Exemplo n.º 1
0
def project_on_generator(
        G: Generator,
        pix2pix: networks.UnetGenerator,
        target_image: np.ndarray,
        E: Encoder,
        dcgan_img_size: int = 64,
        pix2pix_img_size: int = 128) -> Tuple[np.ndarray, torch.Tensor]:
    """Projects the input image onto the manifold span by the GAN. It operates as follows:
    1. reshape and normalize the image
    2. run the encoder to obtain a latent vector
    3. run the DCGAN generator to obtain a low resolution image
    4. run the Pix2Pix model to obtain a high resulution image
    
    Arguments:
        G {Generator} -- DCGAN generator
        pix2pix {networks.UnetGenerator} -- Low resolution to high resolution Pix2Pix model
        target_image {np.ndarray} -- The image to project
        E {Encoder} -- The DCGAN encoder
    
    Keyword Arguments:
        dcgan_img_size {int} -- Low resolution image size (default: {64})
        pix2pix_img_size {int} -- High resolution image size (default: {128})
    
    Returns:
        Tuple[np.ndarray, torch.Tensor] -- The projected high resolution image and the latent vector that was used to generate it.
    """
    # reshape and normalize image
    target_image = torch.Tensor(target_image).cuda().reshape(
        1, 3, pix2pix_img_size, pix2pix_img_size)
    target_image = F.interpolate(target_image,
                                 scale_factor=dcgan_img_size /
                                 pix2pix_img_size,
                                 mode='bilinear')
    target_image = target_image.clamp(min=0)
    target_image = target_image / target_image.max()
    target_image = (target_image - 0.5) / 0.5

    # Run dcgan
    z = E(target_image)
    dcgan_image = G(z)

    # run pix2pix
    pix_input = F.interpolate(dcgan_image,
                              scale_factor=pix2pix_img_size / dcgan_img_size,
                              mode='bilinear')
    pix_outputs = pix2pix(pix_input)
    out_image = utils.denorm(pix_outputs.detach()).clamp(
        0, 1).cpu().numpy().reshape(3, -1, 1)
    return out_image, z
Exemplo n.º 2
0
    def __call__(
        self,
        kspace: np.ndarray,
        mask: np.ndarray,
        target: np.ndarray,
        attrs: Dict,
        fname: str,
        slice_num: int,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, str,
               int, float]:
        """
        Args:
            kspace: Input k-space of shape (num_coils, rows, cols) for
                multi-coil data or (rows, cols) for single coil data.
            mask: Mask from the test dataset.
            target: Target image.
            attrs: Acquisition related information stored in the HDF5 object.
            fname: File name.
            slice_num: Serial number of the slice.

        Returns:
            tuple containing:
                image: Zero-filled input image.
                target: Target image converted to a torch.Tensor.
                mean: Mean value used for normalization.
                std: Standard deviation value used for normalization.
                fname: File name.
                slice_num: Serial number of the slice.
        """
        kspace = to_tensor(kspace)

        # check for max value
        max_value = attrs["max"] if "max" in attrs.keys() else 0.0

        # apply mask
        if self.mask_func:
            seed = None if not self.use_seed else tuple(map(ord, fname))
            masked_kspace, mask = apply_mask(kspace, self.mask_func, seed)
        else:
            masked_kspace = kspace

        # inverse Fourier transform to get zero filled solution
        image = fastmri.ifft2c(masked_kspace)

        # crop input to correct size
        if target is not None:
            crop_size = (target.shape[-2], target.shape[-1])
        else:
            crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])

        # check for FLAIR 203
        if image.shape[-2] < crop_size[1]:
            crop_size = (image.shape[-2], image.shape[-2])

        image = complex_center_crop(image, crop_size)

        # absolute value
        image = fastmri.complex_abs(image)

        # apply Root-Sum-of-Squares if multicoil data
        if self.which_challenge == "multicoil":
            image = fastmri.rss(image)

        # normalize input
        image, mean, std = normalize_instance(image, eps=1e-11)
        image = image.clamp(-6, 6)

        # normalize target
        if target is not None:
            target = to_tensor(target)
            target = center_crop(target, crop_size)
            target = normalize(target, mean, std, eps=1e-11)
            target = target.clamp(-6, 6)
        else:
            target = torch.Tensor([0])

        return image, target, mean, std, fname, slice_num, max_value