Exemplo n.º 1
0
    def test_float_modulus_exact(self):
        # test that float results are exact for small integers. This also
        # holds for the same integers scaled by powers of two.
        nlst = list(range(-127, 0))
        plst = list(range(1, 128))
        dividend = nlst + [0] + plst
        divisor = nlst + plst
        arg = list(itertools.product(dividend, divisor))
        tgt = list(divmod(*t) for t in arg)

        a, b = np.array(arg, dtype=int).T
        # convert exact integer results from Python to float so that
        # signed zero can be used, it is checked.
        tgtdiv, tgtrem = np.array(tgt, dtype=float).T
        tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
        tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)

        for op in [floordiv_and_mod, divmod]:
            for dt in np.typecodes['Float']:
                msg = 'op: %s, dtype: %s' % (op.__name__, dt)
                fa = a.astype(dt)
                fb = b.astype(dt)
                # use list comprehension so a_ and b_ are scalars
                div, rem = zip(*[op(a_, b_) for a_, b_ in zip(fa, fb)])
                assert_equal(div, tgtdiv, err_msg=msg)
                assert_equal(rem, tgtrem, err_msg=msg)
Exemplo n.º 2
0
    def test_1(self):
        """
        Tests creation

        """
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = self.masked_array(x, mask=m1)
        ym = self.masked_array(y, mask=m2)
        xf = np.where(m1, 1.e+20, x)
        xm.set_fill_value(1.e+20)

        assert((xm-ym).filled(0).any())
        s = x.shape
        assert(xm.size == reduce(lambda x, y:x*y, s))
        assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1))

        for s in [(4, 3), (6, 2)]:
            x.shape = s
            y.shape = s
            xm.shape = s
            ym.shape = s
            xf.shape = s
            assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1))
Exemplo n.º 3
0
 def setup(self):
     x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
     y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
     a10 = 10.
     m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
     m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
     xm = array(x, mask=m1)
     ym = array(y, mask=m2)
     z = np.array([-.5, 0., .5, .8])
     zm = array(z, mask=[0, 1, 0, 0])
     xf = np.where(m1, 1e+20, x)
     s = x.shape
     xm.set_fill_value(1e+20)
     self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s)
Exemplo n.º 4
0
 def test_operate_4d_array(self):
     a = np.zeros((3, 3, 3, 3), int)
     fill_diagonal(a, 4)
     i = np.array([0, 1, 2])
     assert_equal(np.where(a != 0), (i, i, i, i))
Exemplo n.º 5
0
def fv(rate, nper, pmt, pv, when='end'):
    """
    Compute the future value.

    Given:
     * a present value, `pv`
     * an interest `rate` compounded once per period, of which
       there are
     * `nper` total
     * a (fixed) payment, `pmt`, paid either
     * at the beginning (`when` = {'begin', 1}) or the end
       (`when` = {'end', 0}) of each period

    Return:
       the value at the end of the `nper` periods

    Parameters
    ----------
    rate : scalar or array_like of shape(M, )
        Rate of interest as decimal (not per cent) per period
    nper : scalar or array_like of shape(M, )
        Number of compounding periods
    pmt : scalar or array_like of shape(M, )
        Payment
    pv : scalar or array_like of shape(M, )
        Present value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0)).
        Defaults to {'end', 0}.

    Returns
    -------
    out : ndarray
        Future values.  If all input is scalar, returns a scalar float.  If
        any input is array_like, returns future values for each input element.
        If multiple inputs are array_like, they all must have the same shape.

    Notes
    -----
    The future value is computed by solving the equation::

     fv +
     pv*(1+rate)**nper +
     pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

    or, when ``rate == 0``::

     fv + pv + pmt * nper == 0

    References
    ----------
    .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
       Open Document Format for Office Applications (OpenDocument)v1.2,
       Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
       Pre-Draft 12. Organization for the Advancement of Structured Information
       Standards (OASIS). Billerica, MA, USA. [ODT Document].
       Available:
       http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
       OpenDocument-formula-20090508.odt

    Examples
    --------
    What is the future value after 10 years of saving $100 now, with
    an additional monthly savings of $100.  Assume the interest rate is
    5% (annually) compounded monthly?

    >>> np.fv(0.05/12, 10*12, -100, -100)
    15692.928894335748

    By convention, the negative sign represents cash flow out (i.e. money not
    available today).  Thus, saving $100 a month at 5% annual interest leads
    to $15,692.93 available to spend in 10 years.

    If any input is array_like, returns an array of equal shape.  Let's
    compare different interest rates from the example above.

    >>> a = np.array((0.05, 0.06, 0.07))/12
    >>> np.fv(a, 10*12, -100, -100)
    array([ 15692.92889434,  16569.87435405,  17509.44688102])

    """
    when = _convert_when(when)
    (rate, nper, pmt, pv, when) = map(np.asarray, [rate, nper, pmt, pv, when])
    temp = (1 + rate)**nper
    fact = np.where(rate == 0, nper, (1 + rate * when) * (temp - 1) / rate)
    return -(pv * temp + pmt * fact)
Exemplo n.º 6
0
def pv(rate, nper, pmt, fv=0, when='end'):
    """
    Compute the present value.

    Given:
     * a future value, `fv`
     * an interest `rate` compounded once per period, of which
       there are
     * `nper` total
     * a (fixed) payment, `pmt`, paid either
     * at the beginning (`when` = {'begin', 1}) or the end
       (`when` = {'end', 0}) of each period

    Return:
       the value now

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))

    Returns
    -------
    out : ndarray, float
        Present value of a series of payments or investments.

    Notes
    -----
    The present value is computed by solving the equation::

     fv +
     pv*(1 + rate)**nper +
     pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0

    or, when ``rate = 0``::

     fv + pv + pmt * nper = 0

    for `pv`, which is then returned.

    References
    ----------
    .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
       Open Document Format for Office Applications (OpenDocument)v1.2,
       Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
       Pre-Draft 12. Organization for the Advancement of Structured Information
       Standards (OASIS). Billerica, MA, USA. [ODT Document].
       Available:
       http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
       OpenDocument-formula-20090508.odt

    Examples
    --------
    What is the present value (e.g., the initial investment)
    of an investment that needs to total $15692.93
    after 10 years of saving $100 every month?  Assume the
    interest rate is 5% (annually) compounded monthly.

    >>> np.pv(0.05/12, 10*12, -100, 15692.93)
    -100.00067131625819

    By convention, the negative sign represents cash flow out
    (i.e., money not available today).  Thus, to end up with
    $15,692.93 in 10 years saving $100 a month at 5% annual
    interest, one's initial deposit should also be $100.

    If any input is array_like, ``pv`` returns an array of equal shape.
    Let's compare different interest rates in the example above:

    >>> a = np.array((0.05, 0.04, 0.03))/12
    >>> np.pv(a, 10*12, -100, 15692.93)
    array([ -100.00067132,  -649.26771385, -1273.78633713])

    So, to end up with the same $15692.93 under the same $100 per month
    "savings plan," for annual interest rates of 4% and 3%, one would
    need initial investments of $649.27 and $1273.79, respectively.

    """
    when = _convert_when(when)
    (rate, nper, pmt, fv, when) = map(np.asarray, [rate, nper, pmt, fv, when])
    temp = (1 + rate)**nper
    fact = np.where(rate == 0, nper, (1 + rate * when) * (temp - 1) / rate)
    return -(fv + pmt * fact) / temp
Exemplo n.º 7
0
def ipmt(rate, per, nper, pv, fv=0, when='end'):
    """
    Compute the interest portion of a payment.

    Parameters
    ----------
    rate : scalar or array_like of shape(M, )
        Rate of interest as decimal (not per cent) per period
    per : scalar or array_like of shape(M, )
        Interest paid against the loan changes during the life or the loan.
        The `per` is the payment period to calculate the interest amount.
    nper : scalar or array_like of shape(M, )
        Number of compounding periods
    pv : scalar or array_like of shape(M, )
        Present value
    fv : scalar or array_like of shape(M, ), optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0)).
        Defaults to {'end', 0}.

    Returns
    -------
    out : ndarray
        Interest portion of payment.  If all input is scalar, returns a scalar
        float.  If any input is array_like, returns interest payment for each
        input element. If multiple inputs are array_like, they all must have
        the same shape.

    See Also
    --------
    ppmt, pmt, pv

    Notes
    -----
    The total payment is made up of payment against principal plus interest.

    ``pmt = ppmt + ipmt``

    Examples
    --------
    What is the amortization schedule for a 1 year loan of $2500 at
    8.24% interest per year compounded monthly?

    >>> principal = 2500.00

    The 'per' variable represents the periods of the loan.  Remember that
    financial equations start the period count at 1!

    >>> per = np.arange(1*12) + 1
    >>> ipmt = np.ipmt(0.0824/12, per, 1*12, principal)
    >>> ppmt = np.ppmt(0.0824/12, per, 1*12, principal)

    Each element of the sum of the 'ipmt' and 'ppmt' arrays should equal
    'pmt'.

    >>> pmt = np.pmt(0.0824/12, 1*12, principal)
    >>> np.allclose(ipmt + ppmt, pmt)
    True

    >>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}'
    >>> for payment in per:
    ...     index = payment - 1
    ...     principal = principal + ppmt[index]
    ...     print(fmt.format(payment, ppmt[index], ipmt[index], principal))
     1  -200.58   -17.17  2299.42
     2  -201.96   -15.79  2097.46
     3  -203.35   -14.40  1894.11
     4  -204.74   -13.01  1689.37
     5  -206.15   -11.60  1483.22
     6  -207.56   -10.18  1275.66
     7  -208.99    -8.76  1066.67
     8  -210.42    -7.32   856.25
     9  -211.87    -5.88   644.38
    10  -213.32    -4.42   431.05
    11  -214.79    -2.96   216.26
    12  -216.26    -1.49    -0.00

    >>> interestpd = np.sum(ipmt)
    >>> np.round(interestpd, 2)
    -112.98

    """
    when = _convert_when(when)
    rate, per, nper, pv, fv, when = np.broadcast_arrays(
        rate, per, nper, pv, fv, when)
    total_pmt = pmt(rate, nper, pv, fv, when)
    ipmt = _rbl(rate, per, total_pmt, pv, when) * rate
    try:
        ipmt = np.where(when == 1, ipmt / (1 + rate), ipmt)
        ipmt = np.where(np.logical_and(when == 1, per == 1), 0, ipmt)
    except IndexError:
        pass
    return ipmt
Exemplo n.º 8
0
def nper(rate, pmt, pv, fv=0, when='end'):
    """
    Compute the number of periodic payments.

    :class:`decimal.Decimal` type is not supported.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))

    Notes
    -----
    The number of periods ``nper`` is computed by solving the equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0

    but if ``rate = 0`` then::

     fv + pv + pmt*nper = 0

    Examples
    --------
    If you only had $150/month to pay towards the loan, how long would it take
    to pay-off a loan of $8,000 at 7% annual interest?

    >>> print(round(np.nper(0.07/12, -150, 8000), 5))
    64.07335

    So, over 64 months would be required to pay off the loan.

    The same analysis could be done with several different interest rates
    and/or payments and/or total amounts to produce an entire table.

    >>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12,
    ...                    -150   : -99     : 50    ,
    ...                    8000   : 9001    : 1000]))
    array([[[  64.07334877,   74.06368256],
            [ 108.07548412,  127.99022654]],
           [[  66.12443902,   76.87897353],
            [ 114.70165583,  137.90124779]]])

    """
    when = _convert_when(when)
    (rate, pmt, pv, fv, when) = map(np.asarray, [rate, pmt, pv, fv, when])

    use_zero_rate = False
    with np.errstate(divide="raise"):
        try:
            z = pmt * (1 + rate * when) / rate
        except FloatingPointError:
            use_zero_rate = True

    if use_zero_rate:
        return (-fv + pv) / pmt
    else:
        A = -(fv + pv) / (pmt + 0)
        B = np.log((-fv + z) / (pv + z)) / np.log(1 + rate)
        return np.where(rate == 0, A, B)
Exemplo n.º 9
0
def pmt(rate, nper, pv, fv=0, when='end'):
    """
    Compute the payment against loan principal plus interest.

    Given:
     * a present value, `pv` (e.g., an amount borrowed)
     * a future value, `fv` (e.g., 0)
     * an interest `rate` compounded once per period, of which
       there are
     * `nper` total
     * and (optional) specification of whether payment is made
       at the beginning (`when` = {'begin', 1}) or the end
       (`when` = {'end', 0}) of each period

    Return:
       the (fixed) periodic payment.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like,  optional
        Future value (default = 0)
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    Returns
    -------
    out : ndarray
        Payment against loan plus interest.  If all input is scalar, returns a
        scalar float.  If any input is array_like, returns payment for each
        input element. If multiple inputs are array_like, they all must have
        the same shape.

    Notes
    -----
    The payment is computed by solving the equation::

     fv +
     pv*(1 + rate)**nper +
     pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

    or, when ``rate == 0``::

      fv + pv + pmt * nper == 0

    for ``pmt``.

    Note that computing a monthly mortgage payment is only
    one use for this function.  For example, pmt returns the
    periodic deposit one must make to achieve a specified
    future balance given an initial deposit, a fixed,
    periodically compounded interest rate, and the total
    number of periods.

    References
    ----------
    .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
       Open Document Format for Office Applications (OpenDocument)v1.2,
       Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
       Pre-Draft 12. Organization for the Advancement of Structured Information
       Standards (OASIS). Billerica, MA, USA. [ODT Document].
       Available:
       http://www.oasis-open.org/committees/documents.php
       ?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt

    Examples
    --------
    What is the monthly payment needed to pay off a $200,000 loan in 15
    years at an annual interest rate of 7.5%?

    >>> np.pmt(0.075/12, 12*15, 200000)
    -1854.0247200054619

    In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained
    today, a monthly payment of $1,854.02 would be required.  Note that this
    example illustrates usage of `fv` having a default value of 0.

    """
    when = _convert_when(when)
    (rate, nper, pv, fv, when) = map(np.array, [rate, nper, pv, fv, when])
    temp = (1 + rate)**nper
    mask = (rate == 0)
    masked_rate = np.where(mask, 1, rate)
    fact = np.where(mask != 0, nper,
                    (1 + masked_rate * when) * (temp - 1) / masked_rate)
    return -(fv + pv * temp) / fact