Exemplo n.º 1
0
def _run_test_cat(num_inputs, layout, ndim, axis, axis_name):
    num_iter = 3
    batch_size = 4
    if ndim is None:
        ndim = len(layout)

    ref_axis = layout.find(axis_name) if axis_name is not None else axis if axis is not None else 0
    assert ref_axis >= 0

    axis_arg = None if axis_name else axis

    pipe = dali.pipeline.Pipeline(batch_size=batch_size, num_threads=3, device_id=0)
    with pipe:
        inputs = fn.external_source(
            input_generator(num_inputs, batch_size, ndim, ref_axis),
            num_outputs=num_inputs, layout=layout)
        out_cpu = fn.cat(*inputs,                    axis=axis_arg, axis_name=axis_name)
        out_gpu = fn.cat(*(x.gpu() for x in inputs), axis=axis_arg, axis_name=axis_name)
        pipe.set_outputs(out_cpu, out_gpu, *inputs)
    pipe.build()

    for iter in range(num_iter):
        o_cpu, o_gpu, *inputs = pipe.run()
        ref = ref_cat(inputs, ref_axis)
        check_batch(o_cpu, ref, batch_size, eps=0, expected_layout=layout)
        check_batch(o_gpu, ref, batch_size, eps=0, expected_layout=layout)
Exemplo n.º 2
0
def test_cat_empty_input():
    pipe = dali.pipeline.Pipeline(batch_size = 1, num_threads = 3, device_id = 0)
    with pipe:
        src1 = dali.types.Constant(np.array(
            [[1, 2, 3 ,4],
             [5, 6, 7, 8],
             [9,10,11,12]]))
        src2 = dali.types.Constant(np.array(
            [[],
             [],
             []], dtype=np.int32))
        src3 = dali.types.Constant(np.array(
            [[13,14,15],
             [16,17,18],
             [19,20,21]]))
        out_cpu = fn.cat(src1, src2, src3, axis = 1)
        out_gpu = fn.cat(src1.gpu(), src2.gpu(), src3.gpu(), axis = 1)
        pipe.set_outputs(out_cpu, out_gpu)

    pipe.build()
    o = pipe.run()

    o = list(o)
    o[1] = o[1].as_cpu();

    ref = np.array([[1, 2, 3, 4,13,14,15],
                    [5, 6, 7, 8,16,17,18],
                    [9,10,11,12,19,20,21]])
    assert np.array_equal(o[0].at(0), ref)
    assert np.array_equal(o[1].at(0), ref)
Exemplo n.º 3
0
    def define_graph(self):
        inputs, bboxes, labels, polygons, vertices = fn.readers.coco(
                                            file_root=self.file_root,
                                            annotations_file=self.annotation_file,
                                            skip_empty=True,
                                            shard_id=self.share_id,
                                            num_shards=self.num_gpus,
                                            ratio=True,
                                            ltrb=True,
                                            polygon_masks = True,
                                            random_shuffle=self.random_shuffle,
                                            shuffle_after_epoch=self.shuffle_after_epoch,
                                            name="Reader")

        input_shape = fn.slice(fn.cast(fn.peek_image_shape(inputs), dtype=types.INT32), 0, 2, axes=[0])
        h = fn.slice(input_shape, 0, 1, axes = [0], dtype=types.FLOAT)
        w = fn.slice(input_shape, 1, 1, axes = [0], dtype=types.FLOAT)
        short_side = math.min(w, h)        
        scale = fn.random.uniform(range=[0.3, 1.])
        crop_side = fn.cast(math.ceil(scale * short_side), dtype=types.INT32)    
        crop_shape = fn.cat(crop_side, crop_side)
        anchor_rel, shape_rel, bboxes, labels, bbox_indices = fn.random_bbox_crop(
                        bboxes,
                        labels,
                        input_shape=input_shape,
                        crop_shape=crop_shape,
                        shape_layout="HW",
                        thresholds=[0.],            # No minimum intersection-over-union, for demo purposes
                        allow_no_crop=False,        # No-crop is disallowed, for demo purposes 
                        seed=-1,                    # Fixed random seed for deterministic results
                        bbox_layout="xyXY",         # left, top, right, back
                        output_bbox_indices=True,   # Output indices of the filtered bounding boxes
                        total_num_attempts=1024,
        )
        polygons, vertices = fn.segmentation.select_masks(
            bbox_indices, polygons, vertices
        )
        images = fn.decoders.image_slice(
            inputs, anchor_rel, shape_rel, normalized_anchor=False, normalized_shape=False, device='mixed'
        )
        images = fn.color_space_conversion(images, image_type=types.RGB, output_type=types.BGR)
        MT_1_vertices = fn.transforms.crop(
            to_start=(0.0, 0.0), to_end=fn.cat(w, h)
        )    
        MT_2_vertices = fn.transforms.crop(
            from_start=anchor_rel, from_end=(anchor_rel + shape_rel),
            to_start=(0.0, 0.0), to_end=(1., 1.)
        )    
        vertices = fn.coord_transform(fn.coord_transform(vertices, MT=MT_1_vertices), MT=MT_2_vertices)    
        targets = fn.cat( bboxes, fn.reshape(vertices, shape=[-1, 10]), axis=1)

        interp_methods = [types.INTERP_LINEAR, types.INTERP_CUBIC, types.INTERP_LANCZOS3, types.INTERP_GAUSSIAN, types.INTERP_NN, types.INTERP_TRIANGULAR]
        interp_method = fn.random.uniform(values=[int(x) for x in interp_methods], dtype=types.INT32)
        interp_method = fn.reinterpret(interp_method, dtype=types.INTERP_TYPE)
        images = fn.resize(images, dtype=types.FLOAT, size=self.input_dim, interp_type=interp_method)

        labels = labels.gpu()
        targets = targets.gpu()
        return (images, targets, labels)
Exemplo n.º 4
0
def test_cat_numpy_array():
    pipe = dali.pipeline.Pipeline(1,1,0)
    src = fn.external_source([[np.array([[10,11],[12,13]], dtype=np.float32)]])
    pipe.set_outputs(fn.cat(src, np.array([[20],[21]], dtype=np.float32), axis=1))
    pipe.build()
    o = pipe.run()
    assert np.array_equal(o[0].at(0), np.array([[10,11,20],[12,13,21]]))
Exemplo n.º 5
0
def incorrect_input_sets_pipeline():
    jpegs, _ = fn.readers.file(file_root=file_root,
                               seed=42,
                               random_shuffle=True)
    images = fn.decoders.image(jpegs, seed=42)
    output = fn.cat([images, images, images], [images, images])

    return tuple(output)
Exemplo n.º 6
0
def kwargs_len_change():
    input = [np.zeros(1)] * 8
    inputs = [input] * 2
    kwargs = {}
    if kwargs_len_change.change:
        kwargs_len_change.change = False
        kwargs['axis'] = 0
    return fn.cat(*inputs, **kwargs)
Exemplo n.º 7
0
def inputs_len_change():
    input = [np.zeros(1)] * 8
    if inputs_len_change.change:
        inputs_len_change.change = False
        inputs = [input]
    else:
        inputs = [input] * 2
    return fn.cat(*inputs)
Exemplo n.º 8
0
def multiple_input_sets_pipeline():
    jpegs = [
        fn.readers.file(file_root=file_root, seed=42, random_shuffle=True)[0]
        for _ in range(6)
    ]
    images = fn.decoders.image(jpegs, seed=42)
    cropped_images = fn.random_resized_crop(images, size=(224, 224), seed=42)
    output = fn.cat(cropped_images[:3], cropped_images[3:])
    return tuple(output)
Exemplo n.º 9
0
def test_cat_cpu():
    pipe = Pipeline(batch_size=batch_size, num_threads=3, device_id=None)
    data = fn.external_source(source=get_data, layout="HWC")
    data2 = fn.external_source(source=get_data, layout="HWC")
    data3 = fn.external_source(source=get_data, layout="HWC")
    pixel_pos = fn.cat(data, data2, data3)
    pipe.set_outputs(pixel_pos)
    pipe.build()
    for _ in range(3):
        pipe.run()
Exemplo n.º 10
0
def test_cat_all_empty():
    pipe = dali.pipeline.Pipeline(batch_size = 1, num_threads = 3, device_id = 0)
    with pipe:
        src1 = dali.types.Constant(np.array(
            [[],
             [],
             []], dtype=np.int32))
        out_cpu = fn.cat(src1, src1, src1, axis = 1)
        out_gpu = fn.cat(src1.gpu(), src1.gpu(), src1.gpu(), axis = 1)
        pipe.set_outputs(out_cpu, out_gpu)

    pipe.build()
    o = pipe.run()

    o = list(o)
    o[1] = o[1].as_cpu();

    ref = np.array([[], [], []], dtype=np.int32)
    assert np.array_equal(o[0].at(0), ref)
    assert np.array_equal(o[1].at(0), ref)
Exemplo n.º 11
0
def dali_frame_splicing_graph(x, nfeatures, x_len, stacking=1, subsampling=1):
    if stacking > 1:
        seq = [x]
        for n in range(1, stacking):
            f = fn.slice(x,
                         n,
                         x_len,
                         axes=(1, ),
                         out_of_bounds_policy='pad',
                         fill_values=0)
            seq.append(f)
        x = fn.cat(*seq, axis=0)
        nfeatures = nfeatures * stacking
    if subsampling > 1:
        out_len = (x_len + subsampling - 1) // subsampling
        m = fn.transforms.scale(scale=[subsampling, 1], center=[0.5, 0])
        x = fn.reshape(x, rel_shape=[1, 1, -1],
                       layout="HWC")  # Layout required by WarpAffine
        size = fn.cat(nfeatures, out_len)
        x = fn.warp_affine(x, matrix=m, size=size, interp_type=types.INTERP_NN)
        x = fn.reshape(x, rel_shape=[1, 1], layout="ft")
    return x
Exemplo n.º 12
0
def tfrecord_pipeline(dspath, batch_size, num_threads, device="cpu", device_id=None,
                        shard_id=0, num_shards=1, reader_name="Reader",
                        seq=True, chroms=False, chroms_vlog=False, target=True, target_vlog=True, label=False, random_shuffle=True):
    pipe = Pipeline(batch_size=batch_size, num_threads=num_threads, device_id=device_id)

    feature_description = {}
    feature_description["seq"] = tfrec.VarLenFeature(tfrec.float32, -1.0)
    feature_description["label"] = tfrec.FixedLenFeature([], tfrec.int64, -1)
    feature_description["target"] = tfrec.FixedLenFeature([], tfrec.float32, -1.0)
    for ct in dspath["chromatin_tracks"]:
        feature_description[ct] = tfrec.VarLenFeature(tfrec.float32, -1.0)

    with pipe:
        inputs = fn.readers.tfrecord(
            name=reader_name,
            path=dspath['TFRecord'],
            index_path=dspath['TFRecord_idx'],
            features=feature_description,
            shard_id = shard_id,
            num_shards = num_shards,
            random_shuffle=random_shuffle,
            read_ahead=True, 
            prefetch_queue_depth=20,
            pad_last_batch=True)
        if device=="gpu":
            inputs['seq'] = inputs['seq'].gpu()
            for ct in dspath["chromatin_tracks"]: inputs[ct] = inputs[ct].gpu()
            inputs['target'] = inputs['target'].gpu()
            inputs['label'] = inputs['label'].gpu()
        seqdata = fn.expand_dims(inputs['seq'], axes=1, device=device)
        seqdata = fn.reshape(seqdata, shape=(4, -1), device=device)
        chromsdata = fn.cat(*[fn.expand_dims(inputs[ct], axes=0, device=device) for ct in dspath["chromatin_tracks"]], axis=0, device=device)

        sample = []
        if seq: sample.append(seqdata)
        if chroms: 
            if chroms_vlog:
                sample.append(log(chromsdata + 1))
            else:
                sample.append(chromsdata)
        if target:
            if target_vlog: 
                sample.append(log(inputs['target'] + 1))
            else:
                sample.append(inputs['target'])
        if label: sample.append(inputs['label'])

        pipe.set_outputs(*sample)
    return pipe
Exemplo n.º 13
0
def dali_reflect_pad_graph(x, x_len, pad_amount):
    def flip_1d(x):
        # TODO(janton): remove the layout trick when Flip supports arbitrary data layouts
        x = fn.reshape(x, shape=(-1, 1, 1), layout="HWC")
        x = fn.flip(x, vertical=1)
        x = fn.reshape(x, shape=(-1, ), layout="t")
        return x

    pad_start = fn.slice(x, 1, pad_amount, axes=(0, ))
    pad_start = flip_1d(pad_start)

    pad_end = fn.slice(x, x_len - pad_amount - 1, pad_amount, axes=(0, ))
    pad_end = flip_1d(pad_end)
    x = fn.cat(pad_start, x, pad_end, axis=0)
    return x
Exemplo n.º 14
0
def check_random_mask_pixel(ndim=2, batch_size=3,
                            min_extent=20, max_extent=50):
    pipe = dali.pipeline.Pipeline(batch_size=batch_size, num_threads=4, device_id=0, seed=1234)
    with pipe:
        # Input mask
        in_shape_dims = [fn.cast(fn.random.uniform(range=(min_extent, max_extent + 1), shape=(1,), device='cpu'),
                                 dtype=types.INT32) for d in range(ndim)]
        in_shape = fn.cat(*in_shape_dims, axis=0)
        in_mask = fn.cast(fn.random.uniform(range=(0, 2), device='cpu', shape=in_shape), dtype=types.INT32)

        fg_pixel1 = fn.segmentation.random_mask_pixel(in_mask, foreground=1)  # > 0
        fg_pixel2 = fn.segmentation.random_mask_pixel(in_mask, foreground=1, threshold=0.99)  # > 0.99
        fg_pixel3 = fn.segmentation.random_mask_pixel(in_mask, foreground=1, value=2)  # == 2
        rnd_pixel = fn.segmentation.random_mask_pixel(in_mask, foreground=0)
        coin_flip = fn.random.coin_flip(probability=0.7)
        fg_biased = fn.segmentation.random_mask_pixel(in_mask, foreground=coin_flip)

        # Demo purposes: Taking a random pixel and produce a valid anchor to feed slice
        crop_shape = in_shape - 2  # We want to force the center adjustment, therefore the large crop shape
        anchor = fn.cast(fg_pixel1, dtype=types.INT32) - crop_shape // 2
        anchor = math.min(math.max(0, anchor), in_shape - crop_shape)
        out_mask = fn.slice(in_mask, anchor, crop_shape, axes=tuple(range(ndim)))

    pipe.set_outputs(in_mask, fg_pixel1, fg_pixel2, fg_pixel3, rnd_pixel, coin_flip, fg_biased,
                     anchor, crop_shape, out_mask)
    pipe.build()
    for iter in range(3):
        outputs = pipe.run()
        for idx in range(batch_size):
            in_mask = outputs[0].at(idx)
            fg_pixel1 = outputs[1].at(idx).tolist()
            fg_pixel2 = outputs[2].at(idx).tolist()
            fg_pixel3 = outputs[3].at(idx).tolist()
            rnd_pixel = outputs[4].at(idx).tolist()
            coin_flip = outputs[5].at(idx).tolist()
            fg_biased = outputs[6].at(idx).tolist()
            anchor = outputs[7].at(idx).tolist()
            crop_shape = outputs[8].at(idx).tolist()
            out_mask = outputs[9].at(idx)

            assert in_mask[tuple(fg_pixel1)] > 0
            assert in_mask[tuple(fg_pixel2)] > 0.99
            assert in_mask[tuple(fg_pixel3)] == 2
            assert in_mask[tuple(fg_biased)] > 0 or not coin_flip

            for d in range(ndim):
                assert 0 <= anchor[d] and anchor[d] + crop_shape[d] <= in_mask.shape[d]
            assert out_mask.shape == tuple(crop_shape)
Exemplo n.º 15
0
def check_pad_to_square(device='cpu', batch_size=3, ndim=2, num_iter=3):
    pipe = Pipeline(batch_size=batch_size,
                    num_threads=3,
                    device_id=0,
                    seed=1234)
    axes = (0, 1)
    with pipe:
        in_shape = fn.cast(fn.random.uniform(range=(10, 20), shape=(ndim, )),
                           dtype=types.INT32)
        in_data = fn.reshape(fn.random.uniform(range=(0., 1.), shape=in_shape),
                             layout="HW")
        shape = fn.shapes(in_data, dtype=types.INT32)
        h = fn.slice(shape, 0, 1, axes=[0])
        w = fn.slice(shape, 1, 1, axes=[0])
        side = math.max(h, w)
        if device == 'gpu':
            in_data = in_data.gpu()
        out_data = fn.pad(in_data,
                          axis_names="HW",
                          shape=fn.cat(side, side, axis=0))
        pipe.set_outputs(in_data, out_data)
    pipe.build()
    for _ in range(num_iter):
        outs = [
            out.as_cpu() if isinstance(out, TensorListGPU) else out
            for out in pipe.run()
        ]
        for i in range(batch_size):
            in_data, out_data = \
                [outs[out_idx].at(i) for out_idx in range(len(outs))]
            in_shape = in_data.shape
            max_side = max(in_shape)
            for s in out_data.shape:
                assert s == max_side
            np.testing.assert_equal(out_data[:in_shape[0], :in_shape[1]],
                                    in_data)
            np.testing.assert_equal(out_data[in_shape[0]:, :], 0)
            np.testing.assert_equal(out_data[:, in_shape[1]:], 0)
def check_bbox_random_crop_adjust_polygons(file_root,
                                           annotations_file,
                                           batch_size=3,
                                           num_iters=4,
                                           num_threads=4,
                                           device_id=0,
                                           seed=1234):
    pipe = Pipeline(batch_size=batch_size,
                    num_threads=num_threads,
                    device_id=device_id,
                    seed=seed)
    with pipe:
        # Read data from COCO
        # ratio=True means both bboxes and masks coordinates will be
        # relative to the image dimensions (range [0.0, 1.0])
        inputs, in_bboxes, labels, in_polygons, in_vertices = \
            fn.readers.coco(
                file_root=file_root, annotations_file=annotations_file, shard_id=0, num_shards=1,
                ratio=True, ltrb=True, polygon_masks=True
            )

        # Generate a random crop. out_bboxes are adjusted to the crop window
        slice_anchor, slice_shape, out_bboxes, labels, bbox_indices = \
            fn.random_bbox_crop(
                in_bboxes, labels,
                aspect_ratio=[0.5, 2.0], thresholds=[0, 0.1, 0.3, 0.5, 0.7, 0.9],
                scaling=[0.3, 1.0], bbox_layout='xyXY', output_bbox_indices=True
            )
        # Crop the image
        _ = fn.decoders.image_slice(inputs,
                                    slice_anchor,
                                    slice_shape,
                                    device='mixed',
                                    axis_names='WH')

        sel_polygons, sel_vertices = fn.segmentation.select_masks(
            bbox_indices, in_polygons, in_vertices)

        # Adjust masks coordinates to the coordinate space of the cropped image
        MT = fn.transforms.crop(from_start=slice_anchor,
                                from_end=(slice_anchor + slice_shape))
        out_vertices = fn.coord_transform(sel_vertices, MT=MT)

        # Converting to absolute coordinates (demo purposes)
        image_shape = fn.peek_image_shape(inputs, dtype=types.FLOAT)
        h = fn.slice(image_shape, 0, 1, axes=[0])
        w = fn.slice(image_shape, 1, 1, axes=[0])

        # Original bboxes
        bbox_x = fn.slice(in_bboxes, 0, 1, axes=[1])
        bbox_y = fn.slice(in_bboxes, 1, 1, axes=[1])
        bbox_X = fn.slice(in_bboxes, 2, 1, axes=[1])
        bbox_Y = fn.slice(in_bboxes, 3, 1, axes=[1])
        in_bboxes_abs = fn.cat(bbox_x * w,
                               bbox_y * h,
                               bbox_X * w,
                               bbox_Y * h,
                               axis=1)

        # Transform to convert relative coordinates to absolute
        scale_rel_to_abs = fn.transforms.scale(scale=fn.cat(w, h))

        # Selected vertices (relative coordinates)
        sel_vertices_abs = fn.coord_transform(out_vertices,
                                              MT=scale_rel_to_abs)

        # Output bboxes
        bbox2_x = fn.slice(out_bboxes, 0, 1, axes=[1])
        bbox2_y = fn.slice(out_bboxes, 1, 1, axes=[1])
        bbox2_X = fn.slice(out_bboxes, 2, 1, axes=[1])
        bbox2_Y = fn.slice(out_bboxes, 3, 1, axes=[1])
        out_bboxes_abs = fn.cat(bbox2_x * w,
                                bbox2_y * h,
                                bbox2_X * w,
                                bbox2_Y * h,
                                axis=1)

        # Output vertices (absolute coordinates)
        out_vertices_abs = fn.coord_transform(out_vertices,
                                              MT=scale_rel_to_abs)

        # Clamped coordinates
        out_vertices_clamped = math.clamp(out_vertices, 0.0, 1.0)
        out_vertices_clamped_abs = fn.coord_transform(out_vertices_clamped,
                                                      MT=scale_rel_to_abs)

    pipe.set_outputs(in_vertices, sel_vertices, sel_vertices_abs, out_vertices,
                     out_vertices_clamped, out_vertices_abs,
                     out_vertices_clamped_abs, in_bboxes, in_bboxes_abs,
                     out_bboxes, out_bboxes_abs, in_polygons, sel_polygons,
                     image_shape, slice_anchor, slice_shape, bbox_indices)
    pipe.build()
    # Enough iterations to see an example with more than one bounding box
    for i in range(num_iters):
        outs = pipe.run()
        for j in range(batch_size):
            (in_vertices, sel_vertices, sel_vertices_abs, out_vertices,
             out_vertices_clamped, out_vertices_abs, out_vertices_clamped_abs,
             in_bboxes, in_bboxes_abs, out_bboxes, out_bboxes_abs, in_polygons,
             sel_polygons, image_shape, slice_anchor, slice_shape,
             bbox_indices) = (outs[k].at(j) for k in range(len(outs)))

            # Checking that the output polygon descriptors are the ones associated with the
            # selected bounding boxes
            expected_polygons_list = []
            expected_vertices_list = []
            ver_count = 0
            for k in range(in_polygons.shape[0]):
                mask_id = in_polygons[k][0]
                in_ver_start_idx = in_polygons[k][1]
                in_ver_end_idx = in_polygons[k][2]
                pol_nver = in_ver_end_idx - in_ver_start_idx
                if mask_id in bbox_indices:
                    expected_polygons_list.append(
                        [mask_id, ver_count, ver_count + pol_nver])
                    for j in range(in_ver_start_idx, in_ver_end_idx):
                        expected_vertices_list.append(in_vertices[j])
                    ver_count = ver_count + pol_nver
            expected_sel_polygons = np.array(expected_polygons_list)
            np.testing.assert_equal(expected_sel_polygons, sel_polygons)

            # Checking the selected vertices correspond to the selected masks
            expected_sel_vertices = np.array(expected_vertices_list)
            np.testing.assert_equal(expected_sel_vertices, sel_vertices)

            # Chekc that the vertices are correctly mapped to the cropping window
            expected_out_vertices = np.copy(expected_sel_vertices)
            crop_x, crop_y = slice_anchor
            crop_w, crop_h = slice_shape
            for v in range(expected_out_vertices.shape[0]):
                expected_out_vertices[v, 0] = (expected_out_vertices[v, 0] -
                                               crop_x) / crop_w
                expected_out_vertices[v, 1] = (expected_out_vertices[v, 1] -
                                               crop_y) / crop_h
            np.testing.assert_allclose(expected_out_vertices,
                                       out_vertices,
                                       rtol=1e-4)

            # Checking the conversion to absolute coordinates
            h, w, _ = image_shape
            wh = np.array([w, h])
            whwh = np.array([w, h, w, h])
            expected_out_vertices_abs = expected_out_vertices * wh
            np.testing.assert_allclose(expected_out_vertices_abs,
                                       out_vertices_abs,
                                       rtol=1e-4)

            # Checking clamping of the relative coordinates
            expected_out_vertices_clamped = np.clip(expected_out_vertices,
                                                    a_min=0.0,
                                                    a_max=1.0)
            np.testing.assert_allclose(expected_out_vertices_clamped,
                                       out_vertices_clamped,
                                       rtol=1e-4)

            # Checking clamping of the absolute coordinates
            expected_out_vertices_clamped_abs = np.clip(
                expected_out_vertices_abs, 0, wh)
            np.testing.assert_allclose(expected_out_vertices_clamped_abs,
                                       out_vertices_clamped_abs,
                                       rtol=1e-4)

            # Checking scaling of the bounding boxes
            expected_in_bboxes_abs = in_bboxes * whwh
            np.testing.assert_allclose(expected_in_bboxes_abs,
                                       in_bboxes_abs,
                                       rtol=1e-4)

            # Check box selection and mapping to the cropping window
            expected_out_bboxes = np.copy(in_bboxes[bbox_indices, :])
            for k in range(expected_out_bboxes.shape[0]):
                expected_out_bboxes[k, 0] = (expected_out_bboxes[k, 0] -
                                             crop_x) / crop_w
                expected_out_bboxes[k, 1] = (expected_out_bboxes[k, 1] -
                                             crop_y) / crop_h
                expected_out_bboxes[k, 2] = (expected_out_bboxes[k, 2] -
                                             crop_x) / crop_w
                expected_out_bboxes[k, 3] = (expected_out_bboxes[k, 3] -
                                             crop_y) / crop_h
            expected_out_bboxes = np.clip(expected_out_bboxes,
                                          a_min=0.0,
                                          a_max=1.0)
            np.testing.assert_allclose(expected_out_bboxes,
                                       out_bboxes,
                                       rtol=1e-4)

            expected_out_bboxes_abs = expected_out_bboxes * whwh
            np.testing.assert_allclose(expected_out_bboxes_abs,
                                       out_bboxes_abs,
                                       rtol=1e-4)
Exemplo n.º 17
0
        def create_image_pipeline(
            batch_size,
            num_threads,
            device_id,
            image0_list,
            image1_list,
            flow_list,
            valBool,
        ):
            pipeline = Pipeline(batch_size, num_threads, device_id, seed=2)
            with pipeline:
                if valBool:
                    shuffleBool = False
                else:
                    shuffleBool = True
                """ READ FILES """
                image0, _ = fn.readers.file(
                    file_root=args.data,
                    files=image0_list,
                    random_shuffle=shuffleBool,
                    name="Reader",
                    seed=1,
                )
                image1, _ = fn.readers.file(
                    file_root=args.data,
                    files=image1_list,
                    random_shuffle=shuffleBool,
                    seed=1,
                )
                flo = fn.readers.numpy(
                    file_root=args.data,
                    files=flow_list,
                    random_shuffle=shuffleBool,
                    seed=1,
                )
                """ DECODE AND RESHAPE """
                image0 = fn.decoders.image(image0, device="cpu")
                image0 = fn.reshape(image0, layout="HWC")
                image1 = fn.decoders.image(image1, device="cpu")
                image1 = fn.reshape(image1, layout="HWC")
                images = fn.cat(image0, image1, axis=2)
                flo = fn.reshape(flo, layout="HWC")

                if valBool:
                    images = fn.resize(images, resize_x=162, resize_y=122)
                else:
                    """ CO-TRANSFORM """
                    # random translate
                    # angle_rng = fn.random.uniform(range=(-90, 90))
                    # images = fn.rotate(images, angle=angle_rng, fill_value=0)
                    # flo = fn.rotate(flo, angle=angle_rng, fill_value=0)

                    images = fn.random_resized_crop(
                        images,
                        size=[122, 162],  # 122, 162
                        random_aspect_ratio=[1.3, 1.4],
                        random_area=[0.8, 0.9],
                        seed=1,
                    )
                    flo = fn.random_resized_crop(
                        flo,
                        size=[122, 162],
                        random_aspect_ratio=[1.3, 1.4],
                        random_area=[0.8, 0.9],
                        seed=1,
                    )

                    # coin1 = fn.random.coin_flip(dtype=types.DALIDataType.BOOL, seed=10)
                    # coin1_n = coin1 ^ True
                    # coin2 = fn.random.coin_flip(dtype=types.DALIDataType.BOOL, seed=20)
                    # coin2_n = coin2 ^ True

                    # images = (
                    #     fn.flip(images, horizontal=1, vertical=1) * coin1 * coin2
                    #     + fn.flip(images, horizontal=1) * coin1 * coin2_n
                    #     + fn.flip(images, vertical=1) * coin1_n * coin2
                    #     + images * coin1_n * coin2_n
                    # )
                    # flo = (
                    #     fn.flip(flo, horizontal=1, vertical=1) * coin1 * coin2
                    #     + fn.flip(flo, horizontal=1) * coin1 * coin2_n
                    #     + fn.flip(flo, vertical=1) * coin1_n * coin2
                    #     + flo * coin1_n * coin2_n
                    # )
                    # _flo = flo
                    # flo_0 = fn.slice(_flo, axis_names="C", start=0, shape=1)
                    # flo_1 = fn.slice(_flo, axis_names="C", start=1, shape=1)
                    # flo_0 = flo_0 * coin1 * -1 + flo_0 * coin1_n
                    # flo_1 = flo_1 * coin2 * -1 + flo_1 * coin2_n
                    # # flo  = noflip + vertical flip + horizontal flip + both_flip

                    # # A horizontal flip is around the vertical axis (switch left and right)
                    # # So for a vertical flip coin1 is activated and needs to give +1, coin2 is activated needs to give -1
                    # # for a horizontal flip coin1 is activated and needs to be -1, coin2_n needs +1
                    # # no flip coin coin1_n +1, coin2_n +1

                    # flo = fn.cat(flo_0, flo_1, axis_name="C")
                """ NORMALIZE """
                images = fn.crop_mirror_normalize(
                    images,
                    mean=[0, 0, 0, 0, 0, 0],
                    std=[255, 255, 255, 255, 255, 255])
                images = fn.crop_mirror_normalize(
                    images,
                    mean=[0.45, 0.432, 0.411, 0.45, 0.432, 0.411],
                    std=[1, 1, 1, 1, 1, 1],
                )
                flo = fn.crop_mirror_normalize(
                    flo, mean=[0, 0], std=[args.div_flow, args.div_flow])

                pipeline.set_outputs(images, flo)
            return pipeline
Exemplo n.º 18
0
def load_tfrecord(directory, batch_size, training):
    tfrecord = []
    tfrecord_idx = []
    for f in os.listdir(directory):
        fullpath = os.path.join(directory, f)
        if not os.path.isfile(fullpath):
            continue

        if f.endswith(".tfrecord"):
            tfrecord.append(fullpath)

        if f.endswith(".idx"):
            tfrecord_idx.append(fullpath)

    tfrecord.sort()
    tfrecord_idx.sort()

    pipe = Pipeline(batch_size=batch_size, num_threads=32, device_id=0)
    with pipe:
        inputs = fn.tfrecord_reader(
            path=tfrecord,
            index_path=tfrecord_idx,
            features={
                "frame_one":
                tfrec.FixedLenFeature((), tfrec.string, ""),
                "frame_two":
                tfrec.FixedLenFeature((), tfrec.string, ""),
                "frame_three":
                tfrec.FixedLenFeature((), tfrec.string, ""),
                "frame_four":
                tfrec.FixedLenFeature((), tfrec.string, ""),
                "plus_one_position":
                tfrec.FixedLenFeature([3], tfrec.float32, 0.0),
                "plus_one_orientation":
                tfrec.FixedLenFeature([3], tfrec.float32, 0.0),
                "plus_two_position":
                tfrec.FixedLenFeature([3], tfrec.float32, 0.0),
                "plus_two_orientation":
                tfrec.FixedLenFeature([3], tfrec.float32, 0.0),
                "plus_three_position":
                tfrec.FixedLenFeature([3], tfrec.float32, 0.0),
                "plus_three_orientation":
                tfrec.FixedLenFeature([3], tfrec.float32, 0.0),
                "speed":
                tfrec.FixedLenFeature([], tfrec.float32, 0.0),
            })
        frame1 = inputs["frame_one"]
        frame1 = fn.image_decoder(frame1,
                                  device="mixed",
                                  output_type=types.RGB)
        # frame1 = fn.resize(frame1, device="gpu", resize_shorter=256.)
        frame1 = fn.crop_mirror_normalize(frame1,
                                          device="gpu",
                                          dtype=types.FLOAT,
                                          mean=[0., 0., 0.],
                                          std=[1., 1., 1.])
        frame1 = fn.transpose(frame1, device="gpu", perm=[1, 2, 0])

        frame2 = inputs["frame_two"]
        frame2 = fn.image_decoder(frame2,
                                  device="mixed",
                                  output_type=types.RGB)
        # frame2 = fn.resize(frame2, device="gpu", resize_shorter=256.)
        frame2 = fn.crop_mirror_normalize(frame2,
                                          device="gpu",
                                          dtype=types.FLOAT,
                                          mean=[0., 0., 0.],
                                          std=[1., 1., 1.])
        frame2 = fn.transpose(frame2, device="gpu", perm=[1, 2, 0])

        position = inputs["plus_one_position"].gpu()
        orientation = inputs["plus_one_orientation"].gpu()
        speed = inputs["speed"].gpu()

        image = fn.cat(frame1, frame2, device="gpu", axis=2)
        pose = fn.cat(position, orientation, device="gpu", axis=0)
        pipe.set_outputs(image, pose, speed)

    # Define shapes and types of the outputs
    shapes = ((batch_size, 480, 640), (batch_size, 6), (batch_size))
    dtypes = (tf.float32, tf.float32)

    # Create dataset
    return dali_tf.DALIDataset(pipeline=pipe,
                               batch_size=batch_size,
                               output_shapes=shapes,
                               output_dtypes=dtypes,
                               device_id=0)