def test_float_modulus_exact(self): # test that float results are exact for small integers. This also # holds for the same integers scaled by powers of two. nlst = list(range(-127, 0)) plst = list(range(1, 128)) dividend = nlst + [0] + plst divisor = nlst + plst arg = list(itertools.product(dividend, divisor)) tgt = list(divmod(*t) for t in arg) a, b = np.array(arg, dtype=int).T # convert exact integer results from Python to float so that # signed zero can be used, it is checked. tgtdiv, tgtrem = np.array(tgt, dtype=float).T tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) for op in [floordiv_and_mod, divmod]: for dt in np.typecodes['Float']: msg = 'op: %s, dtype: %s' % (op.__name__, dt) fa = a.astype(dt) fb = b.astype(dt) # use list comprehension so a_ and b_ are scalars div, rem = zip(*[op(a_, b_) for a_, b_ in zip(fa, fb)]) assert_equal(div, tgtdiv, err_msg=msg) assert_equal(rem, tgtrem, err_msg=msg)
def test_1(self): """ Tests creation """ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = self.masked_array(x, mask=m1) ym = self.masked_array(y, mask=m2) xf = np.where(m1, 1.e+20, x) xm.set_fill_value(1.e+20) assert((xm-ym).filled(0).any()) s = x.shape assert(xm.size == reduce(lambda x, y:x*y, s)) assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1)) for s in [(4, 3), (6, 2)]: x.shape = s y.shape = s xm.shape = s ym.shape = s xf.shape = s assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1))
def setup(self): x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = array(x, mask=m1) ym = array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) s = x.shape xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s)
def test_operate_4d_array(self): a = np.zeros((3, 3, 3, 3), int) fill_diagonal(a, 4) i = np.array([0, 1, 2]) assert_equal(np.where(a != 0), (i, i, i, i))
def fv(rate, nper, pmt, pv, when='end'): """ Compute the future value. Given: * a present value, `pv` * an interest `rate` compounded once per period, of which there are * `nper` total * a (fixed) payment, `pmt`, paid either * at the beginning (`when` = {'begin', 1}) or the end (`when` = {'end', 0}) of each period Return: the value at the end of the `nper` periods Parameters ---------- rate : scalar or array_like of shape(M, ) Rate of interest as decimal (not per cent) per period nper : scalar or array_like of shape(M, ) Number of compounding periods pmt : scalar or array_like of shape(M, ) Payment pv : scalar or array_like of shape(M, ) Present value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)). Defaults to {'end', 0}. Returns ------- out : ndarray Future values. If all input is scalar, returns a scalar float. If any input is array_like, returns future values for each input element. If multiple inputs are array_like, they all must have the same shape. Notes ----- The future value is computed by solving the equation:: fv + pv*(1+rate)**nper + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0 or, when ``rate == 0``:: fv + pv + pmt * nper == 0 References ---------- .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt Examples -------- What is the future value after 10 years of saving $100 now, with an additional monthly savings of $100. Assume the interest rate is 5% (annually) compounded monthly? >>> np.fv(0.05/12, 10*12, -100, -100) 15692.928894335748 By convention, the negative sign represents cash flow out (i.e. money not available today). Thus, saving $100 a month at 5% annual interest leads to $15,692.93 available to spend in 10 years. If any input is array_like, returns an array of equal shape. Let's compare different interest rates from the example above. >>> a = np.array((0.05, 0.06, 0.07))/12 >>> np.fv(a, 10*12, -100, -100) array([ 15692.92889434, 16569.87435405, 17509.44688102]) """ when = _convert_when(when) (rate, nper, pmt, pv, when) = map(np.asarray, [rate, nper, pmt, pv, when]) temp = (1 + rate)**nper fact = np.where(rate == 0, nper, (1 + rate * when) * (temp - 1) / rate) return -(pv * temp + pmt * fact)
def pv(rate, nper, pmt, fv=0, when='end'): """ Compute the present value. Given: * a future value, `fv` * an interest `rate` compounded once per period, of which there are * `nper` total * a (fixed) payment, `pmt`, paid either * at the beginning (`when` = {'begin', 1}) or the end (`when` = {'end', 0}) of each period Return: the value now Parameters ---------- rate : array_like Rate of interest (per period) nper : array_like Number of compounding periods pmt : array_like Payment fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) Returns ------- out : ndarray, float Present value of a series of payments or investments. Notes ----- The present value is computed by solving the equation:: fv + pv*(1 + rate)**nper + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0 or, when ``rate = 0``:: fv + pv + pmt * nper = 0 for `pv`, which is then returned. References ---------- .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt Examples -------- What is the present value (e.g., the initial investment) of an investment that needs to total $15692.93 after 10 years of saving $100 every month? Assume the interest rate is 5% (annually) compounded monthly. >>> np.pv(0.05/12, 10*12, -100, 15692.93) -100.00067131625819 By convention, the negative sign represents cash flow out (i.e., money not available today). Thus, to end up with $15,692.93 in 10 years saving $100 a month at 5% annual interest, one's initial deposit should also be $100. If any input is array_like, ``pv`` returns an array of equal shape. Let's compare different interest rates in the example above: >>> a = np.array((0.05, 0.04, 0.03))/12 >>> np.pv(a, 10*12, -100, 15692.93) array([ -100.00067132, -649.26771385, -1273.78633713]) So, to end up with the same $15692.93 under the same $100 per month "savings plan," for annual interest rates of 4% and 3%, one would need initial investments of $649.27 and $1273.79, respectively. """ when = _convert_when(when) (rate, nper, pmt, fv, when) = map(np.asarray, [rate, nper, pmt, fv, when]) temp = (1 + rate)**nper fact = np.where(rate == 0, nper, (1 + rate * when) * (temp - 1) / rate) return -(fv + pmt * fact) / temp
def ipmt(rate, per, nper, pv, fv=0, when='end'): """ Compute the interest portion of a payment. Parameters ---------- rate : scalar or array_like of shape(M, ) Rate of interest as decimal (not per cent) per period per : scalar or array_like of shape(M, ) Interest paid against the loan changes during the life or the loan. The `per` is the payment period to calculate the interest amount. nper : scalar or array_like of shape(M, ) Number of compounding periods pv : scalar or array_like of shape(M, ) Present value fv : scalar or array_like of shape(M, ), optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)). Defaults to {'end', 0}. Returns ------- out : ndarray Interest portion of payment. If all input is scalar, returns a scalar float. If any input is array_like, returns interest payment for each input element. If multiple inputs are array_like, they all must have the same shape. See Also -------- ppmt, pmt, pv Notes ----- The total payment is made up of payment against principal plus interest. ``pmt = ppmt + ipmt`` Examples -------- What is the amortization schedule for a 1 year loan of $2500 at 8.24% interest per year compounded monthly? >>> principal = 2500.00 The 'per' variable represents the periods of the loan. Remember that financial equations start the period count at 1! >>> per = np.arange(1*12) + 1 >>> ipmt = np.ipmt(0.0824/12, per, 1*12, principal) >>> ppmt = np.ppmt(0.0824/12, per, 1*12, principal) Each element of the sum of the 'ipmt' and 'ppmt' arrays should equal 'pmt'. >>> pmt = np.pmt(0.0824/12, 1*12, principal) >>> np.allclose(ipmt + ppmt, pmt) True >>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}' >>> for payment in per: ... index = payment - 1 ... principal = principal + ppmt[index] ... print(fmt.format(payment, ppmt[index], ipmt[index], principal)) 1 -200.58 -17.17 2299.42 2 -201.96 -15.79 2097.46 3 -203.35 -14.40 1894.11 4 -204.74 -13.01 1689.37 5 -206.15 -11.60 1483.22 6 -207.56 -10.18 1275.66 7 -208.99 -8.76 1066.67 8 -210.42 -7.32 856.25 9 -211.87 -5.88 644.38 10 -213.32 -4.42 431.05 11 -214.79 -2.96 216.26 12 -216.26 -1.49 -0.00 >>> interestpd = np.sum(ipmt) >>> np.round(interestpd, 2) -112.98 """ when = _convert_when(when) rate, per, nper, pv, fv, when = np.broadcast_arrays( rate, per, nper, pv, fv, when) total_pmt = pmt(rate, nper, pv, fv, when) ipmt = _rbl(rate, per, total_pmt, pv, when) * rate try: ipmt = np.where(when == 1, ipmt / (1 + rate), ipmt) ipmt = np.where(np.logical_and(when == 1, per == 1), 0, ipmt) except IndexError: pass return ipmt
def nper(rate, pmt, pv, fv=0, when='end'): """ Compute the number of periodic payments. :class:`decimal.Decimal` type is not supported. Parameters ---------- rate : array_like Rate of interest (per period) pmt : array_like Payment pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) Notes ----- The number of periods ``nper`` is computed by solving the equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0 but if ``rate = 0`` then:: fv + pv + pmt*nper = 0 Examples -------- If you only had $150/month to pay towards the loan, how long would it take to pay-off a loan of $8,000 at 7% annual interest? >>> print(round(np.nper(0.07/12, -150, 8000), 5)) 64.07335 So, over 64 months would be required to pay off the loan. The same analysis could be done with several different interest rates and/or payments and/or total amounts to produce an entire table. >>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12, ... -150 : -99 : 50 , ... 8000 : 9001 : 1000])) array([[[ 64.07334877, 74.06368256], [ 108.07548412, 127.99022654]], [[ 66.12443902, 76.87897353], [ 114.70165583, 137.90124779]]]) """ when = _convert_when(when) (rate, pmt, pv, fv, when) = map(np.asarray, [rate, pmt, pv, fv, when]) use_zero_rate = False with np.errstate(divide="raise"): try: z = pmt * (1 + rate * when) / rate except FloatingPointError: use_zero_rate = True if use_zero_rate: return (-fv + pv) / pmt else: A = -(fv + pv) / (pmt + 0) B = np.log((-fv + z) / (pv + z)) / np.log(1 + rate) return np.where(rate == 0, A, B)
def pmt(rate, nper, pv, fv=0, when='end'): """ Compute the payment against loan principal plus interest. Given: * a present value, `pv` (e.g., an amount borrowed) * a future value, `fv` (e.g., 0) * an interest `rate` compounded once per period, of which there are * `nper` total * and (optional) specification of whether payment is made at the beginning (`when` = {'begin', 1}) or the end (`when` = {'end', 0}) of each period Return: the (fixed) periodic payment. Parameters ---------- rate : array_like Rate of interest (per period) nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value (default = 0) when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) Returns ------- out : ndarray Payment against loan plus interest. If all input is scalar, returns a scalar float. If any input is array_like, returns payment for each input element. If multiple inputs are array_like, they all must have the same shape. Notes ----- The payment is computed by solving the equation:: fv + pv*(1 + rate)**nper + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0 or, when ``rate == 0``:: fv + pv + pmt * nper == 0 for ``pmt``. Note that computing a monthly mortgage payment is only one use for this function. For example, pmt returns the periodic deposit one must make to achieve a specified future balance given an initial deposit, a fixed, periodically compounded interest rate, and the total number of periods. References ---------- .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php ?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt Examples -------- What is the monthly payment needed to pay off a $200,000 loan in 15 years at an annual interest rate of 7.5%? >>> np.pmt(0.075/12, 12*15, 200000) -1854.0247200054619 In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained today, a monthly payment of $1,854.02 would be required. Note that this example illustrates usage of `fv` having a default value of 0. """ when = _convert_when(when) (rate, nper, pv, fv, when) = map(np.array, [rate, nper, pv, fv, when]) temp = (1 + rate)**nper mask = (rate == 0) masked_rate = np.where(mask, 1, rate) fact = np.where(mask != 0, nper, (1 + masked_rate * when) * (temp - 1) / masked_rate) return -(fv + pv * temp) / fact