Exemplo n.º 1
0
norm = BatchNormalization(momentum=0.6, name='lstmdensenorm')(dense)
for i in xrange(5):
    dense = Dense(50, activation='relu', name='dense%i' % i)(norm)
    norm = BatchNormalization(momentum=0.6, name='densenorm%i' % i)(dense)
output_p = Dense(config.n_truth, activation='softmax')(norm)

# model = Model(inputs=[input_charged, input_inclusive, input_sv], outputs=[output_p, output_b])
model = Model(inputs=input_inclusive, outputs=output_p)
model.compile(optimizer=Adam(lr=0.0005),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

print model.summary()

train_generator = obj.generatePF(data,
                                 partition='train',
                                 batch=100,
                                 mask=False)
validation_generator = obj.generatePF(data,
                                      partition='validate',
                                      batch=100,
                                      mask=False)
test_generator = obj.generatePF(data,
                                partition='validate',
                                batch=1000,
                                mask=False)
test_i, test_o, test_w = next(test_generator)
pred = model.predict(test_i)
print test_o[:5]
print pred[:5]
print test_o[-5:]
print pred[-5:]
Exemplo n.º 2
0
  'tau32' : utils.NH1(np.arange(0,1.1,0.05)),
  'dnn' : utils.NH1(np.arange(0,1.1,0.05))
}
hists_qcd = {
  'tau32' : utils.NH1(np.arange(0,1.1,0.05)),
  'dnn' : utils.NH1(np.arange(0,1.1,0.05))
}

hists_top['tau32'] = top_4.draw_singletons([('tau32', hists_top['tau32'].bins)], partition='test')['tau32']
hists_qcd['tau32'] = qcd_0.draw_singletons([('tau32', hists_qcd['tau32'].bins)], partition='test')['tau32']

top_4.refresh(partitions=['test'])
qcd_0.refresh(partitions=['test'])

# test_generator = obj.generatePFSV([top_4], partition='test', batch=100)
test_generator = obj.generatePF(data, partition='test', batch=10000, repartition=False)

while True:
    try:
        i, o, w = next(test_generator)
        pred = model.predict(i)[:,4]
        o = np.array(o)
        mask_signal = (o[:,4] == 1)
        mask_background = np.logical_not(mask_signal)
        hists_top['dnn'].fill_array(pred[mask_signal], w[mask_signal])
        hists_qcd['dnn'].fill_array(pred[mask_background], w[mask_background])
    except StopIteration:
        break

OUTPUT = '/home/snarayan/public_html/figs/testplots/test/'
system('mkdir -p '+OUTPUT)
Exemplo n.º 3
0
    dims = data[0].objects['train']['pf'].data.data.shape
else:
    dims = (None, obj.limit, 9)  # override
'''
first build the classifier!
'''

# set up data
opts = {
    'learn_mass': LEARNMASS,
    'learn_pt': LEARNPT,
    'learn_rho': LEARNRHO,
    'normalize': False
}
classifier_train_gen = obj.generatePF(data,
                                      partition='train',
                                      batch=501,
                                      **opts)
classifier_validation_gen = obj.generatePF(data,
                                           partition='validate',
                                           batch=1001,
                                           **opts)
classifier_test_gen = obj.generatePF(data, partition='test', batch=2, **opts)
test_i, test_o, test_w = next(classifier_test_gen)
#print test_i

inputs = Input(shape=(dims[1], dims[2]), name='input')
mass_inputs = Input(shape=(1, ), name='mass_input')
rho_inputs = Input(shape=(1, ), name='rho_input')
pt_inputs = Input(shape=(1, ), name='pt_input')
norm = BatchNormalization(momentum=0.6, name='input_bnorm')(inputs)
conv = Conv1D(32,
Exemplo n.º 4
0
if obj.limit is None:
    data[0].objects['train']['pf'].load(memory=False)
    dims = data[0].objects['train']['pf'].data.data.shape 
else:
    dims = (None, obj.limit, 9) # override

'''
first build the classifier!
'''

# set up data 
opts = {'learn_mass':LEARNMASS, 
        'learn_pt':LEARNPT, 
        'learn_rho':LEARNRHO,
        'normalize':False}
classifier_train_gen = obj.generatePF(data, partition='train', batch=502, **opts)
classifier_validation_gen = obj.generatePF(data, partition='validate', batch=1002, **opts)
classifier_test_gen = obj.generatePF(data, partition='test', batch=2, **opts)
test_i, test_o, test_w = next(classifier_test_gen)
#print test_i

inputs  = Input(shape=(dims[1], dims[2]), name='input')
mass_inputs = Input(shape=(1,), name='mass_input')
rho_inputs = Input(shape=(1,), name='rho_input')
pt_inputs = Input(shape=(1,), name='pt_input')
norm    = BatchNormalization(momentum=0.6, name='input_bnorm')                              (inputs)
conv = Conv1D(32, 2, activation='relu', name='conv0', kernel_initializer='lecun_uniform', padding='same')(norm)
norm    = BatchNormalization(momentum=0.6, name='conv0_bnorm')                              (conv)
conv = Conv1D(16, 4, activation='relu', name='conv1', kernel_initializer='lecun_uniform', padding='same')(norm)
norm    = BatchNormalization(momentum=0.6, name='conv1_bnorm')                              (conv)
lstm    = LSTM(100, go_backwards=True, implementation=2, name='lstm')                       (norm)
Exemplo n.º 5
0
# preload some data just to get the dimensions
data[0].objects['train']['pf'].load(memory=False)
dims = data[0].objects['train']['pf'].data.data.shape
# obj.limit = 20
# dims = (None, 20, 9) # override
''' 
some global definitions
'''
'''
first build the classifier!
'''

# set up data
classifier_train_gen = obj.generatePF(data,
                                      partition='train',
                                      batch=1000,
                                      normalize=False)
classifier_validation_gen = obj.generatePF(data,
                                           partition='validate',
                                           batch=100)
classifier_test_gen = obj.generatePF(data, partition='validate', batch=1000)
test_i, test_o, test_w = next(classifier_test_gen)

inputs = Input(shape=(dims[1], dims[2]), name='input')
norm = BatchNormalization(momentum=0.6, name='input_bnorm')(inputs)
lstm = LSTM(100, go_backwards=True, implementation=2, name='lstm')(norm)
norm = BatchNormalization(momentum=0.6, name='lstm_norm')(lstm)
dense = Dense(100,
              activation='relu',
              name='lstmdense',
              kernel_initializer='lecun_uniform')(norm)