Exemplo n.º 1
0
 def _mkmaps(self, boxes: YoloBoxes, heatmaps: Heatmaps) -> BoxMaps:
     device = boxes.device
     _, _, h, w = heatmaps.shape
     boxmaps = torch.zeros((1, 4, h, w), dtype=torch.float32).to(device)
     box_count = len(boxes)
     if box_count == 0:
         return BoxMaps(boxmaps)
     wh = torch.tensor([w, h]).to(device)
     cxcy = (boxes[:, :2] * wh).long()
     cx = cxcy[:, 0]
     cy = cxcy[:, 1]
     boxmaps[:, :, cy, cx] = boxes.t()
     return BoxMaps(boxmaps)
Exemplo n.º 2
0
 def forward(self, x: ImageBatch) -> NetOutput:
     fp = self.backbone(x)
     fp = self.fpn(fp)
     heatmaps = Heatmaps(self.hm_reg(fp[self.out_idx]))
     anchors = self.anchors(heatmaps)
     boxmaps = self.box_reg(fp[self.out_idx])
     return heatmaps, BoxMaps(boxmaps), anchors
Exemplo n.º 3
0
    def __call__(self, images: ImageBatch) -> YoloBoxes:
        h, w = images.shape[2:]
        device = images.device
        if self.use_cache:
            if (h, w) in self.cache:
                return self.cache[(h, w)]

        grid_y, grid_x = torch.meshgrid(  # type:ignore
            torch.arange(h, dtype=torch.float32) / h,
            torch.arange(w, dtype=torch.float32) / w,
        )
        box_wh = torch.tensor([1 / w, 1 / h])
        box_wh = self.ratios * self.scales * box_wh
        box_wh = (
            box_wh.to(device)
            .view(self.num_anchors, 2, 1, 1)
            .expand((self.num_anchors, 2, h, w))
        )
        grid_xy = (
            torch.stack([grid_x, grid_y]).to(device).expand(self.num_anchors, 2, h, w)
        )
        boxmaps = BoxMaps(torch.cat([grid_xy, box_wh], dim=1))
        boxes = boxmaps_to_boxes(boxmaps)
        boxes = yolo_clamp(boxes)

        if self.use_cache:
            self.cache[(h, w)] = boxes
        return boxes
Exemplo n.º 4
0
 def forward(self, x: ImageBatch) -> NetOutput:
     fp = self.backbone(x)
     fp = self.fpn(fp)
     h_fp = self.hm_reg(fp[self.out_idx])
     heatmaps = self.hm_out(h_fp)
     anchors = self.anchors(heatmaps)
     diffmaps = self.box_out(self.box_reg(fp[self.out_idx]))
     return anchors, BoxMaps(diffmaps), Heatmaps(heatmaps)
Exemplo n.º 5
0
    def __call__(
        self,
        box_batch: List[YoloBoxes],
        heatmaps: Heatmaps,
    ) -> BoxMaps:
        bms: List[torch.Tensor] = []
        for boxes in box_batch:
            bms.append(self._mkmaps(boxes, heatmaps))

        return BoxMaps(torch.cat(bms, dim=0))
def test_mkcornermaps(h: int, w: int, cy: int, cx: int, dy: float, dx: float) -> None:
    in_boxes = YoloBoxes(torch.tensor([[0.201, 0.402, 0.1, 0.3]]))
    to_boxes = ToBoxes(threshold=0.1)
    mkmaps = MkCornerMaps()
    hm = mkmaps([in_boxes], (h, w), (h * 10, w * 10))
    assert hm.shape == (1, 1, h, w)
    mk_anchors = Anchors()
    anchormap = mk_anchors(hm)
    diffmaps = BoxMaps(torch.zeros((1, *anchormap.shape)))
    diffmaps = in_boxes.view(1, 4, 1, 1).expand_as(diffmaps) - anchormap

    out_box_batch, out_conf_batch = to_boxes((anchormap, diffmaps, hm))
    out_boxes = out_box_batch[0]
    for box in out_boxes:
        assert F.l1_loss(box, in_boxes[0]) < 1e-8
    plot = DetectionPlot(w=w, h=h)
    plot.with_image((hm[0, 0] + 1e-4).log())
    plot.with_yolo_boxes(out_boxes, color="red")
    plot.with_yolo_boxes(in_boxes, color="blue")
    plot.save(f"store/test-corner.png")
def test_mkmaps(h: int, w: int, cy: int, cx: int, dy: float, dx: float) -> None:
    in_boxes = YoloBoxes(torch.tensor([[0.201, 0.402, 0.1, 0.3]]))
    to_boxes = ToBoxes(threshold=0.1)
    mkmaps = MkGaussianMaps(sigma=2.0)
    hm = mkmaps([in_boxes], (h, w), (h * 10, w * 10))
    assert (torch.nonzero(hm.eq(1), as_tuple=False)[0, 2:] - torch.tensor([[cy, cx]])).sum() == 0  # type: ignore
    assert hm.shape == (1, 1, h, w)
    mk_anchors = Anchors()
    anchormap = mk_anchors(hm)
    diffmaps = BoxMaps(torch.zeros((1, *anchormap.shape)))
    diffmaps = in_boxes.view(1, 4, 1, 1).expand_as(diffmaps) - anchormap

    out_box_batch, out_conf_batch = to_boxes((anchormap, diffmaps, hm))
    out_boxes = out_box_batch[0]
    for box in out_boxes:
        assert F.l1_loss(box, in_boxes[0]) < 1e-8
    plot = DetectionPlot(w=w, h=h)
    plot.with_image((hm[0, 0] + 1e-4).log())
    plot.with_yolo_boxes(in_boxes, color="blue")
    plot.with_yolo_boxes(out_boxes, color="red")
    plot.save(f"store/test-heatmapv1.png")