Exemplo n.º 1
0
 def plotRTEMSpectra(resultsList):
     xData = np.array([result.source.wavelength for result in resultsList])
     RTEData = np.array(
         [np.sq(np.abs(result.rTE)) for result in resultsList])
     RTMData = np.array(
         [np.sq(np.abs(result.rTM)) for result in resultsList])
     fig, ax = plt.subplots(2, 1)
     ax[0].plot(xData, RTEData)
     ax[1].plot(xData, RTMData)
     ax[0].set_title('RTE and RTM vs wavelength')
     ax[0].set_ylabel('RTE')
     ax[1].set_title('RTM vs wavelength')
     ax[1].set_xlabel('wavelength (um)')
     ax[1].set_ylabel('RTM')
     fig.suptitle('RTE / TM vs wavelength', fontsize=16)
    def calculate_beta_squircle(self, a, ss, rr, identifier):
        """takes all points of the workspace, parameter s and radious r of squircle for 
        every point and returns the value of beta, eventually all this wont be required.
        a: points 
        ss: value of paramter s
        rr: radius of the sqauircle
        identifier: 0 if object is an obstacle and 1 if its workspace
        """
        beta = []
        for i in range(len(a)):
            x = a[:, 0][i]
            y = a[:, 1][i]
            z = a[:, 2][i]
            temp1 = (2 - 4 * ss**2) * (x * y)**2
            temp2 = (x**2 + y**2 + np.sqrt(x**4 + y**4 + temp1)) / 2
            beta_temp = (temp2 + z**2) / 2 + sq(temp2**2 + z**4 +
                                                (2 - 4 * ss**2) * temp2 *
                                                z**2) / 2 - rr**2
            if identifier == 1 and beta_temp >= 0:
                beta_temp = 0
            elif identifier == 0 and beta_temp <= 0:
                beta_temp = 0

            if identifier == 1:
                beta.append(-beta_temp)
            else:
                beta.append(beta_temp)

        #if identifier == 1:
        #    beta = [-i for i in beta]

        return beta
  def calculate_beta_squircle (self, a, ss, rr, identifier): 
      """takes all points of the workspace, parameter s and radious r of squircle for 
      every point and returns the value of beta, eventually all this wont be required.
      a: points 
      ss: value of paramter s
      rr: radius of the sqauircle
      identifier: 0 if object is an obstacle and 1 if its workspace
      """
       
      #x = a[:,0]; y = a[:,1]; z = a[:,2]
      beta = []#; beta_has_nan = False
      #print ss, rr
      for i in range(len(a)): 
          x = a[:,0][i]; y = a[:,1][i]; z = a[:,2][i]
          temp1 = (2 - 4 * ss**2) * (x * y)**2
          temp2 = (x**2 + y**2 + np.sqrt(x**4 + y**4 + temp1)) / 2
          beta_temp = (temp2 + z**2)/2 + sq(temp2**2 + z**4 + (2-4*ss**2)*temp2*z**2)/2 - rr**2
          if identifier == 1 and beta_temp >= 0: 
              beta.append(-beta_temp)
          else: 
              beta.append(beta_temp)
 
      """TODO: cross-check if reverting sign of beta for boundary is needed"""
      #print beta_has_nan
      if identifier == 0: 
          return beta
      else:
          beta = [-i for i in beta]
          return beta
Exemplo n.º 4
0
 def nav_func(self, q):
     Beta, b0, b1, b2, b3, b4 = self.get_beta(q)
     dBeta_dq = -2*(q-self.q0)*b1*b2*b3*b4 + \
     2*b0*((q-self.q1)*b2*b3*b4 + (q-self.q2)*b3*b4*b1 + \
     (q-self.q3)*b4*b1*b2 + (q-self.q4)*b1*b2*b3)
     a = nrm(q - self.qd)**2
     b = nrm(q - self.qd)**(2 * self.k) + Beta
     c = pwr(b, 1.0 / self.k)
     phi0 = a / c
     dphi_dq = 2 * (q - self.qd) / c - (a / (self.k * b * c)) * (
         2 * self.k * pwr(sq(a), 2 * self.k - 2) * (q - self.qd) + dBeta_dq)
     return phi0, dphi_dq
Exemplo n.º 5
0
    def calculate_beta(self, a, ss, rr, identifier):
        """takes all points of the workspace, parameter s and radious r of squircle for 
        every point and returns the value of beta, eventually all this wont be required.
        a: points 
        ss: value of paramter s
        rr: radius of the sqauircle
        identifier: 0 if object is an obstacle and 1 if its workspace
        """
        x = a[:, 0]
        y = a[:, 1]
        z = a[:, 2]
        temp1 = (2 - 4 * ss**2) * (x * y)**2
        temp2 = (x**2 + y**2 + np.sqrt(x**4 + y**4 + temp1)) / 2.0
        beta_temp = (temp2 +
                     z**2) / 2 + sq(temp2**2 + z**4 +
                                    (2 - 4 * ss**2) * temp2 * z**2) / 2 - rr**2
        if identifier == 1:
            beta_temp = [i if i < 0 else 0 for i in beta_temp]
            beta = [-1.0 * j for j in beta_temp]
        else:
            beta_temp = [i if i > 0 else 0 for i in beta_temp]
            beta = [j for j in beta_temp]

        return np.asarray(beta)
Exemplo n.º 6
0
def constraintEquation(qi, i):
    id = l2i(i, "t0")
    t0, t1, t2, t3 = qi[id], qi[id + 1], qi[id + 2], qi[id + 3]
    constraintVector = sq(t0) + sq(t1) + sq(t2) + sq(t3) - 1

    return constraintVector
Exemplo n.º 7
0
  def __init__(self,path=None,root='./',format='nodc',verbose=True):

    self.pr=[]

    pr = profile()

    if path is not None:
        if type(path) is list:

          flist=[];prof_dict={}
          for file in path:
            if format == 'nodc':
              try:
                f=netCDF4.Dataset(root+file['path'])
              except:
                if verbose:
                  print('Unable to open '+root+file['path'])
                continue
              
              date_string = file['date_string']
              pr.data={}
              pr.data['DataType']=f.variables['data_type'][:].tostring()
              pr.data['ref_dateTime']=f.variables['reference_date_time'][:].tostring()
              pr.data['time']=f.variables['juld'][:][0]
              reft = pr.data['ref_dateTime']
              reft = 'days since '+reft[0:4]+'-'+reft[4:6]+'-'+reft[6:9]
              pr.data['ncDateTime_indx']=parser.parse(date_string)
              pr.data['ncDateTime']=netCDF4.num2date(pr.data['time'],reft)
              pr.data['wmoid']=f.variables['platform_number'][:].tostring()
              pr.data['cycle_number']=f.variables['cycle_number'][:][0]
              pr.data['direction']=f.variables['direction'][:].tostring()

              pr.data['latitude']=f.variables['latitude'][:][0]
              pr.data['longitude']=f.variables['longitude'][:][0]

              pr.data['pressure']=sq(f.variables['pres'][:] )
              try:
                pr.data['pressure_adj']=sq(f.variables['pres_adjusted'][:])              
              except:
                pr.data['pressure_adj']=None
                
              pr.data['temp']=sq(f.variables['temp'][:])
              try:
                pr.data['temp_adj']=sq(f.variables['temp_adjusted'][:])
              except:
                pr.data['temp_adj']=None
                
              try:
                pr.data['salt']=sq(f.variables['psal'][:])
              except:
                pr.data['salt']=None

              try:
                pr.data['salt_adj']=sq(f.variables['psal_adjusted'][:])
              except:
                pr.data['salt_adj']=None                

              try:
                pr.data['positioning_system']=string.join(f.variables['positioning_system'][:])
              except:
                pr.data['positioning_system']=None

              try:
                pr.data['position_qc']=string.join(f.variables['position_qc'][:])
              except:
                pr.data['position_qc']=None


                # Avoid confusion with direction attribute
              try:
                dp = numpy.roll(pr.data['pressure'],shift=-1)-pr.data['pressure']
              except:
                dp = [0]
                
              if numpy.isscalar(dp):
                dp=[dp]

              if len(dp) > 4:
                dp = dp[:-2]
                
              if len(dp) > 4:
                if numpy.all(dp>0):
                  pr.data['direction']='A'
                  pr.data['min_dp']=numpy.min(dp)
                elif numpy.all(dp<0):
                  pr.data['direction']='D'
                  pr.data['min_dp']=numpy.min(-dp)
                else:
                  continue
              else:
                continue
              pr_new = copy.copy(pr)
              
              self.pr.append(pr_new)
            elif format == 'pangea':
              f=open(file['path'])              
              pr.data={}
              
              pr.data['DataType']=None
              pr.data['ref_dateTime']=None
              pr.data['ncDateTime']=file['ncDateTime']
Exemplo n.º 8
0


#%%
import numpy
#%%
numpy.sqrt(5)
#%%
import numpy as np

#%%
np.sqrt(5)
#%%
from numpy import sqrt as sq, cbrt as cu
#%%
sq(5)
#%%
cu(8)

#%%
a = np.array([1,2,3])

print(a)
type(a)

#%%

a.shape
#%%
b = np.array([[1,2],[3,4],[5,6]])
Exemplo n.º 9
0
def build(fle, R, parameters):
    dforward = parameters[13]
    dstarboard = parameters[14]
    twtcorr = parameters[15]
    raycorr = parameters[16]
    # Fancy characters (degree sign, lower-case sigma, plus-minus)
    deg = u'\N{DEGREE SIGN}'
    sig = u'\u03C3'
    pm = u'\u00b1'

    # Anonymous functions and formatting strings to make things more tractable.
    dst = lambda rx, ry, rz, x, y, z: sq((M(rx) - x)**2 + (M(ry) - y)**2 +
                                         (M(rz) - z)**2)

    a = '{:>11} {: >11.5f} {}{: .5f}\n'
    fmt1 = lambda s1, f1, s2, f2: a.format(s1, f1, s2, f2)

    b = '{:>3} {: >11.5f}  {: <11.5f} {: <11.5f} {: >8.5f}  {: >8.5f}  {: >8.5f}\n'
    fmt2 = lambda f1, f2, f3, f4, f5, f6, f7: b.format(f1, f2, f3, f4, f5, f6,
                                                       f7)

    c = '{:>14}   {:<11} {:<11} {:<10} {:<9} {}'

    # .txt header and main results.
    fle.write('Bootstrap Inversion Results (' + pm + ' 2' + sig +
              ' uncertainty)\n')
    fle.write('\n')
    fle.write('{:>11} {} \n'.format('Station:', R['sta']))
    fle.write(
        fmt1('Lat:', M(R['lat_sta']), deg + ' ' + pm, 2 * S(R['lat_sta'])))
    fle.write(
        fmt1('Lon:', M(R['lon_sta']), deg + ' ' + pm, 2 * S(R['lon_sta'])))
    fle.write(fmt1('X:', M(R['x_sta']), 'm ' + pm, 2 * S(R['x_sta'])))
    fle.write(fmt1('Y:', M(R['y_sta']), 'm ' + pm, 2 * S(R['y_sta'])))
    fle.write(fmt1('Depth:', M(R['z_sta']), 'm ' + pm, 2 * S(R['z_sta'])))
    fle.write(fmt1('Water Vel.:', M(R['vpws']), 'm ' + pm, 2 * S(R['vpws'])))
    fle.write(fmt1('Drift:', M(R['drifts']), 'm ' + pm, 2 * S(R['drifts'])))
    fle.write(fmt1('Drift Az:', M(R['azs']), 'm ' + pm, 2 * S(R['azs'])))
    fle.write(fmt1('dz:', M(R['dzs']), 'm ' + pm, 2 * S(R['dzs'])))
    fle.write('\n')
    fle.write(
        fmt1('RMS:', M(R['E_rms'] * 1000), 'ms ' + pm,
             2 * S(R['E_rms']) * 1000))
    fle.write('\n')
    fle.write('{} {} \n'.format('Bad Pings Removed:', R['Nbad']))
    fle.write('{} {} \n'.format('Doppler Correction:',
                                ('YES' if twtcorr else 'NO')))
    fle.write('{} {} \n'.format('Ray Bending Correction:',
                                ('YES' if raycorr else 'NO')))
    fle.write('{} {} {} \n'.format('GPS-Transponder Offset:   dforward = ',
                                   dforward, ' m'))
    fle.write('{} {} {} \n'.format('                        dstarboard = ',
                                   dstarboard, ' m'))
    fle.write('{:=<80} \n'.format(''))

    # .txt survey points.
    fle.write(
        c.format('Lat (' + deg + ')', 'Lon (' + deg + ')', 'Range (m)',
                 'Resid (s)', 'Vr (m/s)', 'TWT corr. (ms)\n'))

    for i in range(len(R['svy_lats'])):
        fle.write(
            fmt2(
                i + 1, R['svy_lats'][i], R['svy_lons'][i],
                dst(R['x_sta'][i], R['y_sta'][i], R['z_sta'][i],
                    R['svy_xs'][i], R['svy_ys'][i], R['svy_zs'][i]),
                R['dtwts'][i] * 1000, R['vrs'][i], R['corrs'][i] * 1000))
    fle.close()
def angleDiffGoodness(theta1, psi1, theta2, psi2, sigma):
	if (theta1 == theta2 and psi1 == psi2):
		return 1
	temp = np.sq(np.sin((theta1-theta2)/2))
	dist = 2*np.arcsin(np.sqrt(  temp + np.cos(theta1)*np.cos(theta2)*np.sq(np.sin(psi1-psi2/2))))
	return np.exp(-np.sq(dist)/np.sq(sigma))
	def evaluate(vars):
		r = vars[0][2]
		goodness = np.exp(-np.sq(r - self.mean)/np.sq(self.sigma))
		return -goodness*self.scale #the cost
Exemplo n.º 12
0
    def __init__(self, path=None, root='./', format='nodc', verbose=True):

        self.pr = []

        pr = profile()

        if path is not None:
            if type(path) is list:

                flist = []
                prof_dict = {}
                for file in path:
                    if format == 'nodc':
                        try:
                            f = netCDF4.Dataset(root + file['path'])
                        except:
                            if verbose:
                                print('Unable to open ' + root + file['path'])
                            continue

                        date_string = file['date_string']
                        pr.data = {}
                        pr.data['DataType'] = f.variables[
                            'data_type'][:].tostring()
                        pr.data['ref_dateTime'] = f.variables[
                            'reference_date_time'][:].tostring()
                        pr.data['time'] = f.variables['juld'][:][0]
                        reft = pr.data['ref_dateTime']
                        reft = 'days since ' + reft[0:4] + '-' + reft[
                            4:6] + '-' + reft[6:9]
                        pr.data['ncDateTime_indx'] = parser.parse(date_string)
                        pr.data['ncDateTime'] = netCDF4.num2date(
                            pr.data['time'], reft)
                        pr.data['wmoid'] = f.variables[
                            'platform_number'][:].tostring()
                        pr.data['cycle_number'] = f.variables[
                            'cycle_number'][:][0]
                        pr.data['direction'] = f.variables[
                            'direction'][:].tostring()

                        pr.data['latitude'] = f.variables['latitude'][:][0]
                        pr.data['longitude'] = f.variables['longitude'][:][0]

                        pr.data['pressure'] = sq(f.variables['pres'][:])
                        try:
                            pr.data['pressure_adj'] = sq(
                                f.variables['pres_adjusted'][:])
                        except:
                            pr.data['pressure_adj'] = None

                        pr.data['temp'] = sq(f.variables['temp'][:])
                        try:
                            pr.data['temp_adj'] = sq(
                                f.variables['temp_adjusted'][:])
                        except:
                            pr.data['temp_adj'] = None

                        try:
                            pr.data['salt'] = sq(f.variables['psal'][:])
                        except:
                            pr.data['salt'] = None

                        try:
                            pr.data['salt_adj'] = sq(
                                f.variables['psal_adjusted'][:])
                        except:
                            pr.data['salt_adj'] = None

                        try:
                            pr.data['positioning_system'] = string.join(
                                f.variables['positioning_system'][:])
                        except:
                            pr.data['positioning_system'] = None

                        try:
                            pr.data['position_qc'] = string.join(
                                f.variables['position_qc'][:])
                        except:
                            pr.data['position_qc'] = None

                            # Avoid confusion with direction attribute
                        try:
                            dp = numpy.roll(pr.data['pressure'],
                                            shift=-1) - pr.data['pressure']
                        except:
                            dp = [0]

                        if numpy.isscalar(dp):
                            dp = [dp]

                        if len(dp) > 4:
                            dp = dp[:-2]

                        if len(dp) > 4:
                            if numpy.all(dp > 0):
                                pr.data['direction'] = 'A'
                                pr.data['min_dp'] = numpy.min(dp)
                            elif numpy.all(dp < 0):
                                pr.data['direction'] = 'D'
                                pr.data['min_dp'] = numpy.min(-dp)
                            else:
                                continue
                        else:
                            continue
                        pr_new = copy.copy(pr)

                        self.pr.append(pr_new)
                    elif format == 'pangea':
                        f = open(file['path'])
                        pr.data = {}

                        pr.data['DataType'] = None
                        pr.data['ref_dateTime'] = None
                        pr.data['ncDateTime'] = file['ncDateTime']