Exemplo n.º 1
0
    def testGetOverlap(self):
        A = SDR((103, ))
        B = SDR((103, ))
        assert (A.getOverlap(B) == 0)

        A.dense[:10] = 1
        B.dense[:20] = 1
        A.dense = A.dense
        B.dense = B.dense
        assert (A.getOverlap(B) == 10)

        A.dense[:20] = 1
        A.dense = A.dense
        assert (A.getOverlap(B) == 20)

        A.dense[50:60] = 1
        B.dense[0] = 0
        A.dense = A.dense
        B.dense = B.dense
        assert (A.getOverlap(B) == 19)

        # Test wrong dimensions
        C = SDR((1, 1, 1, 1, 103))
        C.randomize(.5)
        try:
            A.getOverlap(C)
        except RuntimeError:
            pass
        else:
            self.fail()
Exemplo n.º 2
0
    def testExampleUsage(self):
        # Make an SDR with 9 values, arranged in a (3 x 3) grid.
        X = SDR(dimensions=(3, 3))

        # These three statements are equivalent.
        X.dense = [[0, 1, 0], [0, 1, 0], [0, 0, 1]]
        assert (X.dense.tolist() == [[0, 1, 0], [0, 1, 0], [0, 0, 1]])
        assert ([list(v) for v in X.coordinates] == [[0, 1, 2], [1, 1, 2]])
        assert (list(X.sparse) == [1, 4, 8])
        X.coordinates = [[0, 1, 2], [1, 1, 2]]
        assert (X.dense.tolist() == [[0, 1, 0], [0, 1, 0], [0, 0, 1]])
        assert ([list(v) for v in X.coordinates] == [[0, 1, 2], [1, 1, 2]])
        assert (list(X.sparse) == [1, 4, 8])
        X.sparse = [1, 4, 8]

        # Access data in any format, SDR will automatically convert data formats,
        # even if it was not the format used by the most recent assignment to the
        # SDR.
        assert (X.dense.tolist() == [[0, 1, 0], [0, 1, 0], [0, 0, 1]])
        assert ([list(v) for v in X.coordinates] == [[0, 1, 2], [1, 1, 2]])
        assert (list(X.sparse) == [1, 4, 8])

        # Data format conversions are cached, and when an SDR value changes the
        # cache is cleared.
        X.sparse = [1, 2, 3]  # Assign new data to the SDR, clearing the cache.
        X.dense  # This line will convert formats.
        X.dense  # This line will resuse the result of the previous line

        X = SDR((1000, 1000))
        data = X.dense
        data[0, 4] = 1
        data[444, 444] = 1
        X.dense = data
        assert (list(X.sparse) == [4, 444444])
Exemplo n.º 3
0
 def testStr(self):
     A = SDR((103, ))
     B = SDR((100, 100, 1))
     A.dense[0] = 1
     A.dense[9] = 1
     A.dense[102] = 1
     A.dense = A.dense
     assert (str(A) == "SDR( 103 ) 0, 9, 102")
     A.zero()
     assert (str(A) == "SDR( 103 )")
     B.dense[0, 0, 0] = 1
     B.dense[99, 99, 0] = 1
     B.dense = B.dense
     assert (str(B) == "SDR( 100, 100, 1 ) 0, 9999")
Exemplo n.º 4
0
    def testChaining(self):
        A = SDR([10, 10])
        B = Reshape(A, [100])
        C = Reshape(B, [4, 25])
        D = B.reshape([1, 100])  # Test convenience method.

        A.dense.fill(1)
        A.dense = A.dense
        assert (len(C.sparse) == A.size)
        assert (len(D.sparse) == A.size)
        del B
Exemplo n.º 5
0
    def testDenseInplace(self):
        # Check that assigning dense data to itself (ie: sdr.dense = sdr.dense)
        # is significantly faster than copying the data on assignment.

        # Also, it should not be *too* much faster because this test-case is
        # tuned to very fast in both situations.
        A = SDR(100 * 1000)
        B = np.copy(A.dense)

        copy_time = time.clock()
        for i in range(100):
            A.dense = B
        copy_time = time.clock() - copy_time

        inplace_time = time.clock()
        for i in range(100):
            A.dense = A.dense
        inplace_time = time.clock() - inplace_time

        assert (inplace_time < copy_time / 3)
Exemplo n.º 6
0
    def testChaining(self):
        A = SDR([10, 10])
        B = Reshape(A, [100])
        C = Reshape(B, [4, 25])
        D = Reshape(B, [1, 100])

        A.dense.fill(1)
        A.dense = A.dense
        assert (len(C.sparse) == A.size)
        assert (len(D.sparse) == A.size)
        del B
Exemplo n.º 7
0
    def testSetSDR(self):
        A = SDR((103, ))
        B = SDR((103, ))
        A.sparse = [66]
        B.setSDR(A)
        assert (B.dense[66] == 1)
        assert (B.getSum() == 1)
        B.dense[77] = 1
        B.dense = B.dense
        A.setSDR(B)
        assert (set(A.sparse) == set((66, 77)))

        # Test wrong dimensions assigned
        C = SDR((2, 4, 5, 1, 1, 1, 1, 3))
        C.randomize(.5)
        try:
            A.setSDR(C)
        except RuntimeError:
            pass
        else:
            self.fail()
Exemplo n.º 8
0
    def testDense(self):
        A = SDR((103, ))
        B = SDR((100, 100, 1))

        A.dense
        # Test is the same buffer every time
        A.dense[0] = 1
        A.dense[99] = 1
        assert (A.dense[0] + A.dense[99] == 2)
        # Test modify in-place
        A.dense = A.dense
        assert (set(A.sparse) == set((0, 99)))
        # Test dense dimensions
        assert (B.dense.shape == (100, 100, 1))
        # No crash with dimensions
        B.dense[0, 0, 0] += 1
        B.dense[66, 2, 0] += 1
        B.dense[99, 99, 0] += 1
        B.dense = B.dense
        # Test wrong dimensions assigned
        C = SDR((A.size + 1))
        C.randomize(.5)
        test_cases = [
            (SDR(1), SDR(2)),
            (SDR(100), SDR((100, 1))),
            (SDR((1, 100)), SDR((100, 1))),
        ]
        for left, right in test_cases:
            try:
                left.dense = right.dense
            except RuntimeError:
                pass
            else:
                self.fail()
        # Test assign data.
        A.dense = np.zeros(A.size, dtype=np.int16)
        A.dense = np.ones(A.size, dtype=np.uint64)
        A.dense = np.zeros(A.size, dtype=np.int8)
        A.dense = [1] * A.size
        B.dense = [[[1]] * 100 for _ in range(100)]
Exemplo n.º 9
0
 def testGetSparsity(self):
     A = SDR((103, ))
     assert (A.getSparsity() == 0)
     A.dense = np.ones(A.size)
     assert (A.getSparsity() == 1)
Exemplo n.º 10
0
 def testGetSum(self):
     A = SDR((103, ))
     assert (A.getSum() == 0)
     A.dense = np.ones(A.size)
     assert (A.getSum() == 103)