Exemplo n.º 1
0
def test_ImageWriter():
    samples = [('nut_color', 1), ('nut_grayscale', 2)]
    inpath = 'tests/data/img_formats/*.bmp'
    img_samples = samples >> ReadImage(0, inpath) >> Collect()

    imagepath = 'tests/data/test_*.bmp'
    names = samples >> Get(0) >> Collect()
    img_samples >> WriteImage(0, imagepath, names) >> Consume()

    for sample, name in zip(img_samples, names):
        filepath = 'tests/data/test_{}.bmp'.format(name)
        arr = load_image(filepath)
        assert np.array_equal(arr, sample[0])
        os.remove(filepath)

    pathfunc = lambda sample, name: 'tests/data/test_{}.jpg'.format(name)
    img_samples >> WriteImage(0, pathfunc) >> Consume()
    for i, sample in enumerate(img_samples):
        filepath = 'tests/data/test_{}.jpg'.format(i)
        os.path.exists(filepath)
        os.remove(filepath)

    with pytest.raises(ValueError) as ex:
        img_samples >> WriteImage(0, ()) >> Consume()
    assert str(ex.value).startswith('Expect path or function')
Exemplo n.º 2
0
def test_CheckNaN():
    assert [1, 2] >> CheckNaN() >> Collect() == [1, 2]

    with pytest.raises(RuntimeError) as ex:
        [1, np.NaN, 3] >> CheckNaN() >> Consume()
    assert str(ex.value).startswith('NaN encountered')

    with pytest.raises(RuntimeError) as ex:
        [(1, np.NaN), (2, 4)] >> CheckNaN() >> Consume()
    assert str(ex.value).startswith('NaN encountered')
Exemplo n.º 3
0
def test_BuildBatch_verbose():
    with Redirect() as out:
        samples = [[1], [2], [3]]
        build_batch = (nb.BuildBatch(2,
                                     verbose=True).input(0, 'number', 'uint8'))
        samples >> build_batch >> Consume()
    assert out.getvalue() == '[2:uint8]\n[1:uint8]\n'

    with Redirect() as out:
        samples = [(np.array([1, 2, 3]), 0), (np.array([4, 5, 6]), 1),
                   (np.array([7, 8, 9]), 1)]
        build_batch = (nb.BuildBatch(2, verbose=True).input(
            0, 'vector', 'float32').output(1, 'one_hot', 'uint8', 2))
        samples >> build_batch >> Consume()
    expected = '[[2x3:float32], [2x2:uint8]]\n[[1x3:float32], [1x2:uint8]]\n'
    assert out.getvalue() == expected
Exemplo n.º 4
0
"""
.. module:: read_images
   :synopsis: Example for reading and viewing of image data
"""

from nutsflow import Consume, Print
from nutsml import ReadLabelDirs, ReadImage, ViewImageAnnotation, PrintColType

if __name__ == "__main__":
    show_image = ViewImageAnnotation(0, 1, pause=1, figsize=(3, 3))

    (ReadLabelDirs('images', '*.png') >> Print() >> ReadImage(0) >>
     PrintColType() >> show_image >> Consume())
Exemplo n.º 5
0
"""

from __future__ import print_function

from glob import glob
from nutsflow import Collect, Consume, Get, Zip, Map, ArgMax, Print
from nutsml import (TransformImage, BuildBatch, ReadImage, ViewImageAnnotation,
                    ConvertLabel)

BATCH_SIZE = 128

if __name__ == "__main__":
    from cnn_train import create_network, load_names

    convert_label = ConvertLabel(None, load_names())
    rerange = TransformImage(0).by('rerange', 0, 255, 0, 1, 'float32')
    show_image = ViewImageAnnotation(0, 1, pause=1, figsize=(3, 3),
                                     interpolation='spline36')
    pred_batch = BuildBatch(BATCH_SIZE).input(0, 'image', 'float32')

    print('loading network...')
    network = create_network()
    network.load_weights()

    print('predicting...')
    samples = glob('images/*.png') >> Print() >> ReadImage(None) >> Collect()

    predictions = (samples >> rerange >> pred_batch >>
                   network.predict() >> convert_label)
    samples >> Get(0) >> Zip(predictions) >> show_image >> Consume()
Exemplo n.º 6
0
"""
.. module:: view_augmented_images
   :synopsis: Example nuts-ml pipeline for viewing augmented image data
"""

from nutsflow import Take, Consume
from nutsml import ViewImageAnnotation, AugmentImage

if __name__ == "__main__":
    from cnn_train import load_samples

    train_samples, _ = load_samples()

    p = 0.5
    augment = (AugmentImage(0)
               .by('identical', 1.0)
               .by('brightness', p, [0.7, 1.3])
               .by('rotate', p, [-10, 10])
               .by('fliplr', p))
    show_image = ViewImageAnnotation(0, 1, pause=1, figsize=(2, 2),
                                     interpolation='spline36')

    (train_samples >> Take(10) >> augment >> show_image >> Consume())
Exemplo n.º 7
0
"""
.. module:: read_images
   :synopsis: Example nuts-ml pipeline for reading and viewing image data
"""

from glob import glob
from nutsflow import Consume
from nutsml import ReadImage, ViewImage, PrintColType

if __name__ == "__main__":
    show_image = ViewImage(0, pause=1, figsize=(2, 2), interpolation='spline36')
    paths = glob('images/*.png')

    paths >> ReadImage(None) >> PrintColType() >> show_image >> Consume()
Exemplo n.º 8
0
"""
.. module:: view_train_images
   :synopsis: Example nuts-ml pipeline reading and viewing image data
"""

from nutsflow import Take, Consume, MapCol
from nutsml import ViewImageAnnotation, PrintColType

if __name__ == "__main__":
    from cnn_train import load_samples, load_names

    train_samples, _ = load_samples()
    names = load_names()

    id2name = MapCol(1, lambda i: names[i])
    show_image = ViewImageAnnotation(0, 1, pause=1, figsize=(2, 2),
                                     interpolation='spline36')

    (train_samples >> Take(10) >> id2name >> PrintColType() >>
     show_image >> Consume())
Exemplo n.º 9
0
"""

from __future__ import print_function

from nutsflow import Collect, Consume, Get, Zip, Map, Format, ArgMax
from nutsml import (TransformImage, BuildBatch, ReadImage, ReadLabelDirs,
                    ViewImageAnnotation)

BATCH_SIZE = 128

if __name__ == "__main__":
    from mlp_train import create_network

    TransformImage.register('flatten', lambda img: img.flatten())
    transform = (TransformImage(0).by('rerange', 0, 255, 0, 1,
                                      'float32').by('flatten'))
    show_image = ViewImageAnnotation(0, (1, 2), pause=1, figsize=(4, 4))
    pred_batch = BuildBatch(BATCH_SIZE).by(0, 'vector', 'float32')

    print('loading network...')
    network = create_network()
    network.load_weights()

    print('predicting...')
    samples = ReadLabelDirs('images', '*.png') >> ReadImage(0) >> Collect()
    truelabels = samples >> Get(1) >> Format('true: {}')
    predictions = (samples >> transform >> pred_batch >> network.predict() >>
                   Map(ArgMax()) >> Format('pred: {}'))
    samples >> Get(0) >> Zip(predictions,
                             truelabels) >> show_image >> Consume()
Exemplo n.º 10
0
"""
.. module:: write_images
   :synopsis: Example nuts-ml pipeline for writing of images 
"""

from nutsflow import (Take, Print, Consume, Enumerate, Zip, Format, MapCol,
                      Get)
from nutsml import WriteImage, ConvertLabel

if __name__ == "__main__":
    from cnn_train import load_samples, load_names

    train_samples, _ = load_samples()

    convert_label = ConvertLabel(1, load_names())
    fnames = (Enumerate() >> Zip(train_samples >> Get(1)) >> convert_label >>
              Format('{0}_{1}') >> Print())
    imagepath = 'images/img*.png'
    train_samples >> Take(10) >> WriteImage(0, imagepath, fnames) >> Consume()

Exemplo n.º 11
0
from __future__ import print_function

from nutsflow import Consume, Zip, Unzip, Map, ArgMax, nut_filter
from nutsml import TransformImage, BuildBatch, ViewImageAnnotation

BATCH_SIZE = 128

if __name__ == "__main__":
    from mlp_train import create_network, load_samples

    TransformImage.register('flatten', lambda img: img.flatten())
    transform = (TransformImage(0).by('rerange', 0, 255, 0, 1,
                                      'float32').by('flatten'))
    show_image = ViewImageAnnotation(0, (1, 2), pause=3, figsize=(3, 3))
    pred_batch = BuildBatch(BATCH_SIZE).by(0, 'vector', 'float32')
    IsMisclassified = nut_filter(lambda (i, t, p): p != t)

    print('loading samples ...')
    train_samples, test_samples = load_samples()

    print('loading network...')
    network = create_network()
    network.load_weights()

    print('predicting...')
    samples = train_samples + test_samples
    images, trues = samples >> Unzip()
    preds = (samples >> transform >> pred_batch >> network.predict() >> Map(
        ArgMax()))
    images >> Zip(trues, preds) >> IsMisclassified() >> show_image >> Consume()
Exemplo n.º 12
0
"""
.. module:: view_train_images
   :synopsis: Example nuts-ml pipeline reading and viewing image data
"""

from nutsflow import Take, Consume, MapCol
from nutsml import ViewImageAnnotation, PrintColType, ConvertLabel

if __name__ == "__main__":
    from cnn_train import load_samples, load_names

    train_samples, _ = load_samples()

    convert_label = ConvertLabel(1, load_names())
    show_image = ViewImageAnnotation(0,
                                     1,
                                     pause=1,
                                     figsize=(2, 2),
                                     interpolation='spline36')

    (train_samples >> Take(10) >> convert_label >> PrintColType() >> show_image
     >> Consume())
Exemplo n.º 13
0
"""
.. module:: view_data
   :synopsis: Example nuts-ml pipeline viewing CIFAR-10 image data
"""

from nutsflow import Take, Consume
from nutsml import ViewImage

if __name__ == "__main__":
    from cnn_train import load_samples

    train_samples, test_samples = load_samples()
    samples = train_samples + test_samples
    show_image = ViewImage(0, pause=1, figsize=(2, 2), interpolation='spline36')

    samples >> Take(10) >> show_image >> Consume()
"""
.. module:: view_train_images
   :synopsis: Example for showing images with transformation
"""

from nutsflow import Take, Consume, GetCols
from nutsml import ViewImage, TransformImage

if __name__ == "__main__":
    from mlp_train import load_samples

    samples, _ = load_samples()
    transform = (TransformImage(0).by('elastic', 5, 100))
    (samples >> GetCols(0, 0, 1) >> Take(1000) >> transform >> ViewImage(
        (0, 1), pause=1) >> Consume())
Exemplo n.º 15
0
"""
.. module:: view_train_images
   :synopsis: Example for showing images with annotation
"""

from nutsflow import Take, Consume
from nutsml import ViewImageAnnotation

if __name__ == "__main__":
    from mlp_train import load_samples

    samples, _ = load_samples()
    (samples >> Take(10) >> ViewImageAnnotation(0, 1, pause=1) >> Consume())
    img = img.copy()
    msk = np.zeros(img.shape[:2])
    img[sr:er, sc:ec, ...] = color
    msk[sr:er, sc:ec] = C_MASK
    return img, msk


def gen_samples(config, ir, ic):
    for _ in range(config['samples']):
        img = create_background(ir, ic)

        sr, sc = rnd.uniform(0.7, 0.8), rnd.uniform(0.7, 0.8)
        rp, cp = int(ir * sr), int(ic * sc)
        img, ball_msk = draw_ball(img, rp, cp, 10, C_RED)

        sr, sc = rnd.uniform(0.1, 0.4), rnd.uniform(0.1, 0.4)
        rp, cp = int(ir * sr), int(ic * sc)
        img, box_msk = draw_box(img, rp, cp, 10, C_GREEN)

        yield (img, box_msk, ball_msk)


if __name__ == '__main__':
    from nutsflow import Consume, Map
    from nutsml import ViewImage, PrintColType

    ir, ic = 64, 64
    config = {'samples': 20,
              'objects': {'box': [1, 1], 'ball': [1, 1]}}
    gen_samples(config, ir, ic) >> ViewImage((0, 1, 2), pause=10) >> Consume()