031924, -0.01961045, -0.65174036],
        [0.06172484, -0.06597366, -0.1244497],
    ])

    expected_y_weights = np.array([
        [0.66101097, 0.18672553, 0.22826092],
        [0.69347861, 0.18463471, -0.23995597],
        [0.14462724, -0.66504085, 0.17082434],
        [0.22247955, -0.6932605, -0.09832993],
        [0.07035859, 0.00714283, 0.67810124],
        [0.07765351, -0.0105204, -0.44108074],
        [-0.00917056, 0.04322147, 0.10062478],
        [-0.01909512, 0.06182718, 0.28830475],
        [0.01756709, 0.04797666, 0.32225745],
    ])

    expected_y_loadings = np.array([
        [0.68568625, 0.1674376, 0.0969508],
        [0.68782064, 0.20375837, -0.1164448],
        [0.11712173, -0.68046903, 0.12001505],
        [0.17860457, -0.6798319, -0.05089681],
        [0.06265739, -0.0277703, 0.74729584],
        [0.0914178, 0.00403751, -0.5135078],
        [-0.02196918, -0.01377169, 0.09564505],
        [-0.03288952, 0.09039729, 0.31858973],
        [0.04287624, 0.05254676, 0.27836841],
    ])

    assert_array_almost_equal(np.abs(pls.x_loadings_),
                              np.abs(expected_x_loadings))
    assert_array_almost_equal(np.abs(pls.x_weights_),
                              np.abs(expected_x_weights))
    assert_array_almost_equal(np.abs(pls.y_loadings_),
                              np.abs(expected_y_loadings))
    assert_array_almost_equal(np.abs(pls.y_weights_),
                              np.abs(expected_y_weights))

    x_loadings_sign_flip = np.sign(pls.x_loadings_ / expected_x_loadings)
    x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights)
    y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights)
    y_loadings_sign_flip = np.sign(pls.y_loadings_ / expected_y_loadings)
    assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip)
    assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip)

    assert_matrix_orthogonal(pls.x_weights_)
    assert_matrix_orthogonal(pls.y_weights_)

    assert_matrix_orthogonal(pls._x_scores)
    assert_matrix_orthogonal(pls._y_scores)
Exemplo n.º 45
0
X_2 = np.array([[-1, 0, 1.5, -0.5]]).T
X_3 = np.array([[-1, -1, 1, 0.5]]).T

X = np.append(X_1, X_2, axis=1)
X = np.append(X, X_3, axis=1)  #X是4*3的矩阵

Y = np.array([[-1, -1, 1]])  #Y是1*3的矩阵

W = (np.random.random([4, 1]) - 0.5) * 2  #初始化权值,范围是[-1,1]
#W是4*1的矩阵

lr = 0.11  #设置学习率为0.11

output = np.array([[0, 0, 0]])  #神经网络的输出(output)初始化为0


def iteration():  #迭代函数
    global X, Y, W, lr
    output = np.sign(np.dot(W.T, X))
    delta = lr * (np.dot(X, (Y - output).T))
    W = W + delta  #对权值矩阵进行调整


for i in range(100):
    print("第 %s 次迭代" % i)
    print(W)
    iteration()
    output = np.sign(np.dot(W.T, X))  #计算当前的输出
    if (output == Y).all():
        print("Finished")
        break
Exemplo n.º 46
0
def iteration():  #迭代函数
    global X, Y, W, lr
    output = np.sign(np.dot(W.T, X))
    delta = lr * (np.dot(X, (Y - output).T))
    W = W + delta  #对权值矩阵进行调整
Exemplo n.º 47
0
        # This block should reset the PID if there is nothing on the screen for more than 5 frames.

        if mX == 0:
            count += 1
        else:
            count = 0
        if count > 5:
            p = PID(3.0, 0.4, 1.2)
            p.setPoint(300.0)

        # Note: need to put in something so it doesn't send PID controls when mX is 0

        pid = p.update(mX)

        if abs(pid) > 255:
            pid = 255 * (np.sign(pid))
        if abs(pid) < 100:
            pid = 100 * (np.sign(pid))

        val = str(int(abs(pid)))

        if pid > 0:
            motControl = '-' + val + '-' + val + '+' + val + '+' + val + '>'
        else:
            motControl = '+' + val + '+' + val + '-' + val + '-' + val + '>'

        if mX != 0:
            ser.write(motControl)


        cv2.putText(frame, str(pid),
Exemplo n.º 48
0
# %%
# Resta
np.subtract(arr_2, arr_1)

# %%
# Raiz cuadrada
np.sqrt(arr_1)

# %%
# Potencia
np.power(arr_1, 2)

# %%
# Signo
np.sign(arr_1)

# %%
# Seno
np.sin(arr_1)

# %%
# CoSeno
np.cos(arr_1)

# %%
# Tangente
np.tan(arr_1)

# %%
# Grados a radianes
Exemplo n.º 49
0
    def _step(self, action):

        #if action[0]==action[1]==action[2]==action[3]==0.0:
        #    self.hull.ApplyForceToCenter((0, 10.0*(5.0*(20/SCALE)**2)), True)
        #    self.legs[0].ApplyForceToCenter((0, 10.0 * 1.0 * LEG_H*LEG_W), True)
        #    self.legs[1].ApplyForceToCenter((0, 10.0 * 1.0 * LEG_H * LEG_W), True)
        #    self.legs[2].ApplyForceToCenter((0, 10.0 * 1.0 * LEG_H * LEG_W), True)
        #    self.legs[3].ApplyForceToCenter((0, 10.0 * 1.0 * LEG_H * LEG_W), True)

        #self.hull.ApplyForceToCenter((0, 20), True) #-- Uncomment this to receive a bit of stability help
        control_speed = False
        if control_speed:
            self.joints[0].motorSpeed = float(SPEED_HIP * np.clip(action[0], -1, 1))
            self.joints[1].motorSpeed = float(SPEED_KNEE * np.clip(action[1], -1, 1))
            self.joints[2].motorSpeed = float(SPEED_HIP * np.clip(action[2], -1, 1))
            self.joints[3].motorSpeed = float(SPEED_KNEE * np.clip(action[3], -1, 1))

        else:
            self.joints[0].maxMotorTorque = float(np.abs(action[0]))
            self.joints[0].motorSpeed     = float(SPEED_HIP     * np.sign(action[0]))

            self.joints[1].maxMotorTorque = float(np.abs(action[1]))
            self.joints[1].motorSpeed     = float(SPEED_KNEE    * np.sign(action[1]))

            self.joints[2].maxMotorTorque = float(np.abs(action[2]))
            self.joints[2].motorSpeed     = float(SPEED_HIP     * np.sign(action[2]))

            self.joints[3].maxMotorTorque = float(np.abs(action[3]))
            self.joints[3].motorSpeed     = float(SPEED_KNEE    * np.sign(action[3]))

        self.world.Step(1.0/FPS, 6*30, 2*30)

        pos = self.hull.position
        vel = self.hull.linearVelocity

        for i in range(10):
            self.lidar[i].fraction = 1.0
            self.lidar[i].p1 = pos
            self.lidar[i].p2 = (
                pos[0] + math.sin(1.5*i/10.0)*LIDAR_RANGE,
                pos[1] - math.cos(1.5*i/10.0)*LIDAR_RANGE)
            self.world.RayCast(self.lidar[i], self.lidar[i].p1, self.lidar[i].p2)

        state = [
            self.hull.angle,            #s[0]
            self.hull.angularVelocity,  #s[1]
            vel.x,                      #s[2]   global dxcom
            vel.y,                      #s[3]
            self.joints[0].angle,       #s[4]
            self.joints[0].speed,       #s[5]
            self.joints[1].angle,       #s[6]
            self.joints[1].speed,       #s[7]
            1.0 if self.legs[1].ground_contact else 0.0,    #s[8]   
            self.joints[2].angle,                           #s[9]
            self.joints[2].speed,                           #s[10]
            self.joints[3].angle,                           #s[11]
            self.joints[3].speed,                           #s[12]
            1.0 if self.legs[3].ground_contact else 0.0,     #s[13]  
            pos.y - TERRAIN_HEIGHT,                          #s[14]
            pos.x - self.legs[1].position.x,    # s[15]
            pos.x - self.legs[3].position.x,     # s[16]
            pos.x - init_x,   # global xcom      s[17]
            ]
        state += [l.fraction for l in self.lidar]
        assert len(state)==28

        self.scroll = pos.x - VIEWPORT_W/SCALE/5

        shaping  = 130*pos[0]/SCALE   # moving forward is a way to receive reward (normalized to get 300 on completion)
        shaping -= 5.0*abs(state[0])  # keep head straight, other than that and falling, any behavior is unpunished

        reward = 0
        if self.prev_shaping is not None:
            reward = shaping - self.prev_shaping
        self.prev_shaping = shaping

        for a in action:
            reward -= 0.00035 * MOTORS_TORQUE * np.clip(np.abs(a), 0, 1)
            # normalized to about -50.0 using heuristic, more optimal agent should spend less

        done = False
        if self.game_over or pos[0] < 0:
            reward = -100
            done   = True
        if pos[0] > (TERRAIN_LENGTH-TERRAIN_GRASS)*TERRAIN_STEP:
            done   = True
        return np.array(state), reward, done, {}
    def _SMC_acc_Cartesian(self,sigma_max,sigma_d_max,sigma_min,sigma_d_min,phi_max,phi_min,J,dsigma_dp,Ka,U_plus,pd_ref,pdd_ref,pose,p_ref,Kp,Kpd,Kqd,Kq,Fx_max,Fy_max,U_plus_map,mode_eq,mode_ineq,temp_int,nContact,sm_ant,ASG_opt,U_plus_map2,auto,U_plus2,U_plus2_map,U_plus2_map2,phi2_max,Sensor2R,Kp_L3,Kpd_L3,threshold,error,Tp):
        
        p = np.zeros((6,1))
        joint_acc_4 = np.zeros((7,1))
        dsigma_dp2 = np.zeros((6,6))
        phi_tmp_L2 = np.sign(phi2_max)

        XYZ = pose['position']
        RPY = Quat2rpy(pose['orientation'])

        Qd = self._limb.joint_velocities()
        Q  = self._limb.joint_angles()

        q  = np.zeros((7,1))
        qo  = np.zeros((7,1))
        qd = np.zeros((7,1))
 
        for i in range(0,6,1):
            if i < 3:
               p[i] = XYZ[i]
            else:
               p[i] = RPY[i-3]

        if p[3] < 0:
           p[3] = p[3] + 2.0*math.pi

        for i,joint in enumerate(self._limb.joint_names()):
            qo[i]  = self._start_angles[joint]
            q[i] = (self._limb.joint_angles())[joint]
            qd[i] = Qd[joint]
             
        pd = J.dot(qd)
            
        #Saturation of the feedforward error
        
        for i in range(0,6):
           error[i] = p_ref[i] - p[i]


        #Error saturation by direction
        m_e = np.sqrt(error[0]*error[0] + error[1]*error[1] + error[2]*error[2])
        
        if m_e > 0.025:
           for i in range(0,3):
               error[i] = error[i]/m_e*0.025
       
        #Error saturation by module
        #for i in range(0,3):
         #   if np.abs(p_ref[i] - p[i]) > 0.02:
          #     error[i] = np.sign(p_ref[i] - p[i])*0.02
           # else:
            #   error[i] = p_ref[i] - p[i]

        phi_tmp = np.sign(phi_max)

        #if phi_max[1] > 0:       
        #    phi_tmp[1] = 1.0
        #    dsigma_dp[1][1] = 4.0
        #elif phi_min[1] > 0:
        #    phi_tmp[1] = -1.0
        #    dsigma_dp[1][1] = 4.0
        #else:
        #    dsigma_dp[1][1] = 0.0
        #    phi_tmp[1] = 0.0

        #if phi_max[0] > 0:       
        #    phi_tmp[0] = 1.0
        #    dsigma_dp[0][0] = 4.0
        #elif phi_min[0] > 0:
        #    phi_tmp[0] = -1.0
        #    dsigma_dp[0][0] = 4.0
        #else:
        #    dsigma_dp[0][0] = 0.0
        #    phi_tmp[0] = 0.0

        #1st Level SMC:
        joint_acc = -linalg.pinv(Ka*(dsigma_dp.T).dot(J),rcond = 0.01).dot(U_plus_map2.dot(phi_tmp))

        #2nd Level trajectory tracking:
        
        # Automatic or Collaborative mode
        if auto == 1 or nContact == True:
            N2 = np.eye(7) - linalg.pinv((dsigma_dp.T).dot(J),rcond = 0.01).dot((dsigma_dp.T).dot(J))
            joint_acc_2 = linalg.pinv(J.dot(N2),rcond = 0.01).dot(pdd_ref + Kpd*(pd_ref - pd) + Kp*error - J.dot(joint_acc))
            
            #3rf Level self motion:
            N3 = N2.dot(np.eye(7) - np.linalg.pinv(J.dot(N2)).dot(J.dot(N2)))
            joint_acc_3 = linalg.pinv(N3,rcond = 0.01).dot(-Kqd*qd + Kq*(qo - q) - (joint_acc + joint_acc_2))
            self._joint_vel = self._joint_vel + (joint_acc + joint_acc_2 + joint_acc_3)/self._rate

        elif auto == 0 or nContact == False:
            # Level 2: X, Y, Z inequalities activation

            if phi2_max[0] > 0:       
               phi_tmp_L2[0] = 1.0
               dsigma_dp2[0][0] = (2.0*Sensor2R[0])/(2.0*np.sqrt(Sensor2R[0]*Sensor2R[0] + Sensor2R[1]*Sensor2R[1]))
               dsigma_dp2[1][0] = (2.0*Sensor2R[1])/(2.0*np.sqrt(Sensor2R[0]*Sensor2R[0] + Sensor2R[1]*Sensor2R[1]))
            else:
               phi_tmp_L2[0] = 0.0
               dsigma_dp2[0][0] = 0.0
               dsigma_dp2[1][0] = 0.0

            #print "phi2_max[0]: ",np.sign(phi2_max[0])

            # Yaw control in Level 2 for Exp 1

            #if phi2_max[5] > 0:       
            #   phi_tmp_L2[5] = 1.0
            #   dsigma_dp2[5][5] = np.sign(Sensor2R[5])
            #else:
            #   phi_tmp_L2[5] = 0.0
            #   dsigma_dp2[5][5] = 0.0

            U_plus2_map2[0][0] = U_plus2_map[0][0]*U_plus2
            #U_plus_map2[5][5] = U_plus_map[5][5]*U_plus

            N2 = np.eye(7) - linalg.pinv((dsigma_dp.T).dot(J),rcond = 0.01).dot((dsigma_dp.T).dot(J))
            joint_acc_2 = -linalg.pinv(((dsigma_dp2.T).dot(J)).dot(N2),rcond = 0.01).dot((np.sign(phi_tmp_L2.T).dot(U_plus2_map2)).T + J.dot(joint_acc))


            #3rd Level cartesian self motion:
            #N3 = N2.dot(np.eye(7) - np.linalg.pinv(((dsigma_dp2.T).dot(J)).dot(N2)).dot(((dsigma_dp2.T).dot(J)).dot(N2)))
            #joint_acc_3 = linalg.pinv(J.dot(N3),rcond = 0.01).dot(-np.sign(pd)*Kpd_L3 - Kp_L3*pd - J.dot(joint_acc + joint_acc_2))

            
            N3 = N2.dot(np.eye(7) - np.linalg.pinv(((dsigma_dp2.T).dot(J)).dot(N2)).dot(((dsigma_dp2.T).dot(J)).dot(N2)))
            joint_acc_3 = linalg.pinv(J.dot(N3),rcond = 0.01).dot(pdd_ref + Kpd*(pd_ref - pd) + Kp*error + np.sign(pd_ref - pd + Kp/Kpd*error)*Kpd_L3 - J.dot(joint_acc + joint_acc_2))

            #if np.sqrt(Sensor2R[0]*Sensor2R[0] + Sensor2R[1]*Sensor2R[1]) > threshold:
            #   joint_acc_3 = np.zeros((7,1))
           

            #4th Level home configuration:
            N4 = N3.dot(np.eye(7) - np.linalg.pinv(J.dot(N3)).dot(J.dot(N3)))
            joint_acc_4 = linalg.pinv(N4,rcond = 0.01).dot(-Kqd*qd  +  Kq*(qo - q) - (joint_acc + joint_acc_2 + joint_acc_3))
            
            self._joint_vel = self._joint_vel + (joint_acc + joint_acc_2 + joint_acc_3 + joint_acc_4)/self._rate



        cmd = make_cmd(self._limb.joint_names(), self._joint_vel)

        # command new joint torques
        self._limb.set_joint_velocities(cmd) 
        b = ""
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(p.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(pd.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(error.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(qo.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(q.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(qd.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(joint_acc.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(joint_acc_2.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(joint_acc_3.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(joint_acc_4.T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray((joint_acc + joint_acc_2 + joint_acc_3 + joint_acc_4).T)),decimals = 4)))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(self._joint_vel.T)),decimals = 4)))
        b += " " + str(np.round(dsigma_dp[0][0],decimals = 4)) + " " + str(np.round(dsigma_dp[1][1],decimals = 4))
        b += " " + str(np.round(dsigma_dp[2][2],decimals = 4)) + " " + str(np.round(dsigma_dp[3][3],decimals = 4)) 
        b += " " + str(np.round(dsigma_dp[4][4],decimals = 4)) + " " + str(np.round(dsigma_dp[5][5],decimals = 4))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(phi_tmp.T)),decimals = 4)))
        b += " " + str(np.round(U_plus_map2[2][2],decimals = 4)) + " " + str(np.round(U_plus_map2[3][3],decimals = 4)) + " " + str(np.round(U_plus_map2[4][4],decimals = 4))
        b += " " + str(np.round(dsigma_dp2[0][0],decimals = 4)) + " " + str(np.round(dsigma_dp2[1][1],decimals = 4))
        b += " " + str(np.round(dsigma_dp2[2][2],decimals = 4)) + " " + str(np.round(dsigma_dp2[3][3],decimals = 4)) 
        b += " " + str(np.round(dsigma_dp2[4][4],decimals = 4)) + " " + str(np.round(dsigma_dp2[5][5],decimals = 4))
        b += " " + ' '.join(map(str,np.around(np.squeeze(np.asarray(phi_tmp_L2.T)),decimals = 4)))
        b += " " + str(np.round(U_plus2_map2[0][0],decimals = 4))

        return b
Exemplo n.º 51
0
def _copysign(x1, x2):
    """Slow replacement for np.copysign, which was introduced in numpy 1.4"""
    return np.abs(x1) * np.sign(x2)
Exemplo n.º 52
0
    def _generate_terrain(self, hardcore):
        GRASS, STUMP, STAIRS, PIT, _STATES_ = range(5)
        state    = GRASS
        velocity = 0.0
        y        = TERRAIN_HEIGHT
        counter  = TERRAIN_STARTPAD
        oneshot  = False
        self.terrain   = []
        self.terrain_x = []
        self.terrain_y = []
        for i in range(TERRAIN_LENGTH):
            x = i*TERRAIN_STEP
            self.terrain_x.append(x)

            if state==GRASS and not oneshot:
                velocity = 0.8*velocity + 0.01*np.sign(TERRAIN_HEIGHT - y)
                if i > TERRAIN_STARTPAD: velocity=0 #+= self.np_random.uniform(-1, 1)/SCALE   #1
                y += velocity
                #y = TERRAIN_HEIGHT

            elif state==PIT and oneshot:
                counter = self.np_random.randint(3, 5)
                poly = [
                    (x,              y),
                    (x+TERRAIN_STEP, y),
                    (x+TERRAIN_STEP, y-4*TERRAIN_STEP),
                    (x,              y-4*TERRAIN_STEP),
                    ]
                t = self.world.CreateStaticBody(
                    fixtures = fixtureDef(
                        shape=polygonShape(vertices=poly),
                        friction = FRICTION
                    ))
                t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6)
                self.terrain.append(t)
                t = self.world.CreateStaticBody(
                    fixtures = fixtureDef(
                        shape=polygonShape(vertices=[(p[0]+TERRAIN_STEP*counter,p[1]) for p in poly]),
                        friction = FRICTION
                    ))
                t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6)
                self.terrain.append(t)
                counter += 2
                original_y = y

            elif state==PIT and not oneshot:
                y = original_y
                if counter > 1:
                    y -= 4*TERRAIN_STEP

            elif state==STUMP and oneshot:
                counter = self.np_random.randint(1, 3)
                poly = [
                    (x,                      y),
                    (x+counter*TERRAIN_STEP, y),
                    (x+counter*TERRAIN_STEP, y+counter*TERRAIN_STEP),
                    (x,                      y+counter*TERRAIN_STEP),
                    ]
                t = self.world.CreateStaticBody(
                    fixtures = fixtureDef(
                        shape=polygonShape(vertices=poly),
                        friction = FRICTION
                    ))
                t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6)
                self.terrain.append(t)

            elif state==STAIRS and oneshot:
                stair_height = +1 if self.np_random.rand() > 0.5 else -1
                stair_width = self.np_random.randint(4, 5)
                stair_steps = self.np_random.randint(3, 5)
                original_y = y
                for s in range(stair_steps):
                    poly = [
                        (x+(    s*stair_width)*TERRAIN_STEP, y+(   s*stair_height)*TERRAIN_STEP),
                        (x+((1+s)*stair_width)*TERRAIN_STEP, y+(   s*stair_height)*TERRAIN_STEP),
                        (x+((1+s)*stair_width)*TERRAIN_STEP, y+(-1+s*stair_height)*TERRAIN_STEP),
                        (x+(    s*stair_width)*TERRAIN_STEP, y+(-1+s*stair_height)*TERRAIN_STEP),
                        ]
                    t = self.world.CreateStaticBody(
                        fixtures = fixtureDef(
                            shape=polygonShape(vertices=poly),
                            friction = FRICTION
                        ))
                    t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6)
                    self.terrain.append(t)
                counter = stair_steps*stair_width

            elif state==STAIRS and not oneshot:
                s = stair_steps*stair_width - counter - stair_height
                n = s/stair_width
                y = original_y + (n*stair_height)*TERRAIN_STEP

            oneshot = False
            self.terrain_y.append(y)
            counter -= 1
            if counter==0:
                counter = self.np_random.randint(TERRAIN_GRASS/2, TERRAIN_GRASS)
                if state==GRASS and hardcore:
                    state = self.np_random.randint(1, _STATES_)
                    oneshot = True
                else:
                    state = GRASS
                    oneshot = True

        self.terrain_poly = []
        for i in range(TERRAIN_LENGTH-1):
            poly = [
                (self.terrain_x[i],   self.terrain_y[i]),
                (self.terrain_x[i+1], self.terrain_y[i+1])
                ]
            t = self.world.CreateStaticBody(
                fixtures = fixtureDef(
                    shape=edgeShape(vertices=poly),
                    friction = FRICTION,
                    categoryBits=0x0001,
                ))
            color = (0.3, 1.0 if i%2==0 else 0.8, 0.3)
            t.color1 = color
            t.color2 = color
            self.terrain.append(t)
            color = (0.4, 0.6, 0.3)
            poly += [ (poly[1][0], 0), (poly[0][0], 0) ]
            self.terrain_poly.append( (poly, color) )
        self.terrain.reverse()
 def sign(z):
     return np.sign(z)
Exemplo n.º 54
0
    def step(self, action):
        if self.continuous:
            action = np.clip(action, -1, +1).astype(np.float32)
        else:
            assert self.action_space.contains(action), "%r (%s) invalid " % (
                action,
                type(action),
            )

        # Engines
        tip = (math.sin(self.lander.angle), math.cos(self.lander.angle))
        side = (-tip[1], tip[0])
        dispersion = [0 for _ in range(2)]

        m_power = 0.0
        if (self.continuous and action[0] > 0.0) or (
            not self.continuous and action == 2
        ):
            # Main engine
            if self.continuous:
                m_power = (np.clip(action[0], 0.0, 1.0) + 1.0) * 0.5  # 0.5..1.0
                assert m_power >= 0.5 and m_power <= 1.0
            else:
                m_power = 1.0
            ox = (
                tip[0] * (4 / SCALE + 2 * dispersion[0]) + side[0] * dispersion[1]
            )  # 4 is move a bit downwards, +-2 for randomness
            oy = -tip[1] * (4 / SCALE + 2 * dispersion[0]) - side[1] * dispersion[1]
            impulse_pos = (self.lander.position[0] + ox, self.lander.position[1] + oy)
            p = self._create_particle(
                3.5,  # 3.5 is here to make particle speed adequate
                impulse_pos[0],
                impulse_pos[1],
                m_power,
            )  # particles are just a decoration
            p.ApplyLinearImpulse(
                (ox * MAIN_ENGINE_POWER * m_power, oy * MAIN_ENGINE_POWER * m_power),
                impulse_pos,
                True,
            )
            self.lander.ApplyLinearImpulse(
                (-ox * MAIN_ENGINE_POWER * m_power, -oy * MAIN_ENGINE_POWER * m_power),
                impulse_pos,
                True,
            )

        s_power = 0.0
        if (self.continuous and np.abs(action[1]) > 0.5) or (
            not self.continuous and action in [1, 3]
        ):
            # Orientation engines
            if self.continuous:
                direction = np.sign(action[1])
                s_power = np.clip(np.abs(action[1]), 0.5, 1.0)
                assert s_power >= 0.5 and s_power <= 1.0
            else:
                direction = action - 2
                s_power = 1.0
            ox = tip[0] * dispersion[0] + side[0] * (
                3 * dispersion[1] + direction * SIDE_ENGINE_AWAY / SCALE
            )
            oy = -tip[1] * dispersion[0] - side[1] * (
                3 * dispersion[1] + direction * SIDE_ENGINE_AWAY / SCALE
            )
            impulse_pos = (
                self.lander.position[0] + ox - tip[0] * 17 / SCALE,
                self.lander.position[1] + oy + tip[1] * SIDE_ENGINE_HEIGHT / SCALE,
            )
            p = self._create_particle(0.7, impulse_pos[0], impulse_pos[1], s_power)
            p.ApplyLinearImpulse(
                (ox * SIDE_ENGINE_POWER * s_power, oy * SIDE_ENGINE_POWER * s_power),
                impulse_pos,
                True,
            )
            self.lander.ApplyLinearImpulse(
                (-ox * SIDE_ENGINE_POWER * s_power, -oy * SIDE_ENGINE_POWER * s_power),
                impulse_pos,
                True,
            )

        self.world.Step(1.0 / FPS, 6 * 30, 2 * 30)

        pos = self.lander.position
        vel = self.lander.linearVelocity
        state = [
            (pos.x - VIEWPORT_W / SCALE / 2) / (VIEWPORT_W / SCALE / 2),
            (pos.y - (self.helipad_y + LEG_DOWN / SCALE)) / (VIEWPORT_H / SCALE / 2),
            vel.x * (VIEWPORT_W / SCALE / 2) / FPS,
            vel.y * (VIEWPORT_H / SCALE / 2) / FPS,
            self.lander.angle,
            20.0 * self.lander.angularVelocity / FPS,
            1.0 if self.legs[0].ground_contact else 0.0,
            1.0 if self.legs[1].ground_contact else 0.0,
        ]
        assert len(state) == 8

        reward = 0
        shaping = (
            -100 * np.sqrt(state[0] * state[0] + state[1] * state[1])
            - 100 * np.sqrt(state[2] * state[2] + state[3] * state[3])
            - 100 * abs(state[4])
            + 10 * state[6]
            + 10 * state[7]
        )  # And ten points for legs contact, the idea is if you
        # lose contact again after landing, you get negative reward
        if self.prev_shaping is not None:
            reward = shaping - self.prev_shaping
        self.prev_shaping = shaping

        reward -= (
            m_power * 0.30
        )  # less fuel spent is better, about -30 for heuristic landing
        reward -= s_power * 0.03

        done = False
        if self.game_over or abs(state[0]) >= 1.0:
            done = True
            reward = -100
        if not self.lander.awake:
            done = True
            reward = +100
        return np.array(state, dtype=np.float32), reward, done, {}
Exemplo n.º 55
0
 def backward(self, x):
     return 0.5 * (np.sign(x) + 1)
Exemplo n.º 56
0
def scores(key, paths, config):
    values = [mapreduce.OutputCollector(p) for p in paths]
    try:
        values = [item.load() for item in values]
    except Exception as e:
        print(e)
        return None

    y_true_splits = [item["y_true"].ravel() for item in values]
    y_pred_splits = [item["y_pred"].ravel() for item in values]
    y_true = np.concatenate(y_true_splits)
    y_pred = np.concatenate(y_pred_splits)
    prob_pred_splits = [item["prob_pred"].ravel() for item in values]
    prob_pred = np.concatenate(prob_pred_splits)

    # Prediction performances
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None)
    auc = roc_auc_score(y_true, prob_pred)

    # balanced accuracy (recall_mean)
    bacc_splits = [recall_score(y_true_splits[f], y_pred_splits[f], average=None).mean() for f in range(len(y_true_splits))]
    auc_splits = [roc_auc_score(y_true_splits[f], prob_pred_splits[f]) for f in range(len(y_true_splits))]

    print("bacc all - mean(bacc) %.3f" % (r.mean() - np.mean(bacc_splits)))
    # P-values
    success = r * s
    success = success.astype('int')
    prob_class1 = np.count_nonzero(y_true) / float(len(y_true))
    pvalue_recall0_true_prob = binom_test(success[0], s[0], 1 - prob_class1,alternative = 'greater')
    pvalue_recall1_true_prob = binom_test(success[1], s[1], prob_class1,alternative = 'greater')
    pvalue_recall0_unknwon_prob = binom_test(success[0], s[0], 0.5,alternative = 'greater')
    pvalue_recall1_unknown_prob = binom_test(success[1], s[1], 0.5,alternative = 'greater')
    pvalue_bacc = binom_test(success[0]+success[1], s[0] + s[1], p=0.5,alternative = 'greater')


    # Beta's measures of similarity
    betas = np.hstack([item["beta"][:, penalty_start:].T for item in values]).T
    # Correlation
    R = np.corrcoef(betas)
    R = R[np.triu_indices_from(R, 1)]
    # Fisher z-transformation / average
    z_bar = np.mean(1. / 2. * np.log((1 + R) / (1 - R)))
    # bracktransform
    r_bar = (np.exp(2 * z_bar) - 1) / (np.exp(2 * z_bar) + 1)

    # threshold betas to compute fleiss_kappa and DICE
    try:
        betas_t = np.vstack([
                array_utils.arr_threshold_from_norm2_ratio(betas[i, :], .99)[0]
                for i in range(betas.shape[0])])
        # Compute fleiss kappa statistics
        beta_signed = np.sign(betas_t)
        table = np.zeros((beta_signed.shape[1], 3))
        table[:, 0] = np.sum(beta_signed == 0, 0)
        table[:, 1] = np.sum(beta_signed == 1, 0)
        table[:, 2] = np.sum(beta_signed == -1, 0)
        fleiss_kappa_stat = fleiss_kappa(table)

        # Paire-wise Dice coeficient
        ij = [[i, j] for i in range(betas.shape[0]) for j in range(i+1, betas.shape[0])]
        dices = list()
        for idx in ij:
            A, B = beta_signed[idx[0], :], beta_signed[idx[1], :]
            dices.append(float(np.sum((A == B)[(A != 0) & (B != 0)])) / (np.sum(A != 0) + np.sum(B != 0)))
        dice_bar = np.mean(dices)
    except:
        dice_bar = fleiss_kappa_stat = 0

    # Proportion of selection within the support accross the CV
    support_count = (betas_t != 0).sum(axis=0)
    support_count = support_count[support_count > 0]
    support_prop = support_count / betas_t.shape[0]

    scores = OrderedDict()
    scores['key'] = key
    scores['recall_0'] = r[0]
    scores['recall_1'] = r[1]
    scores['bacc'] = r.mean()
    scores['bacc_se'] = np.std(bacc_splits) / np.sqrt(len(bacc_splits))
    scores["auc"] = auc
    scores['auc_se'] = np.std(auc_splits) / np.sqrt(len(auc_splits))
    scores['pvalue_recall0_true_prob_one_sided'] = pvalue_recall0_true_prob
    scores['pvalue_recall1_true_prob_one_sided'] = pvalue_recall1_true_prob
    scores['pvalue_recall0_unknwon_prob_one_sided'] = pvalue_recall0_unknwon_prob
    scores['pvalue_recall1_unknown_prob_one_sided'] = pvalue_recall1_unknown_prob
    scores['pvalue_bacc_mean'] = pvalue_bacc
    scores['prop_non_zeros_mean'] = float(np.count_nonzero(betas_t)) / \
                                    float(np.prod(betas.shape))
    scores['beta_r_bar'] = r_bar
    scores['beta_fleiss_kappa'] = fleiss_kappa_stat
    scores['beta_dice_bar'] = dice_bar
    scores['beta_dice'] = str(dices)
    scores['beta_r'] = str(R)
    scores['beta_support_prop_select_mean'] = support_prop.mean()
    scores['beta_support_prop_select_sd'] = support_prop.std()


    return scores
Exemplo n.º 57
0
    def start_PID(self, input=None):
        try:
            for sig in self.move_done_signals:
                sig.connect(self.move_done)
            for sig in self.grab_done_signals:
                sig.connect(self.det_done)

            self.current_time = time.perf_counter()
            self.status_sig.emit(["Update_Status", 'PID loop starting', 'log'])
            while self.running:
                #print('input: {}'.format(self.input))
                ## GRAB DATA FIRST AND WAIT ALL DETECTORS RETURNED

                self.det_done_flag = False
                self.det_done_datas = OrderedDict()
                for ind_det, cmd in enumerate(self.detector_modules_commands):
                    cmd.emit(
                        ThreadCommand("single",
                                      [self.det_averaging[ind_det], '']))
                    QtWidgets.QApplication.processEvents()
                self.wait_for_det_done()

                self.input = self.model_class.convert_input(
                    self.det_done_datas)

                ## EXECUTE THE PID
                output = self.pid(self.input)

                ## PROCESS THE OUTPUT IF NEEDED
                if output is not None and self.output is not None:
                    if self.filter['enable']:
                        if np.abs(output -
                                  self.output) <= self.filter['value']:
                            self.output = output
                        else:
                            self.output += np.abs(
                                self.filter['value']) * np.sign(output -
                                                                self.output)
                            self.pid._last_output = self.output
                    else:
                        self.output = output
                else:
                    self.output = output

                ## APPLY THE PID OUTPUT TO THE ACTUATORS
                #print('output: {}'.format(self.output))

                if self.output is None:
                    self.output = self.pid.setpoint

                dt = time.perf_counter() - self.current_time
                self.output_to_actuator = self.model_class.convert_output(
                    self.output, dt, stab=True)

                if not self.paused:
                    self.move_done_positions = OrderedDict()
                    for ind_mov, cmd in enumerate(self.move_modules_commands):
                        cmd.emit(
                            ThreadCommand('move_Abs',
                                          [self.output_to_actuator[ind_mov]]))
                        QtWidgets.QApplication.processEvents()
                    self.wait_for_move_done()

                self.current_time = time.perf_counter()
                QtWidgets.QApplication.processEvents()
                QThread.msleep(int(self.pid.sample_time * 1000))

            self.status_sig.emit(["Update_Status", 'PID loop exiting', 'log'])
            for sig in self.move_done_signals:
                sig.disconnect(self.move_done)
            for sig in self.grab_done_signals:
                sig.disconnect(self.det_done)
        except Exception as e:
            self.status_sig.emit(["Update_Status", str(e), 'log'])
Exemplo n.º 58
0
def _HypergraphPredictor__eval_i(args):
    g_i = args[0]
    b = args[1]
    phi = args[2]
    ratio = args[3]
    step = args[4]
    last_idx = len(g_i.vertex_name) - 1
    res = nibble(g_i, last_idx, b, phi)

    res = res[res != last_idx]
    if (len(res) != 0):
        res_label = 1 - g_i.get_labels(res)
        res_multi = g_i.get_multi_item_labels(res)

        res_h = g_i.h_mat[res, :].sign()
        res_r = g_i.r_mat[res, :].sign()

        #pred = (res_label.sum()*0.5 +
        #        (g_i.r_mat[res,:].dot(g_i.h_mat[last_idx, :].T) > 0).sum()*0.5)/res.shape[0]
        a = res_label.dot(1 - res_multi) / len(res)
        c = res_label.dot(res_multi) / len(res)
        pred = ((1 - a) * ratio +
                (1 - c) - np.sqrt((1 - a)**2 * ratio**2 + (1 - c)**2 + 2 *
                                  (a * c + (a + c) - 1) * ratio)) / (2 * ratio)
        # TODO: this is to try a different prediction method
        # pred_prod = (res_h.T.dot(1-res_label))/(res_h.sum(0).A1)
        with np.errstate(divide='ignore', invalid='ignore'):
            pred_prod = (res_r.T.dot(1 - res_label)) / (res_h.T.dot(1 -
                                                                    res_label))
        idx = np.isnan(pred_prod)
        pred_prod[idx] = g_i.wgt[idx]
    else:
        pred = np.nan
        pred_prod = g_i.h_mat[:last_idx, :].sum(1)

    if g_i.mult_item_label[last_idx]:
        pred = pred * ratio
    lbl = g_i.get_label(last_idx)

    prd_order = (g_i.h_mat[last_idx, :] > 0).todense().A1
    lbl_prod = np.sign(g_i.r_mat[last_idx, :].todense().A1)
    lbl_prod = lbl_prod[prd_order]

    mul_raise_rate = 1.0
    num_known = False
    if step == 1:
        pred = pred * 0 + 1.
    res_h1 = (g_i.h_mat[last_idx, :] > 1).todense().A1 * mul_raise_rate + 1

    pred_prod = pred_prod * res_h1
    pred_prod = pred_prod[prd_order] * pred
    # print("Number assumption: %r; Raise multi item return rate by %f times" %
    #      (num_known, mul_raise_rate))
    if num_known:
        num_ret = sum(lbl_prod)
        if num_ret > 0:
            ind = np.argpartition(pred_prod, -num_ret)[-num_ret:]
            pred_prod = pred_prod * 0
            pred_prod[ind] = 1
        else:
            pred_prod = pred_prod * 0

    return pred, lbl, pred_prod, lbl_prod
Exemplo n.º 59
0
def path_metric_approx(last_pm, llr, ui):
    if ui == int(0.5 * (1 - np.sign(llr))):
        return last_pm
    return last_pm + np.abs(llr)
Exemplo n.º 60
0
def _sign_flip(A):
    """
    Flip the signs of A so that largest absolute value is positive.
    """
    signs = np.sign(A[np.argmax(np.abs(A), axis=0), list(range(A.shape[1]))])
    return signs * A