Exemplo n.º 1
0
    def __call__(
        self, batch: t.Tuple[ImageBatch, t.List[YoloBoxes]]
    ) -> t.Tuple[ImageBatch, List[YoloBoxes]]:
        image_batch, box_batch = batch
        image_batch = ImageBatch(image_batch.to(self.device))
        box_batch = [YoloBoxes(x.to(self.device)) for x in box_batch]

        return image_batch, box_batch
Exemplo n.º 2
0
def _collate_fn(batch: List[TrainSample],) -> Tuple[ImageBatch, List[ImageId]]:
    images: List[Any] = []
    id_batch: List[ImageId] = []
    for id, img, _, _ in batch:
        images.append(img)
        id_batch.append(id)
    return ImageBatch(torch.stack(images)), id_batch
Exemplo n.º 3
0
 def __call__(
         self, model: nn.Module,
         images: ImageBatch) -> Tuple[List[YoloBoxes], List[Confidences]]:
     images = ImageBatch(self.img_transform(images))
     outputs = model(images)
     box_batch, conf_batch = self.to_boxes(outputs)
     box_batch = [self.box_transform(boxes) for boxes in box_batch]
     return box_batch, conf_batch
def test_hfliptta() -> None:
    to_boxes = ToBoxes(threshold=0.1)
    fn = HFlipTTA(to_boxes)
    images = ImageBatch(torch.zeros((1, 3, 64, 64)))
    images[:, :, 0, 0] = torch.ones((1, 3))

    channels = 32
    backbone = ResNetBackbone("resnet34", out_channels=channels)
    model = CenterNetV1(channels=channels, backbone=backbone, out_idx=6,)
    fn(model, images)
Exemplo n.º 5
0
def collate_fn(
    batch: List[TrainSample],
) -> Tuple[List[ImageId], ImageBatch, List[YoloBoxes], List[Labels]]:
    images: List[t.Any] = []
    id_batch: List[ImageId] = []
    box_batch: List[YoloBoxes] = []
    label_batch: List[Labels] = []

    for id, img, boxes, labels in batch:
        images.append(img)
        box_batch.append(boxes)
        id_batch.append(id)
        label_batch.append(labels)
    return id_batch, ImageBatch(torch.stack(images)), box_batch, label_batch
Exemplo n.º 6
0
 def __call__(
     self, batch: t.Tuple[ImageBatch, List[YoloBoxes], List[Labels]]
 ) -> t.Tuple[ImageBatch, List[YoloBoxes], List[Labels]]:
     image_batch, boxes_batch, label_batch = batch
     return (
         ImageBatch(
             image_batch.to(self.device, non_blocking=self.non_blocking)),
         [
             YoloBoxes(x.to(self.device, non_blocking=self.non_blocking))
             for x in boxes_batch
         ],
         [
             Labels(x.to(self.device, non_blocking=self.non_blocking))
             for x in label_batch
         ],
     )
Exemplo n.º 7
0
def test_anchors(fsize: int, size: float, scales: List[float],
                 ratios: List[float]) -> None:
    h = fsize
    w = fsize
    images = ImageBatch(torch.zeros((1, 3, h, w), dtype=torch.float32))
    fn = Anchors(size=size, scales=scales, ratios=ratios)
    res = fn(images)
    num_anchors = len(scales) * len(ratios)
    anchor_count = w * h * num_anchors
    assert res.shape == (anchor_count, 4)
    offset = num_anchors * h * (w // 2) + num_anchors * h // 2
    ids = [offset + x for x in range(num_anchors)]
    plot = DetectionPlot(w=256, h=256)
    plot.with_yolo_boxes(YoloBoxes(res[ids]), color="red")
    plot.save(
        f"store/test-anchors-{fsize}-{size}-{'-'.join([str(x) for x in  scales])}-{num_anchors}.png"
    )
Exemplo n.º 8
0
 def __call__(
     self,
     src: Tuple[List[YoloBoxes], List[Confidences]],
     tgt: List[YoloBoxes],
     image_batch: ImageBatch,
 ) -> None:
     image_batch = ImageBatch(image_batch[:self.limit])
     tgt = tgt[:self.limit]
     src_box_batch, src_confidence_batch = src
     _, _, h, w = image_batch.shape
     for i, (img, sb, sc, tb) in enumerate(
             zip(image_batch, src_box_batch, src_confidence_batch, tgt)):
         plot = DetectionPlot(h=h,
                              w=w,
                              use_alpha=self.use_alpha,
                              show_probs=self.show_probs)
         plot.with_image(img, alpha=0.5)
         plot.with_yolo_boxes(tb, color="blue")
         plot.with_yolo_boxes(sb, sc, color="red")
         plot.save(f"{self.out_dir}/{self.prefix}-boxes-{i}.png")