def cascade(screenpos, i, nletters): v = np.array([0, -1]) def d(t): return 1 if t < 0 else abs(np.sinc(t) / (1 + t**4)) return lambda t: screenpos + v * 400 * d(t - 0.15 * i)
def arrive(screenpos, i, nletters): v = np.array([-1, 0]) def d(t): return max(0, 3 - 3 * t) return lambda t: screenpos - 400 * v * d(t - 0.2 * i)
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) tfrecords_filename = 'pascal_voc_segmentation.tfrecords' writer = tf.python_io.TFRecordWriter(tfrecords_filename) # Let's collect the real images to later on compare to the reconstructed ones original_images = [] for img_path, annotation_path in filename_pairs: img = np.array(Image.open(img_path)) annotation = np.array(Image.open(annotation_path)) # The reason to store image sizes was demonstrated # in the previous example -- we have to know sizes of images # to later read raw serialized string, convert to 1d array and convert to # respective shape that image used to have. height = img.shape[0] width = img.shape[1] # Put in the original images into array # Just for future check for correctness original_images.append((img, annotation)) img_raw = img.tostring()
""" Exp Konvergenz """ N_max = 1000 #Anz Teilintervalle N = np.arange(N_max + 1) err = np.zeros(N_max) for i in range(N_max): err[i] = abs(I_exact - QF(f, a, b, N[i])) plt.loglog(N, err) plt.loglog(N, N**(-2)) p = - np.polyfit(np.log(N), np.log(err), 1)[0] """ Mehrdimensionale Quadratur """ #Intervalle [a,b] und [c,d] in 2-dim F = lambda y: QF(lambda x: f(x,y), a, b, N) I = QF(F, c, d, Ny) #Reference Lösung aus SciPy I_exact = scipy.integrate.nquad(f, np.array([[a, b], [c, d]]))[0]
def rotMatrix(a): return np.array([np.cos(a), np.sin(a)], [-np.sin(a), np.cos(a)])