Exemplo n.º 1
0
  def testReadWrite(self):
    le = LogEncoder(w=5,
                    resolution=0.1,
                    minval=1,
                    maxval=10000,
                    name="amount",
                    forced=True)

    originalValue = le.encode(1.0)

    proto1 = LogEncoderProto.new_message()
    le.write(proto1)

    # Write the proto to a temp file and read it back into a new proto
    with tempfile.TemporaryFile() as f:
      proto1.write(f)
      f.seek(0)
      proto2 = LogEncoderProto.read(f)

    encoder = LogEncoder.read(proto2)

    self.assertIsInstance(encoder, LogEncoder)

    self.assertEqual(encoder.minScaledValue, le.minScaledValue)
    self.assertEqual(encoder.maxScaledValue, le.maxScaledValue)
    self.assertEqual(encoder.minval, le.minval)
    self.assertEqual(encoder.maxval, le.maxval)
    self.assertEqual(encoder.name, le.name)
    self.assertEqual(encoder.verbosity, le.verbosity)
    self.assertEqual(encoder.clipInput, le.clipInput)
    self.assertEqual(encoder.width, le.width)
    self.assertEqual(encoder.description, le.description)
    self.assertIsInstance(encoder.encoder, ScalarEncoder)
    self.assertTrue(numpy.array_equal(encoder.encode(1), originalValue))
    self.assertEqual(le.decode(encoder.encode(1)),
                     encoder.decode(le.encode(1)))

    # Feed in a new value and ensure the encodings match
    result1 = le.encode(10)
    result2 = encoder.encode(10)
    self.assertTrue(numpy.array_equal(result1, result2))
Exemplo n.º 2
0
    def testReadWrite(self):
        le = LogEncoder(w=5,
                        resolution=0.1,
                        minval=1,
                        maxval=10000,
                        name="amount",
                        forced=True)

        originalValue = le.encode(1.0)

        proto1 = LogEncoderProto.new_message()
        le.write(proto1)

        # Write the proto to a temp file and read it back into a new proto
        with tempfile.TemporaryFile() as f:
            proto1.write(f)
            f.seek(0)
            proto2 = LogEncoderProto.read(f)

        encoder = LogEncoder.read(proto2)

        self.assertIsInstance(encoder, LogEncoder)

        self.assertEqual(encoder.minScaledValue, le.minScaledValue)
        self.assertEqual(encoder.maxScaledValue, le.maxScaledValue)
        self.assertEqual(encoder.minval, le.minval)
        self.assertEqual(encoder.maxval, le.maxval)
        self.assertEqual(encoder.name, le.name)
        self.assertEqual(encoder.verbosity, le.verbosity)
        self.assertEqual(encoder.clipInput, le.clipInput)
        self.assertEqual(encoder.width, le.width)
        self.assertEqual(encoder.description, le.description)
        self.assertIsInstance(encoder.encoder, ScalarEncoder)
        self.assertTrue(numpy.array_equal(encoder.encode(1), originalValue))
        self.assertEqual(le.decode(encoder.encode(1)),
                         encoder.decode(le.encode(1)))

        # Feed in a new value and ensure the encodings match
        result1 = le.encode(10)
        result2 = encoder.encode(10)
        self.assertTrue(numpy.array_equal(result1, result2))
Exemplo n.º 3
0
  def testLogEncoder(self):
    # Create the encoder
    # use of forced=True is not recommended, but is used in the example for
    # readibility, see scalar.py
    le = LogEncoder(w=5,
                    resolution=0.1,
                    minval=1,
                    maxval=10000,
                    name="amount",
                    forced=True)

    # Verify we're setting the description properly
    self.assertEqual(le.getDescription(), [("amount", 0)])

    # Verify we're getting the correct field types
    types = le.getDecoderOutputFieldTypes()
    self.assertEqual(types[0], FieldMetaType.float)

    # Verify the encoder ends up with the correct width
    #
    # 10^0 -> 10^4 => 0 -> 4; With a resolution of 0.1
    # 41 possible values plus padding = 4 = width 45
    self.assertEqual(le.getWidth(), 45)

    # Verify we have the correct number of possible values
    self.assertEqual(len(le.getBucketValues()), 41)

    # Verify closeness calculations
    testTuples = [([1], [10000], 0.0),
                  ([1], [1000], 0.25),
                  ([1], [1], 1.0),
                  ([1], [-200], 1.0)]
    for tm in testTuples:
      expected = tm[0]
      actual = tm[1]
      expectedResult = tm[2]
      self.assertEqual(le.closenessScores(expected, actual),
                       expectedResult,
                       "exp: %s act: %s expR: %s" % (str(expected),
                                                     str(actual),
                                                     str(expectedResult)))

    # Verify a value of 1.0 is encoded as expected
    value = 1.0
    output = le.encode(value)

    # Our expected encoded representation of the value 1 is the first
    # w bits on in an array of len width.
    expected = [1, 1, 1, 1, 1] + 40 * [0]
    # Convert to numpy array
    expected = numpy.array(expected, dtype="uint8")

    self.assertTrue(numpy.array_equal(output, expected))

    # Test reverse lookup
    decoded = le.decode(output)
    (fieldsDict, _) = decoded
    self.assertEqual(len(fieldsDict), 1)
    (ranges, _) = fieldsDict.values()[0]
    self.assertEqual(len(ranges), 1)
    self.assertTrue(numpy.array_equal(ranges[0], [1, 1]))

    # Verify an input representing a missing value is handled properly
    mvOutput = le.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
    self.assertEqual(sum(mvOutput), 0)

    # Test top-down for all values
    value = le.minval
    while value <= le.maxval:

      output = le.encode(value)
      topDown = le.topDownCompute(output)

      # Do the scaling by hand here.
      scaledVal = math.log10(value)

      # Find the range of values that would also produce this top down
      # output.
      minTopDown = math.pow(10, (scaledVal - le.encoder.resolution))
      maxTopDown = math.pow(10, (scaledVal + le.encoder.resolution))

      # Verify the range surrounds this scaled val
      self.assertGreaterEqual(topDown.value, minTopDown)
      self.assertLessEqual(topDown.value, maxTopDown)

      # Test bucket support
      bucketIndices = le.getBucketIndices(value)
      topDown = le.getBucketInfo(bucketIndices)[0]

      # Verify our reconstructed value is in the valid range
      self.assertGreaterEqual(topDown.value, minTopDown)
      self.assertLessEqual(topDown.value, maxTopDown)

      # Same for the scalar value
      self.assertGreaterEqual(topDown.scalar, minTopDown)
      self.assertLessEqual(topDown.scalar, maxTopDown)

      # That the encoding portion of our EncoderResult matched the result of
      # encode()
      self.assertTrue(numpy.array_equal(topDown.encoding, output))

      # Verify our reconstructed value is the same as the bucket value
      bucketValues = le.getBucketValues()
      self.assertEqual(topDown.value,
                       bucketValues[bucketIndices[0]])

      # Next value
      scaledVal += le.encoder.resolution / 4.0
      value = math.pow(10, scaledVal)

    # Verify next power of 10 encoding
    output = le.encode(100)
    # increase of 2 decades = 20 decibels
    # bit 0, 1 are padding; bit 3 is 1, ..., bit 22 is 20 (23rd bit)
    expected = 20 * [0] + [1, 1, 1, 1, 1] + 20 * [0]
    expected = numpy.array(expected, dtype="uint8")
    self.assertTrue(numpy.array_equal(output, expected))

    # Test reverse lookup
    decoded = le.decode(output)
    (fieldsDict, _) = decoded
    self.assertEqual(len(fieldsDict), 1)
    (ranges, _) = fieldsDict.values()[0]
    self.assertEqual(len(ranges), 1)
    self.assertTrue(numpy.array_equal(ranges[0], [100, 100]))

    # Verify next power of 10 encoding
    output = le.encode(10000)
    expected = 40 * [0] + [1, 1, 1, 1, 1]
    expected = numpy.array(expected, dtype="uint8")
    self.assertTrue(numpy.array_equal(output, expected))

    # Test reverse lookup
    decoded = le.decode(output)
    (fieldsDict, _) = decoded
    self.assertEqual(len(fieldsDict), 1)
    (ranges, _) = fieldsDict.values()[0]
    self.assertEqual(len(ranges), 1)
    self.assertTrue(numpy.array_equal(ranges[0], [10000, 10000]))
Exemplo n.º 4
0
    def testLogEncoder(self):
        # Create the encoder
        # use of forced=True is not recommended, but is used in the example for
        # readibility, see scalar.py
        le = LogEncoder(w=5,
                        resolution=0.1,
                        minval=1,
                        maxval=10000,
                        name="amount",
                        forced=True)

        # Verify we're setting the description properly
        self.assertEqual(le.getDescription(), [("amount", 0)])

        # Verify we're getting the correct field types
        types = le.getDecoderOutputFieldTypes()
        self.assertEqual(types[0], FieldMetaType.float)

        # Verify the encoder ends up with the correct width
        #
        # 10^0 -> 10^4 => 0 -> 4; With a resolution of 0.1
        # 41 possible values plus padding = 4 = width 45
        self.assertEqual(le.getWidth(), 45)

        # Verify we have the correct number of possible values
        self.assertEqual(len(le.getBucketValues()), 41)

        # Verify closeness calculations
        testTuples = [([1], [10000], 0.0), ([1], [1000], 0.25),
                      ([1], [1], 1.0), ([1], [-200], 1.0)]
        for tm in testTuples:
            expected = tm[0]
            actual = tm[1]
            expectedResult = tm[2]
            self.assertEqual(
                le.closenessScores(expected, actual), expectedResult,
                "exp: %s act: %s expR: %s" %
                (str(expected), str(actual), str(expectedResult)))

        # Verify a value of 1.0 is encoded as expected
        value = 1.0
        output = le.encode(value)

        # Our expected encoded representation of the value 1 is the first
        # w bits on in an array of len width.
        expected = [1, 1, 1, 1, 1] + 40 * [0]
        # Convert to numpy array
        expected = numpy.array(expected, dtype="uint8")

        self.assertTrue(numpy.array_equal(output, expected))

        # Test reverse lookup
        decoded = le.decode(output)
        (fieldsDict, _) = decoded
        self.assertEqual(len(fieldsDict), 1)
        (ranges, _) = list(fieldsDict.values())[0]
        self.assertEqual(len(ranges), 1)
        self.assertTrue(numpy.array_equal(ranges[0], [1, 1]))

        # Verify an input representing a missing value is handled properly
        mvOutput = le.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
        self.assertEqual(sum(mvOutput), 0)

        # Test top-down for all values
        value = le.minval
        while value <= le.maxval:

            output = le.encode(value)
            topDown = le.topDownCompute(output)

            # Do the scaling by hand here.
            scaledVal = math.log10(value)

            # Find the range of values that would also produce this top down
            # output.
            minTopDown = math.pow(10, (scaledVal - le.encoder.resolution))
            maxTopDown = math.pow(10, (scaledVal + le.encoder.resolution))

            # Verify the range surrounds this scaled val
            self.assertGreaterEqual(topDown.value, minTopDown)
            self.assertLessEqual(topDown.value, maxTopDown)

            # Test bucket support
            bucketIndices = le.getBucketIndices(value)
            topDown = le.getBucketInfo(bucketIndices)[0]

            # Verify our reconstructed value is in the valid range
            self.assertGreaterEqual(topDown.value, minTopDown)
            self.assertLessEqual(topDown.value, maxTopDown)

            # Same for the scalar value
            self.assertGreaterEqual(topDown.scalar, minTopDown)
            self.assertLessEqual(topDown.scalar, maxTopDown)

            # That the encoding portion of our EncoderResult matched the result of
            # encode()
            self.assertTrue(numpy.array_equal(topDown.encoding, output))

            # Verify our reconstructed value is the same as the bucket value
            bucketValues = le.getBucketValues()
            self.assertEqual(topDown.value,
                             bucketValues[int(bucketIndices[0])])

            # Next value
            scaledVal += le.encoder.resolution / 4.0
            value = math.pow(10, scaledVal)

        # Verify next power of 10 encoding
        output = le.encode(100)
        # increase of 2 decades = 20 decibels
        # bit 0, 1 are padding; bit 3 is 1, ..., bit 22 is 20 (23rd bit)
        expected = 20 * [0] + [1, 1, 1, 1, 1] + 20 * [0]
        expected = numpy.array(expected, dtype="uint8")
        self.assertTrue(numpy.array_equal(output, expected))

        # Test reverse lookup
        decoded = le.decode(output)
        (fieldsDict, _) = decoded
        self.assertEqual(len(fieldsDict), 1)
        (ranges, _) = list(fieldsDict.values())[0]
        self.assertEqual(len(ranges), 1)
        self.assertTrue(numpy.array_equal(ranges[0], [100, 100]))

        # Verify next power of 10 encoding
        output = le.encode(10000)
        expected = 40 * [0] + [1, 1, 1, 1, 1]
        expected = numpy.array(expected, dtype="uint8")
        self.assertTrue(numpy.array_equal(output, expected))

        # Test reverse lookup
        decoded = le.decode(output)
        (fieldsDict, _) = decoded
        self.assertEqual(len(fieldsDict), 1)
        (ranges, _) = list(fieldsDict.values())[0]
        self.assertEqual(len(ranges), 1)
        self.assertTrue(numpy.array_equal(ranges[0], [10000, 10000]))