Exemplo n.º 1
0
def read_cat_ref(cat_file):
    """
    Parses a given refrence catalogue (in ascii format,see the header for details)
    output is Obspy catalogue object
    """
    cat_ref = np.loadtxt(cat_file,delimiter=',',skiprows=1)
    cat = Catalog()
    for i,e in enumerate(cat_ref):
        event = Event(resource_id='smi:local/='+str(i),creation_info='HG')
        origin = Origin()
        origin.time = UTCDateTime(int(e[2]),int(e[3]),int(e[4]),
                                  int(e[7]),int(e[8]),e[9])
        origin.longitude = e[0]
        origin.latitude = e[1]
        origin.depth = e[6] * 1000. #in meters
        event.origins.append(origin)
        if ~(np.isnan(e[10])):
            mag = Magnitude(creation_info='HER')
            mag.mag = e[10]
            mag.magnitude_type = 'Mw'
            event.magnitudes.append(mag)
        if ~(np.isnan(e[11])):
            mag = Magnitude(creation_info='MAR')
            mag.mag = e[11]
            mag.magnitude_type = 'Mw' 
            event.magnitudes.append(mag)
        if ~(np.isnan(e[12])):
            mag = Magnitude(creation_info='SIP')
            mag.mag = e[12]
            mag.magnitude_type = 'Mw' 
            event.magnitudes.append(mag)
        cat.append(event)
    return cat
Exemplo n.º 2
0
    def _parseRecordAE(self, line, event):
        """
        Parses the 'additional hypocenter error and magnitude record' AE
        """
        orig_time_stderr = self._floatUnused(line[2:7])
        latitude_stderr = self._floatUnused(line[8:14])
        longitude_stderr = self._floatUnused(line[15:21])
        depth_stderr = self._floatUnused(line[22:27])
        gap = self._floatUnused(line[28:33])
        mag1 = self._float(line[33:36])
        mag1_type = line[36:38]
        mag2 = self._float(line[43:46])
        mag2_type = line[46:48]

        evid = event.resource_id.id.split('/')[-1]
        #this record is to be associated to the latest origin
        origin = event.origins[-1]
        self._storeUncertainty(origin.time_errors, orig_time_stderr)
        self._storeUncertainty(origin.latitude_errors,
                               self._latErrToDeg(latitude_stderr))
        self._storeUncertainty(
            origin.longitude_errors,
            self._lonErrToDeg(longitude_stderr, origin.latitude))
        self._storeUncertainty(origin.depth_errors, depth_stderr, scale=1000)
        origin.quality.azimuthal_gap = gap
        if mag1 > 0:
            mag = Magnitude()
            mag1_id = mag1_type.lower()
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, mag1_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(
                agency_id=origin.creation_info.agency_id)
            mag.mag = mag1
            mag.magnitude_type = mag1_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if mag2 > 0:
            mag = Magnitude()
            mag2_id = mag2_type.lower()
            if mag2_id == mag1_id:
                mag2_id += '2'
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, mag2_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(
                agency_id=origin.creation_info.agency_id)
            mag.mag = mag2
            mag.magnitude_type = mag2_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
Exemplo n.º 3
0
    def _parse_record_ae(self, line, event):
        """
        Parses the 'additional hypocenter error and magnitude record' AE
        """
        orig_time_stderr = self._float_unused(line[2:7])
        latitude_stderr = self._float_unused(line[8:14])
        longitude_stderr = self._float_unused(line[15:21])
        depth_stderr = self._float_unused(line[22:27])
        gap = self._float_unused(line[28:33])
        mag1 = self._float(line[33:36])
        mag1_type = line[36:38]
        mag2 = self._float(line[43:46])
        mag2_type = line[46:48]

        evid = event.resource_id.id.split('/')[-1]
        # this record is to be associated to the latest origin
        origin = event.origins[-1]
        self._store_uncertainty(origin.time_errors, orig_time_stderr)
        self._store_uncertainty(origin.latitude_errors,
                                self._lat_err_to_deg(latitude_stderr))
        self._store_uncertainty(origin.longitude_errors,
                                self._lon_err_to_deg(longitude_stderr,
                                                     origin.latitude))
        self._store_uncertainty(origin.depth_errors, depth_stderr, scale=1000)
        origin.quality.azimuthal_gap = gap
        if mag1 > 0:
            mag = Magnitude()
            mag1_id = mag1_type.lower()
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, mag1_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(
                agency_id=origin.creation_info.agency_id)
            mag.mag = mag1
            mag.magnitude_type = mag1_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if mag2 > 0:
            mag = Magnitude()
            mag2_id = mag2_type.lower()
            if mag2_id == mag1_id:
                mag2_id += '2'
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, mag2_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(
                agency_id=origin.creation_info.agency_id)
            mag.mag = mag2
            mag.magnitude_type = mag2_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
Exemplo n.º 4
0
    def _map_origin2magnitude(self, db, mtype='ml'):
        """
        Return an obspy Magnitude from an dict of CSS key/values
        corresponding to one record.
        
        Inputs
        ======
        db : dict of key/values of CSS fields from the 'origin' table

        Returns
        =======
        obspy.core.event.Magnitude

        Notes
        =====
        Any object that supports the dict 'get' method can be passed as
        input, e.g. OrderedDict, custom classes, etc.
        """
        m = Magnitude()
        m.mag = db.get(mtype)
        m.magnitude_type = mtype 
        m.creation_info = CreationInfo(
            creation_time = _utc(db.get('lddate')), 
            agency_id = self.agency,
            version = db.get('orid'),
        	author = db.get('auth'),
            )
        if m.creation_info.author.startswith('orb'):
            m.evaluation_status = "preliminary"
        else:
            m.evaluation_status = "reviewed"
        m.resource_id = self._rid(m)
        return m
Exemplo n.º 5
0
    def get_event_object(self):
        '''
        update events otime,lat,lon and mag with IRIS (or any other clients) catalog
        '''

        # get parameters from the cataog
        if self.use_catalog == 1:
            print("WARNING using event data from the IRIS catalog")
            cat = self.client.get_events(
                starttime=self.otime - self.sec_before_after_event,
                endtime=self.otime + self.sec_before_after_event)
            self.ev = cat[0]

            # use catalog parameters
            self.otime = self.ev.origins[0].time
            self.elat = self.ev.origins[0].latitude
            self.elon = self.ev.origins[0].longitude
            self.edep = self.ev.origins[0].depth
            self.emag = self.ev.magnitudes[0].mag

        # use parameters from the input file
        else:
            print("WARNING using event data from user-defined catalog")
            #self.ev = Event()
            org = Origin()
            org.latitude = self.elat
            org.longitude = self.elon
            org.depth = self.edep
            org.time = self.otime
            mag = Magnitude()
            mag.mag = self.emag
            mag.magnitude_type = "Mw"
            self.ev.origins.append(org)
            self.ev.magnitudes.append(mag)
def __toMagnitude(parser, magnitude_el, origin):
    """
    Parses a given magnitude etree element.

    :type parser: :class:`~obspy.core.util.xmlwrapper.XMLParser`
    :param parser: Open XMLParser object.
    :type magnitude_el: etree.element
    :param magnitude_el: magnitude element to be parsed.
    :return: A ObsPy :class:`~obspy.core.event.Magnitude` object.
    """
    global CURRENT_TYPE
    mag = Magnitude()
    mag.resource_id = ResourceIdentifier(prefix="/".join([RESOURCE_ROOT, "magnitude"]))
    mag.origin_id = origin.resource_id
    mag.mag, mag.mag_errors = __toFloatQuantity(parser, magnitude_el, "mag")
    # obspyck used to write variance (instead of std) in magnitude error fields
    if CURRENT_TYPE == "obspyck":
        if mag.mag_errors.uncertainty is not None:
            mag.mag_errors.uncertainty = math.sqrt(mag.mag_errors.uncertainty)
    mag.magnitude_type = parser.xpath2obj("type", magnitude_el)
    mag.station_count = parser.xpath2obj("stationCount", magnitude_el, int)
    mag.method_id = "%s/magnitude_method/%s/1" % (RESOURCE_ROOT,
        parser.xpath2obj('program', magnitude_el))
    if str(mag.method_id).lower().endswith("none"):
        mag.method_id = None

    return mag
Exemplo n.º 7
0
def __toMagnitude(parser, magnitude_el, origin):
    """
    Parses a given magnitude etree element.

    :type parser: :class:`~obspy.core.util.xmlwrapper.XMLParser`
    :param parser: Open XMLParser object.
    :type magnitude_el: etree.element
    :param magnitude_el: magnitude element to be parsed.
    :return: A ObsPy :class:`~obspy.core.event.Magnitude` object.
    """
    global CURRENT_TYPE
    mag = Magnitude()
    mag.resource_id = ResourceIdentifier(
        prefix="/".join([RESOURCE_ROOT, "magnitude"]))
    mag.origin_id = origin.resource_id
    mag.mag, mag.mag_errors = __toFloatQuantity(parser, magnitude_el, "mag")
    # obspyck used to write variance (instead of std) in magnitude error fields
    if CURRENT_TYPE == "obspyck":
        if mag.mag_errors.uncertainty is not None:
            mag.mag_errors.uncertainty = math.sqrt(mag.mag_errors.uncertainty)
            mag.mag_errors.confidence_level = 68.3
    mag.magnitude_type = parser.xpath2obj("type", magnitude_el)
    mag.station_count = parser.xpath2obj("stationCount", magnitude_el, int)
    mag.method_id = "%s/magnitude_method/%s/1" % (
        RESOURCE_ROOT, parser.xpath2obj('program', magnitude_el))
    if str(mag.method_id).lower().endswith("none"):
        mag.method_id = None

    return mag
def __toMagnitude(parser, magnitude_el):
    """
    Parses a given magnitude etree element.

    :type parser: :class:`~obspy.core.util.xmlwrapper.XMLParser`
    :param parser: Open XMLParser object.
    :type magnitude_el: etree.element
    :param magnitude_el: magnitude element to be parsed.
    :return: A ObsPy :class:`~obspy.core.event.Magnitude` object.
    """
    mag = Magnitude()
    mag.mag, mag.mag_errors = __toFloatQuantity(parser, magnitude_el, "mag")
    mag.magnitude_type = parser.xpath2obj("type", magnitude_el)
    mag.station_count = parser.xpath2obj("stationCount", magnitude_el, int)
    mag.method_id = parser.xpath2obj("program", magnitude_el)

    return mag
Exemplo n.º 9
0
def event_to_quakeml(event, filename):
    """
    Write one of those events to QuakeML.
    """
    # Create all objects.
    cat = Catalog()
    ev = Event()
    org = Origin()
    mag = Magnitude()
    fm = FocalMechanism()
    mt = MomentTensor()
    t = Tensor()
    # Link them together.
    cat.append(ev)
    ev.origins.append(org)
    ev.magnitudes.append(mag)
    ev.focal_mechanisms.append(fm)
    fm.moment_tensor = mt
    mt.tensor = t

    # Fill values
    ev.resource_id = "smi:inversion/%s" % str(event["identifier"])
    org.time = event["time"]
    org.longitude = event["longitude"]
    org.latitude = event["latitude"]
    org.depth = event["depth_in_km"] * 1000

    mag.mag = event["Mw"]
    mag.magnitude_type = "Mw"

    t.m_rr = event["Mrr"]
    t.m_tt = event["Mpp"]
    t.m_pp = event["Mtt"]
    t.m_rt = event["Mrt"]
    t.m_rp = event["Mrp"]
    t.m_tp = event["Mtp"]

    cat.write(filename, format="quakeml")
Exemplo n.º 10
0
def event_to_quakeml(event, filename):
    """
    Write one of those events to QuakeML.
    """
    # Create all objects.
    cat = Catalog()
    ev = Event()
    org = Origin()
    mag = Magnitude()
    fm = FocalMechanism()
    mt = MomentTensor()
    t = Tensor()
    # Link them together.
    cat.append(ev)
    ev.origins.append(org)
    ev.magnitudes.append(mag)
    ev.focal_mechanisms.append(fm)
    fm.moment_tensor = mt
    mt.tensor = t

    # Fill values
    ev.resource_id = "smi:inversion/%s" % str(event["identifier"])
    org.time = event["time"]
    org.longitude = event["longitude"]
    org.latitude = event["latitude"]
    org.depth = event["depth_in_km"] * 1000

    mag.mag = event["Mw"]
    mag.magnitude_type = "Mw"

    t.m_rr = event["Mrr"]
    t.m_tt = event["Mpp"]
    t.m_pp = event["Mtt"]
    t.m_rt = event["Mrt"]
    t.m_rp = event["Mrp"]
    t.m_tp = event["Mtp"]

    cat.write(filename, format="quakeml")
Exemplo n.º 11
0
    def _map_netmag2magnitude(self, db):
        """
        Return an obspy Magnitude from an dict of CSS key/values
        corresponding to one record.
        
        Inputs
        ======
        db : dict of key/values of CSS fields from the 'netmag' table

        Returns
        =======
        obspy.core.event.Magnitude

        Notes
        =====
        Any object that supports the dict 'get' method can be passed as
        input, e.g. OrderedDict, custom classes, etc.
        """
        m = Magnitude()
        m.mag = db.get('magnitude')
        m.magnitude_type = db.get('magtype')
        m.mag_errors.uncertainty = db.get('uncertainty')
        m.station_count = db.get('nsta')
        
        posted_author = _str(db.get('auth'))
        mode, status = self.get_event_status(posted_author)
        m.evaluation_mode = mode
        m.evaluation_status = status
        
        m.creation_info = CreationInfo(
            creation_time = _utc(db.get('lddate')),
            agency_id = self.agency,
            version = db.get('magid'),
            author = posted_author,
            )
        m.resource_id = self._rid(m)
        return m
    def _on_file_save(self):
        """
        Creates a new obspy.core.event.Magnitude object and writes the moment
        magnitude to it.
        """
        # Get the save filename.
        filename = QtGui.QFileDialog.getSaveFileName(caption="Save as...")
        filename = os.path.abspath(str(filename))
        mag = Magnitude()
        mag.mag = self.final_result["moment_magnitude"]
        mag.magnitude_type = "Mw"
        mag.station_count = self.final_result["station_count"]
        mag.evaluation_mode = "manual"
        # Link to the used origin.
        mag.origin_id = self.current_state["event"].origins[0].resource_id
        mag.method_id = "Magnitude picker Krischer"
        # XXX: Potentially change once this program gets more stable.
        mag.evaluation_status = "preliminary"
        # Write the other results as Comments.
        mag.comments.append( \
            Comment("Seismic moment in Nm: %g" % \
            self.final_result["seismic_moment"]))
        mag.comments.append( \
            Comment("Circular source radius in m: %.2f" % \
            self.final_result["source_radius"]))
        mag.comments.append( \
            Comment("Stress drop in Pa: %.2f" % \
            self.final_result["stress_drop"]))
        mag.comments.append( \
                Comment("Very rough Q estimation: %.1f" % \
            self.final_result["quality_factor"]))

        event = copy.deepcopy(self.current_state["event"])
        event.magnitudes.append(mag)
        cat = Catalog()
        cat.events.append(event)
        cat.write(filename, format="quakeml")
    def _on_file_save(self):
        """
        Creates a new obspy.core.event.Magnitude object and writes the moment
        magnitude to it.
        """
        # Get the save filename.
        filename = QtGui.QFileDialog.getSaveFileName(caption="Save as...")
        filename = os.path.abspath(str(filename))
        mag = Magnitude()
        mag.mag = self.final_result["moment_magnitude"]
        mag.magnitude_type = "Mw"
        mag.station_count = self.final_result["station_count"]
        mag.evaluation_mode = "manual"
        # Link to the used origin.
        mag.origin_id = self.current_state["event"].origins[0].resource_id
        mag.method_id = "Magnitude picker Krischer"
        # XXX: Potentially change once this program gets more stable.
        mag.evaluation_status = "preliminary"
        # Write the other results as Comments.
        mag.comments.append( \
            Comment("Seismic moment in Nm: %g" % \
            self.final_result["seismic_moment"]))
        mag.comments.append( \
            Comment("Circular source radius in m: %.2f" % \
            self.final_result["source_radius"]))
        mag.comments.append( \
            Comment("Stress drop in Pa: %.2f" % \
            self.final_result["stress_drop"]))
        mag.comments.append( \
                Comment("Very rough Q estimation: %.1f" % \
            self.final_result["quality_factor"]))

        event = copy.deepcopy(self.current_state["event"])
        event.magnitudes.append(mag)
        cat = Catalog()
        cat.events.append(event)
        cat.write(filename, format="quakeml")
Exemplo n.º 14
0
    def build(self):
        """
        Build an obspy moment tensor focal mech event

        This makes the tensor output into an Event containing:
        1) a FocalMechanism with a MomentTensor, NodalPlanes, and PrincipalAxes
        2) a Magnitude of the Mw from the Tensor

        Which is what we want for outputting QuakeML using
        the (slightly modified) obspy code.

        Input
        -----
        filehandle => open file OR str from filehandle.read()

        Output
        ------
        event => instance of Event() class as described above
        """
        p = self.parser
        event         = Event(event_type='earthquake')
        origin        = Origin()
        focal_mech    = FocalMechanism()
        nodal_planes  = NodalPlanes()
        moment_tensor = MomentTensor()
        principal_ax  = PrincipalAxes()
        magnitude     = Magnitude()
        data_used     = DataUsed()
        creation_info = CreationInfo(agency_id='NN')
        ev_mode = 'automatic'
        ev_stat = 'preliminary'
        evid = None
        orid = None
        # Parse the entire file line by line.
        for n,l in enumerate(p.line):
            if 'REVIEWED BY NSL STAFF' in l:
                ev_mode = 'manual'
                ev_stat = 'reviewed'
            if 'Event ID' in l:
                evid = p._id(n)
            if 'Origin ID' in l:
                orid = p._id(n)
            if 'Ichinose' in l:
                moment_tensor.category = 'regional'
            if re.match(r'^\d{4}\/\d{2}\/\d{2}', l):
                ev = p._event_info(n)
            if 'Depth' in l:
                derived_depth = p._depth(n)
            if 'Mw' in l:
                magnitude.mag = p._mw(n) 
                magnitude.magnitude_type = 'Mw'
            if 'Mo' in l and 'dyne' in l:
                moment_tensor.scalar_moment = p._mo(n)
            if 'Percent Double Couple' in l:
                moment_tensor.double_couple = p._percent(n)
            if 'Percent CLVD' in l:
                moment_tensor.clvd = p._percent(n)
            if 'Epsilon' in l:
                moment_tensor.variance = p._epsilon(n)
            if 'Percent Variance Reduction' in l:
                moment_tensor.variance_reduction = p._percent(n)
            if 'Major Double Couple' in l and 'strike' in p.line[n+1]:
                np = p._double_couple(n)
                nodal_planes.nodal_plane_1 = NodalPlane(*np[0])
                nodal_planes.nodal_plane_2 = NodalPlane(*np[1])
                nodal_planes.preferred_plane = 1
            if 'Spherical Coordinates' in l:
                mt = p._mt_sphere(n)
                moment_tensor.tensor = Tensor(
                    m_rr = mt['Mrr'],
                    m_tt = mt['Mtt'],
                    m_pp = mt['Mff'],
                    m_rt = mt['Mrt'],
                    m_rp = mt['Mrf'],
                    m_tp = mt['Mtf'],
                    )
            if 'Eigenvalues and eigenvectors of the Major Double Couple' in l:
                ax = p._vectors(n)
                principal_ax.t_axis = Axis(ax['T']['trend'], ax['T']['plunge'], ax['T']['ev'])
                principal_ax.p_axis = Axis(ax['P']['trend'], ax['P']['plunge'], ax['P']['ev'])
                principal_ax.n_axis = Axis(ax['N']['trend'], ax['N']['plunge'], ax['N']['ev'])
            if 'Number of Stations' in l:
                data_used.station_count = p._number_of_stations(n)
            if 'Maximum' in l and 'Gap' in l:
                focal_mech.azimuthal_gap = p._gap(n)
            if re.match(r'^Date', l):
                creation_info.creation_time = p._creation_time(n)
        # Creation Time
        creation_info.version = orid
        # Fill in magnitude values
        magnitude.evaluation_mode = ev_mode
        magnitude.evaluation_status = ev_stat
        magnitude.creation_info = creation_info.copy()
        magnitude.resource_id = self._rid(magnitude)
        # Stub origin
        origin.time = ev.get('time')
        origin.latitude = ev.get('lat')
        origin.longitude = ev.get('lon')
        origin.depth = derived_depth * 1000.
        origin.depth_type = "from moment tensor inversion"
        origin.creation_info = creation_info.copy()
         # Unique from true origin ID
        _oid = self._rid(origin)
        origin.resource_id = ResourceIdentifier(str(_oid) + '/mt')
        del _oid
        # Make an id for the MT that references this origin
        ogid = str(origin.resource_id)
        doid = ResourceIdentifier(ogid, referred_object=origin)
        # Make an id for the moment tensor mag which references this mag
        mrid = str(magnitude.resource_id)
        mmid = ResourceIdentifier(mrid, referred_object=magnitude)
        # MT todo: could check/use URL for RID if parsing the php file
        moment_tensor.evaluation_mode = ev_mode
        moment_tensor.evaluation_status = ev_stat
        moment_tensor.data_used = data_used
        moment_tensor.moment_magnitude_id = mmid
        moment_tensor.derived_origin_id = doid
        moment_tensor.creation_info = creation_info.copy()
        moment_tensor.resource_id = self._rid(moment_tensor)
        # Fill in focal_mech values
        focal_mech.nodal_planes  = nodal_planes
        focal_mech.moment_tensor = moment_tensor
        focal_mech.principal_axes = principal_ax
        focal_mech.creation_info = creation_info.copy()
        focal_mech.resource_id = self._rid(focal_mech)
        # add mech and new magnitude to event
        event.focal_mechanisms = [focal_mech]
        event.magnitudes = [magnitude]
        event.origins = [origin]
        event.creation_info = creation_info.copy()
        # If an MT was done, that's the preferred mag/mech
        event.preferred_magnitude_id = str(magnitude.resource_id)
        event.preferred_focal_mechanism_id = str(focal_mech.resource_id)
        if evid:
            event.creation_info.version = evid
        event.resource_id = self._rid(event)
        self.event = event
Exemplo n.º 15
0
        #        if code=="WITA" or code=="AWST":
        #            start_time-=28800

        # Build event object
        event = Event(resource_id='GG_cat_' + str(event_num),
                      creation_info='JG')
        event_num += 1
        origin = Origin()
        origin.time = start_time
        origin.longitude = lon
        origin.latitude = lat
        origin.depth = dep
        event.origins.append(origin)
        mag = Magnitude(creation_info='GG_cat')
        mag.mag = mag_pref
        mag.magnitude_type = mag_type
        event.magnitudes.append(mag)
        ''' the time window to request the data will be 20 minutes, check maximum travel time and increase this value accordingly '''
        end_time = start_time + 1200  # 20 minutes - to catch ~Rayleigh waves at 20 degrees distance (assume v>=3km/s)
        ''' get all waveform data available, use wildcards to reduce the data volume and speedup the process,
        unfortunately we need to request few times for every number of characters that forms the station name '''
        st_3 = client.get_waveforms("AU", "???", "", "[BS]?[ENZ]", start_time,
                                    end_time)
        st_4 = client.get_waveforms("AU", "????", "", "[BS]?[ENZ]", start_time,
                                    end_time)
        if len(st_4) > 0:
            st = st_3 + st_4
        else:
            st = st_3
        print st
        # Cleanup duplicate traces returned by server
Exemplo n.º 16
0
    def _parse_first_line_origin(self, line, event, magnitudes):
        """
        Parse the first line of origin data.

        :type line: str
        :param line: Line to parse.
        :type event: :class:`~obspy.core.event.event.Event`
        :param event: Event of the origin.
        :type magnitudes: list of
            :class:`~obspy.core.event.magnitude.Magnitude`
        :param magnitudes: Store magnitudes in a list to keep
            their positions.
        :rtype: :class:`~obspy.core.event.origin.Origin`,
            :class:`~obspy.core.event.resourceid.ResourceIdentifier`
        :returns: Parsed origin or None, resource identifier of the
            origin.
        """
        magnitude_types = []
        magnitude_values = []
        magnitude_station_counts = []

        fields = self.fields['line_1']

        time_origin = line[fields['time']].strip()
        time_fixed_flag = line[fields['time_fixf']].strip()
        latitude = line[fields['lat']].strip()
        longitude = line[fields['lon']].strip()
        epicenter_fixed_flag = line[fields['epicenter_fixf']].strip()
        depth = line[fields['depth']].strip()
        depth_fixed_flag = line[fields['depth_fixf']].strip()
        phase_count = line[fields['n_def']].strip()
        station_count = line[fields['n_sta']].strip()
        azimuthal_gap = line[fields['gap']].strip()
        magnitude_types.append(line[fields['mag_type_1']].strip())
        magnitude_values.append(line[fields['mag_1']].strip())
        magnitude_station_counts.append(line[fields['mag_n_sta_1']].strip())
        magnitude_types.append(line[fields['mag_type_2']].strip())
        magnitude_values.append(line[fields['mag_2']].strip())
        magnitude_station_counts.append(line[fields['mag_n_sta_2']].strip())
        magnitude_types.append(line[fields['mag_type_3']].strip())
        magnitude_values.append(line[fields['mag_3']].strip())
        magnitude_station_counts.append(line[fields['mag_n_sta_3']].strip())
        author = line[fields['author']].strip()
        origin_id = line[fields['id']].strip()

        origin = Origin()
        origin.quality = OriginQuality()

        try:
            origin.time = UTCDateTime(time_origin.replace('/', '-'))
            origin.latitude = float(latitude)
            origin.longitude = float(longitude)
        except (TypeError, ValueError):
            self._warn('Missing origin data, skipping event')
            return None, None

        origin.time_fixed = time_fixed_flag.lower() == 'f'
        origin.epicenter_fixed = epicenter_fixed_flag.lower() == 'f'

        try:
            # Convert value from km to m
            origin.depth = float(depth) * 1000
        except ValueError:
            pass
        try:
            origin.depth_type = DEPTH_TYPES[depth_fixed_flag]
        except KeyError:
            origin.depth_type = OriginDepthType('from location')
        try:
            origin.quality.used_phase_count = int(phase_count)
            origin.quality.associated_phase_count = int(phase_count)
        except ValueError:
            pass
        try:
            origin.quality.used_station_count = int(station_count)
            origin.quality.associated_station_count = int(station_count)
        except ValueError:
            pass
        try:
            origin.quality.azimuthal_gap = float(azimuthal_gap)
        except ValueError:
            pass

        self.author = author
        origin.creation_info = self._get_creation_info()

        public_id = "origin/%s" % origin_id
        origin_res_id = self._get_res_id(public_id)

        for i in range(3):
            try:
                magnitude = Magnitude()
                magnitude.creation_info = self._get_creation_info()
                magnitude.magnitude_type = magnitude_types[i]
                magnitude.mag = float(magnitude_values[i])
                magnitude.station_count = int(magnitude_station_counts[i])
                magnitude.origin_id = origin_res_id
                magnitudes.append(magnitude)
                event.magnitudes.append(magnitude)
            except ValueError:
                # Magnitude can be empty but we need to keep the
                # position between mag1, mag2 or mag3.
                magnitudes.append(None)

        return origin, origin_res_id
Exemplo n.º 17
0
def iris2quakeml(url, output_folder=None):
    if not "/spudservice/" in url:
        url = url.replace("/spud/", "/spudservice/")
        if url.endswith("/"):
            url += "quakeml"
        else:
            url += "/quakeml"
    print "Downloading %s..." % url
    r = requests.get(url)
    if r.status_code != 200:
        msg = "Error Downloading file!"
        raise Exception(msg)

    # For some reason the quakeml file is escaped HTML.
    h = HTMLParser.HTMLParser()

    data = h.unescape(r.content)

    # Replace some XML tags.
    data = data.replace("long-period body waves", "body waves")
    data = data.replace("intermediate-period surface waves", "surface waves")
    data = data.replace("long-period mantle waves", "mantle waves")

    data = data.replace("<html><body><pre>", "")
    data = data.replace("</pre></body></html>", "")

    # Change the resource identifiers. Colons are not allowed in QuakeML.
    pattern = r"(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2})\.(\d{6})"
    data = re.sub(pattern, r"\1-\2-\3T\4-\5-\6.\7", data)

    data = StringIO(data)

    try:
        cat = readEvents(data)
    except:
        msg = "Could not read downloaded event data"
        raise ValueError(msg)

    # Parse the event, and use only one origin, magnitude and focal mechanism.
    # Only the first event is used. Should not be a problem for the chosen
    # global cmt application.
    ev = cat[0]

    if ev.preferred_origin():
        ev.origins = [ev.preferred_origin()]
    else:
        ev.origins = [ev.origins[0]]
    if ev.preferred_focal_mechanism():
        ev.focal_mechanisms = [ev.preferred_focal_mechanism()]
    else:
        ev.focal_mechanisms = [ev.focal_mechanisms[0]]

    try:
        mt = ev.focal_mechanisms[0].moment_tensor
    except:
        msg = "No moment tensor found in file."
        raise ValueError
    seismic_moment_in_dyn_cm = mt.scalar_moment
    if not seismic_moment_in_dyn_cm:
        msg = "No scalar moment found in file."
        raise ValueError(msg)

    # Create a new magnitude object with the moment magnitude calculated from
    # the given seismic moment.
    mag = Magnitude()
    mag.magnitude_type = "Mw"
    mag.origin_id = ev.origins[0].resource_id
    # This is the formula given on the GCMT homepage.
    mag.mag = (2.0 / 3.0) * (math.log10(seismic_moment_in_dyn_cm) - 16.1)
    mag.resource_id = ev.origins[0].resource_id.resource_id.replace("Origin",
        "Magnitude")
    ev.magnitudes = [mag]
    ev.preferred_magnitude_id = mag.resource_id

    # Convert the depth to meters.
    org = ev.origins[0]
    org.depth *= 1000.0
    if org.depth_errors.uncertainty:
        org.depth_errors.uncertainty *= 1000.0

    # Ugly asserts -- this is just a simple script.
    assert(len(ev.magnitudes) == 1)
    assert(len(ev.origins) == 1)
    assert(len(ev.focal_mechanisms) == 1)

    # All values given in the QuakeML file are given in dyne * cm. Convert them
    # to N * m.
    for key, value in mt.tensor.iteritems():
        if key.startswith("m_") and len(key) == 4:
            mt.tensor[key] /= 1E7
        if key.endswith("_errors") and hasattr(value, "uncertainty"):
            mt.tensor[key].uncertainty /= 1E7
    mt.scalar_moment /= 1E7
    if mt.scalar_moment_errors.uncertainty:
        mt.scalar_moment_errors.uncertainty /= 1E7
    p_axes = ev.focal_mechanisms[0].principal_axes
    for ax in [p_axes.t_axis, p_axes.p_axis, p_axes.n_axis]:
        if ax is None or not ax.length:
            continue
        ax.length /= 1E7

    # Check if it has a source time function
    stf = mt.source_time_function
    if stf:
        if stf.type != "triangle":
            msg = ("Source time function type '%s' not yet mapped. Please "
                "contact the developers.") % stf.type
            raise NotImplementedError(msg)
        if not stf.duration:
            if not stf.decay_time:
                msg = "Not known how to derive duration without decay time."
                raise NotImplementedError(msg)
            # Approximate the duraction for triangular STF.
            stf.duration = 2 * stf.decay_time

    # Get the flinn_engdahl region for a nice name.
    fe = FlinnEngdahl()
    region_name = fe.get_region(ev.origins[0].longitude,
        ev.origins[0].latitude)
    region_name = region_name.replace(" ", "_")
    event_name = "GCMT_event_%s_Mag_%.1f_%s-%s-%s-%s-%s.xml" % \
        (region_name, ev.magnitudes[0].mag, ev.origins[0].time.year,
        ev.origins[0].time.month, ev.origins[0].time.day,
        ev.origins[0].time.hour, ev.origins[0].time.minute)

    # Check if the ids of the magnitude and origin contain the corresponding
    # tag. Otherwise replace tme.
    ev.origins[0].resource_id = ev.origins[0].resource_id.resource_id.replace(
        "quakeml/gcmtid", "quakeml/origin/gcmtid")
    ev.magnitudes[0].resource_id = \
        ev.magnitudes[0].resource_id.resource_id.replace(
            "quakeml/gcmtid", "quakeml/magnitude/gcmtid")

    # Fix up the moment tensor resource_ids.
    mt.derived_origin_id = ev.origins[0].resource_id
    mt.resource_id = mt.resource_id.resource_id.replace("focalmechanism",
        "momenttensor")

    cat = Catalog()
    cat.resource_id = ev.origins[0].resource_id.resource_id.replace("origin",
        "event_parameters")
    cat.append(ev)
    if output_folder:
        event_name = os.path.join(output_folder, event_name)
    cat.write(event_name, format="quakeml", validate=True)
    print "Written file", event_name
Exemplo n.º 18
0
def par2quakeml(Par_filename,
                QuakeML_filename,
                rotation_axis=[0.0, 1.0, 0.0],
                rotation_angle=-57.5,
                origin_time="2000-01-01 00:00:00.0",
                event_type="other event"):
    # initialise event
    ev = Event()

    # open and read Par file
    fid = open(Par_filename, 'r')

    fid.readline()
    fid.readline()
    fid.readline()
    fid.readline()

    lat_old = 90.0 - float(fid.readline().strip().split()[0])
    lon_old = float(fid.readline().strip().split()[0])
    depth = float(fid.readline().strip().split()[0])

    fid.readline()

    Mtt_old = float(fid.readline().strip().split()[0])
    Mpp_old = float(fid.readline().strip().split()[0])
    Mrr_old = float(fid.readline().strip().split()[0])
    Mtp_old = float(fid.readline().strip().split()[0])
    Mtr_old = float(fid.readline().strip().split()[0])
    Mpr_old = float(fid.readline().strip().split()[0])

    # rotate event into physical domain

    lat, lon = rot.rotate_lat_lon(lat_old, lon_old, rotation_axis,
                                  rotation_angle)
    Mrr, Mtt, Mpp, Mtr, Mpr, Mtp = rot.rotate_moment_tensor(
        Mrr_old, Mtt_old, Mpp_old, Mtr_old, Mpr_old, Mtp_old, lat_old, lon_old,
        rotation_axis, rotation_angle)

    # populate event origin data
    ev.event_type = event_type

    ev_origin = Origin()
    ev_origin.time = UTCDateTime(origin_time)
    ev_origin.latitude = lat
    ev_origin.longitude = lon
    ev_origin.depth = depth
    ev.origins.append(ev_origin)

    # populte event moment tensor

    ev_tensor = Tensor()
    ev_tensor.m_rr = Mrr
    ev_tensor.m_tt = Mtt
    ev_tensor.m_pp = Mpp
    ev_tensor.m_rt = Mtr
    ev_tensor.m_rp = Mpr
    ev_tensor.m_tp = Mtp

    ev_momenttensor = MomentTensor()
    ev_momenttensor.tensor = ev_tensor
    ev_momenttensor.scalar_moment = np.sqrt(Mrr**2 + Mtt**2 + Mpp**2 + Mtr**2 +
                                            Mpr**2 + Mtp**2)

    ev_focalmechanism = FocalMechanism()
    ev_focalmechanism.moment_tensor = ev_momenttensor
    ev_focalmechanism.nodal_planes = NodalPlanes().setdefault(0, 0)

    ev.focal_mechanisms.append(ev_focalmechanism)

    # populate event magnitude
    ev_magnitude = Magnitude()
    ev_magnitude.mag = 0.667 * (np.log10(ev_momenttensor.scalar_moment) - 9.1)
    ev_magnitude.magnitude_type = 'Mw'
    ev.magnitudes.append(ev_magnitude)

    # write QuakeML file
    cat = Catalog()
    cat.append(ev)
    cat.write(QuakeML_filename, format="quakeml")

    # clean up
    fid.close()
Exemplo n.º 19
0
def _read_single_event(event_file, locate_dir, units, local_mag_ph):
    """
    Parse an event file from QuakeMigrate into an obspy Event object.

    Parameters
    ----------
    event_file : `pathlib.Path` object
        Path to .event file to read.
    locate_dir : `pathlib.Path` object
        Path to locate directory (contains "events", "picks" etc. directories).
    units : {"km", "m"}
        Grid projection coordinates for QM LUT (determines units of depths and
        uncertainties in the .event files).
    local_mag_ph : {"S", "P"}
        Amplitude measurement used to calculate local magnitudes.

    Returns
    -------
    event : `obspy.Event` object
        Event object populated with all available information output by
        :class:`~quakemigrate.signal.scan.locate()`, including event locations
        and uncertainties, picks, and amplitudes and magnitudes if available.

    """

    # Parse information from event file
    event_info = pd.read_csv(event_file).iloc[0]
    event_uid = str(event_info["EventID"])

    # Set distance conversion factor (from units of QM LUT projection units).
    if units == "km":
        factor = 1e3
    elif units == "m":
        factor = 1
    else:
        raise AttributeError(f"units must be 'km' or 'm'; not {units}")

    # Create event object to store origin and pick information
    event = Event()
    event.extra = AttribDict()
    event.resource_id = str(event_info["EventID"])
    event.creation_info = CreationInfo(author="QuakeMigrate",
                                       version=quakemigrate.__version__)

    # Add COA info to extra
    event.extra.coa = {"value": event_info["COA"], "namespace": ns}
    event.extra.coa_norm = {"value": event_info["COA_NORM"], "namespace": ns}
    event.extra.trig_coa = {"value": event_info["TRIG_COA"], "namespace": ns}
    event.extra.dec_coa = {"value": event_info["DEC_COA"], "namespace": ns}
    event.extra.dec_coa_norm = {
        "value": event_info["DEC_COA_NORM"],
        "namespace": ns
    }

    # Determine location of cut waveform data - add to event object as a
    # custom extra attribute.
    mseed = locate_dir / "raw_cut_waveforms" / event_uid
    event.extra.cut_waveforms_file = {
        "value": str(mseed.with_suffix(".m").resolve()),
        "namespace": ns
    }
    if (locate_dir / "real_cut_waveforms").exists():
        mseed = locate_dir / "real_cut_waveforms" / event_uid
        event.extra.real_cut_waveforms_file = {
            "value": str(mseed.with_suffix(".m").resolve()),
            "namespace": ns
        }
    if (locate_dir / "wa_cut_waveforms").exists():
        mseed = locate_dir / "wa_cut_waveforms" / event_uid
        event.extra.wa_cut_waveforms_file = {
            "value": str(mseed.with_suffix(".m").resolve()),
            "namespace": ns
        }

    # Create origin with spline location and set to preferred event origin.
    origin = Origin()
    origin.method_id = "spline"
    origin.longitude = event_info["X"]
    origin.latitude = event_info["Y"]
    origin.depth = event_info["Z"] * factor
    origin.time = UTCDateTime(event_info["DT"])
    event.origins = [origin]
    event.preferred_origin_id = origin.resource_id

    # Create origin with gaussian location and associate with event
    origin = Origin()
    origin.method_id = "gaussian"
    origin.longitude = event_info["GAU_X"]
    origin.latitude = event_info["GAU_Y"]
    origin.depth = event_info["GAU_Z"] * factor
    origin.time = UTCDateTime(event_info["DT"])
    event.origins.append(origin)

    ouc = OriginUncertainty()
    ce = ConfidenceEllipsoid()
    ce.semi_major_axis_length = event_info["COV_ErrY"] * factor
    ce.semi_intermediate_axis_length = event_info["COV_ErrX"] * factor
    ce.semi_minor_axis_length = event_info["COV_ErrZ"] * factor
    ce.major_axis_plunge = 0
    ce.major_axis_azimuth = 0
    ce.major_axis_rotation = 0
    ouc.confidence_ellipsoid = ce
    ouc.preferred_description = "confidence ellipsoid"

    # Set uncertainties for both as the gaussian uncertainties
    for origin in event.origins:
        origin.longitude_errors.uncertainty = kilometer2degrees(
            event_info["GAU_ErrX"] * factor / 1e3)
        origin.latitude_errors.uncertainty = kilometer2degrees(
            event_info["GAU_ErrY"] * factor / 1e3)
        origin.depth_errors.uncertainty = event_info["GAU_ErrZ"] * factor
        origin.origin_uncertainty = ouc

    # Add OriginQuality info to each origin?
    for origin in event.origins:
        origin.origin_type = "hypocenter"
        origin.evaluation_mode = "automatic"

    # --- Handle picks file ---
    pick_file = locate_dir / "picks" / event_uid
    if pick_file.with_suffix(".picks").is_file():
        picks = pd.read_csv(pick_file.with_suffix(".picks"))
    else:
        return None

    for _, pickline in picks.iterrows():
        station = str(pickline["Station"])
        phase = str(pickline["Phase"])
        wid = WaveformStreamID(network_code="", station_code=station)

        for method in ["modelled", "autopick"]:
            pick = Pick()
            pick.extra = AttribDict()
            pick.waveform_id = wid
            pick.method_id = method
            pick.phase_hint = phase
            if method == "autopick" and str(pickline["PickTime"]) != "-1":
                pick.time = UTCDateTime(pickline["PickTime"])
                pick.time_errors.uncertainty = float(pickline["PickError"])
                pick.extra.snr = {
                    "value": float(pickline["SNR"]),
                    "namespace": ns
                }
            elif method == "modelled":
                pick.time = UTCDateTime(pickline["ModelledTime"])
            else:
                continue
            event.picks.append(pick)

    # --- Handle amplitudes file ---
    amps_file = locate_dir / "amplitudes" / event_uid
    if amps_file.with_suffix(".amps").is_file():
        amps = pd.read_csv(amps_file.with_suffix(".amps"))

        i = 0
        for _, ampsline in amps.iterrows():
            wid = WaveformStreamID(seed_string=ampsline["id"])
            noise_amp = ampsline["Noise_amp"] / 1000  # mm to m
            for phase in ["P_amp", "S_amp"]:
                amp = Amplitude()
                if pd.isna(ampsline[phase]):
                    continue
                amp.generic_amplitude = ampsline[phase] / 1000  # mm to m
                amp.generic_amplitude_errors.uncertainty = noise_amp
                amp.unit = "m"
                amp.type = "AML"
                amp.method_id = phase
                amp.period = 1 / ampsline[f"{phase[0]}_freq"]
                amp.time_window = TimeWindow(
                    reference=UTCDateTime(ampsline[f"{phase[0]}_time"]))
                # amp.pick_id = ?
                amp.waveform_id = wid
                # amp.filter_id = ?
                amp.magnitude_hint = "ML"
                amp.evaluation_mode = "automatic"
                amp.extra = AttribDict()
                try:
                    amp.extra.filter_gain = {
                        "value": ampsline[f"{phase[0]}_filter_gain"],
                        "namespace": ns
                    }
                    amp.extra.avg_amp = {
                        "value": ampsline[f"{phase[0]}_avg_amp"] / 1000,  # m
                        "namespace": ns
                    }
                except KeyError:
                    pass

                if phase[0] == local_mag_ph and not pd.isna(ampsline["ML"]):
                    i += 1
                    stat_mag = StationMagnitude()
                    stat_mag.extra = AttribDict()
                    # stat_mag.origin_id = ? local_mag_loc
                    stat_mag.mag = ampsline["ML"]
                    stat_mag.mag_errors.uncertainty = ampsline["ML_Err"]
                    stat_mag.station_magnitude_type = "ML"
                    stat_mag.amplitude_id = amp.resource_id
                    stat_mag.extra.picked = {
                        "value": ampsline["is_picked"],
                        "namespace": ns
                    }
                    stat_mag.extra.epi_dist = {
                        "value": ampsline["epi_dist"],
                        "namespace": ns
                    }
                    stat_mag.extra.z_dist = {
                        "value": ampsline["z_dist"],
                        "namespace": ns
                    }

                    event.station_magnitudes.append(stat_mag)

                event.amplitudes.append(amp)

        mag = Magnitude()
        mag.extra = AttribDict()
        mag.mag = event_info["ML"]
        mag.mag_errors.uncertainty = event_info["ML_Err"]
        mag.magnitude_type = "ML"
        # mag.origin_id = ?
        mag.station_count = i
        mag.evaluation_mode = "automatic"
        mag.extra.r2 = {"value": event_info["ML_r2"], "namespace": ns}

        event.magnitudes = [mag]
        event.preferred_magnitude_id = mag.resource_id

    return event
Exemplo n.º 20
0
        # Build event object
        evnt = Event(resource_id='GG_cat_' + str(evnum + 1),
                     creation_info='AU')

        origin = Origin()
        origin.time = ev['datetime']
        origin.longitude = ev['lon']
        origin.latitude = ev['lat']
        origin.depth = ev['dep']

        evnt.origins.append(origin)

        mag = Magnitude(creation_info='GG_cat')
        mag.mag = ev['prefmag']
        mag.magnitude_type = ev['prefmagtype']

        evnt.magnitudes.append(mag)
        ''' the time window to request the data will be 20 minutes, check maximum travel time and increase this value accordingly '''
        #end_time=start_time+960 # 16 minutes
        start_time = dt - datetime.timedelta(seconds=60)
        end_time = dt + datetime.timedelta(seconds=960)  # 16 minutes
        #end_time   = dt + datetime.timedelta(seconds=600) # 5 minutes
        ''' get all waveform data available, use wildcards to reduce the data volume and speedup the process,
        unfortunately we need to request few times for every number of characters that forms the station name '''
        # kluge to fix non-retrieval of data  - loop through alphabet integers
        for ch in range(ord('A'), ord('Z') + 1):
            print 'Stations beginning with ', chr(ch)
            st_3 = client.get_waveforms("AU",
                                        chr(ch) + "??", "", "[BSEH]?[ENZ]",
                                        start_time, end_time)
Exemplo n.º 21
0
def request_gcmt(starttime,
                 endtime,
                 minmagnitude=None,
                 mindepth=None,
                 maxdepth=None,
                 minlatitude=None,
                 maxlatitude=None,
                 minlongitude=None,
                 maxlongitude=None):
    from mechanize import Browser
    import re
    """
    Description
    I am using mechanize. My attempt is just preliminary, for the current
    globalcmt.org site. It is possible to store Moment Tensor information
    in the catalog file.
    """

    # Split numbers and text
    r = re.compile("([a-zA-Z]+)([0-9]+)")
    br = Browser()
    br.open('http://www.globalcmt.org/CMTsearch.html')
    # Site has just one form
    br.select_form(nr=0)

    br.form['yr'] = str(starttime.year)
    br.form['mo'] = str(starttime.month)
    br.form['day'] = str(starttime.day)
    br.form['oyr'] = str(endtime.year)
    br.form['omo'] = str(endtime.month)
    br.form['oday'] = str(endtime.day)
    br.form['list'] = ['4']
    br.form['itype'] = ['ymd']
    br.form['otype'] = ['ymd']

    if minmagnitude:
        br.form['lmw'] = str(minmagnitude)
    if minlatitude:
        br.form['llat'] = str(minlatitude)
    if maxlatitude:
        br.form['ulat'] = str(maxlatitude)
    if minlongitude:
        br.form['llon'] = str(minlongitude)
    if maxlongitude:
        br.form['ulon'] = str(maxlongitude)
    if mindepth:
        br.form['lhd'] = str(mindepth)
    if maxdepth:
        br.form['uhd'] = str(maxdepth)

    print("Submitting parameters to globalcmt.org ")
    req = br.submit()
    print("Retrieving data, creating catalog.")

    data = []
    for line in req:
        data.append(line)

    data_chunked = _chunking_list(keyword='\n', list=data)
    origins = []
    magnitudes = []
    tensor = []

    for line in data_chunked:
        for element in line:
            if 'event name' in element:
                try:
                    org = line[1].split()
                    year = int(r.match(org[0]).groups()[1])
                    mon = int(org[1])
                    day = int(org[2])
                    hour = int(org[3])
                    minute = int(org[4])
                    sec_temp = int(org[5].split('.')[0])
                    msec_temp = int(org[5].split('.')[1])

                except:
                    org = line[1].split()
                    year = int(org[1])
                    mon = int(org[2])
                    day = int(org[3])
                    hour = int(org[4])
                    minute = int(org[5])
                    sec_temp = int(org[6].split('.')[0])
                    msec_temp = int(org[6].split('.')[1])

                origins_temp = UTCDateTime(year, mon, day, hour, minute,
                                           sec_temp, msec_temp)
                # adding time shift located in line[3]
                origin = origins_temp + float(line[3].split()[2])
                magnitude = float(line[1].split()[10])
                latitude = float(line[5].split()[1])
                longitude = float(line[6].split()[1])
                depth = 1000. * float(line[7].split()[1])
                m_rr = float(line[8].split()[1])
                m_tt = float(line[9].split()[1])
                m_pp = float(line[10].split()[1])
                m_rt = float(line[11].split()[1])
                m_rp = float(line[12].split()[1])
                m_tp = float(line[13].split()[1])

                magnitudes.append(("Mw", magnitude))
                origins.append((latitude, longitude, depth, origin))
                tensor.append((m_rr, m_tt, m_pp, m_rt, m_rp, m_tp))

    cat = Catalog()

    for mag, org, ten in zip(magnitudes, origins, tensor):
        # Create magnitude object.
        magnitude = Magnitude()
        magnitude.magnitude_type = mag[0]
        magnitude.mag = mag[1]
        # Write origin object.
        origin = Origin()
        origin.latitude = org[0]
        origin.longitude = org[1]
        origin.depth = org[2]
        origin.time = org[3]
        # Create event object and append to catalog object.
        event = Event()
        event.magnitudes.append(magnitude)
        event.origins.append(origin)

        event.MomentTensor = MomentTensor()
        event.MomentTensor.m_rr = ten[0]
        event.MomentTensor.m_tt = ten[1]
        event.MomentTensor.m_pp = ten[2]
        event.MomentTensor.m_rt = ten[3]
        event.MomentTensor.m_rp = ten[4]
        event.MomentTensor.m_tp = ten[5]

        cat.append(event)

    return cat
Exemplo n.º 22
0
    def _parse_first_line_origin(self, line, event, magnitudes):
        """
        Parse the first line of origin data.

        :type line: str
        :param line: Line to parse.
        :type event: :class:`~obspy.core.event.event.Event`
        :param event: Event of the origin.
        :type magnitudes: list of
            :class:`~obspy.core.event.magnitude.Magnitude`
        :param magnitudes: Store magnitudes in a list to keep
            their positions.
        :rtype: :class:`~obspy.core.event.origin.Origin`,
            :class:`~obspy.core.event.resourceid.ResourceIdentifier`
        :returns: Parsed origin or None, resource identifier of the
            origin.
        """
        magnitude_types = []
        magnitude_values = []
        magnitude_station_counts = []

        fields = self.fields['line_1']

        time_origin = line[fields['time']].strip()
        time_fixed_flag = line[fields['time_fixf']].strip()
        latitude = line[fields['lat']].strip()
        longitude = line[fields['lon']].strip()
        epicenter_fixed_flag = line[fields['epicenter_fixf']].strip()
        depth = line[fields['depth']].strip()
        depth_fixed_flag = line[fields['depth_fixf']].strip()
        phase_count = line[fields['n_def']].strip()
        station_count = line[fields['n_sta']].strip()
        azimuthal_gap = line[fields['gap']].strip()
        magnitude_types.append(line[fields['mag_type_1']].strip())
        magnitude_values.append(line[fields['mag_1']].strip())
        magnitude_station_counts.append(line[fields['mag_n_sta_1']].strip())
        magnitude_types.append(line[fields['mag_type_2']].strip())
        magnitude_values.append(line[fields['mag_2']].strip())
        magnitude_station_counts.append(line[fields['mag_n_sta_2']].strip())
        magnitude_types.append(line[fields['mag_type_3']].strip())
        magnitude_values.append(line[fields['mag_3']].strip())
        magnitude_station_counts.append(line[fields['mag_n_sta_3']].strip())
        author = line[fields['author']].strip()
        origin_id = line[fields['id']].strip()

        origin = Origin()
        origin.quality = OriginQuality()

        try:
            origin.time = UTCDateTime(time_origin.replace('/', '-'))
            origin.latitude = float(latitude)
            origin.longitude = float(longitude)
        except (TypeError, ValueError):
            self._warn('Missing origin data, skipping event')
            return None, None

        origin.time_fixed = time_fixed_flag.lower() == 'f'
        origin.epicenter_fixed = epicenter_fixed_flag.lower() == 'f'

        try:
            # Convert value from km to m
            origin.depth = float(depth) * 1000
        except ValueError:
            pass
        try:
            origin.depth_type = DEPTH_TYPES[depth_fixed_flag]
        except KeyError:
            origin.depth_type = OriginDepthType('from location')
        try:
            origin.quality.used_phase_count = int(phase_count)
            origin.quality.associated_phase_count = int(phase_count)
        except ValueError:
            pass
        try:
            origin.quality.used_station_count = int(station_count)
            origin.quality.associated_station_count = int(station_count)
        except ValueError:
            pass
        try:
            origin.quality.azimuthal_gap = float(azimuthal_gap)
        except ValueError:
            pass

        self.author = author
        origin.creation_info = self._get_creation_info()

        public_id = "origin/%s" % origin_id
        origin_res_id = self._get_res_id(public_id)

        for i in range(3):
            try:
                magnitude = Magnitude()
                magnitude.creation_info = self._get_creation_info()
                magnitude.magnitude_type = magnitude_types[i]
                magnitude.mag = float(magnitude_values[i])
                magnitude.station_count = int(magnitude_station_counts[i])
                magnitude.origin_id = origin_res_id
                magnitudes.append(magnitude)
                event.magnitudes.append(magnitude)
            except ValueError:
                # Magnitude can be empty but we need to keep the
                # position between mag1, mag2 or mag3.
                magnitudes.append(None)

        return origin, origin_res_id
Exemplo n.º 23
0
    def _parse_record_e(self, line, event):
        """
        Parses the 'error and magnitude' record E
        """
        orig_time_stderr = self._float(line[2:7])
        latitude_stderr = self._float(line[8:14])
        longitude_stderr = self._float(line[15:21])
        depth_stderr = self._float(line[22:27])
        mb_mag = self._float(line[28:31])
        mb_nsta = self._int(line[32:35])
        ms_mag = self._float(line[36:39])
        ms_nsta = self._int(line[39:42])
        mag1 = self._float(line[42:45])
        mag1_type = line[45:47]
        mag1_source_code = line[47:51].strip()
        mag2 = self._float(line[51:54])
        mag2_type = line[54:56]
        mag2_source_code = line[56:60].strip()

        evid = event.resource_id.id.split('/')[-1]
        origin = event.origins[0]
        self._store_uncertainty(origin.time_errors, orig_time_stderr)
        self._store_uncertainty(origin.latitude_errors,
                                self._lat_err_to_deg(latitude_stderr))
        self._store_uncertainty(origin.longitude_errors,
                                self._lon_err_to_deg(longitude_stderr,
                                                     origin.latitude))
        self._store_uncertainty(origin.depth_errors, depth_stderr, scale=1000)
        if mb_mag is not None:
            mag = Magnitude()
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, 'mb'))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id='USGS-NEIC')
            mag.mag = mb_mag
            mag.magnitude_type = 'Mb'
            mag.station_count = mb_nsta
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if ms_mag is not None:
            mag = Magnitude()
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, 'ms'))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id='USGS-NEIC')
            mag.mag = ms_mag
            mag.magnitude_type = 'Ms'
            mag.station_count = ms_nsta
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if mag1 is not None:
            mag = Magnitude()
            mag1_id = mag1_type.lower()
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, mag1_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id=mag1_source_code)
            mag.mag = mag1
            mag.magnitude_type = mag1_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if mag2 is not None:
            mag = Magnitude()
            mag2_id = mag2_type.lower()
            if mag2_id == mag1_id:
                mag2_id += '2'
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, mag2_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id=mag2_source_code)
            mag.mag = mag2
            mag.magnitude_type = mag2_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
def calculate_moment_magnitudes(cat, output_file):
    """
    :param cat: obspy.core.event.Catalog object.
    """

    Mws = []
    Mls = []
    Mws_std = []

    for event in cat:
        if not event.origins:
            print "No origin for event %s" % event.resource_id
            continue
        if not event.magnitudes:
            print "No magnitude for event %s" % event.resource_id
            continue
        origin_time = event.origins[0].time
        local_magnitude = event.magnitudes[0].mag
        #if local_magnitude < 1.0:
            #continue
        moments = []
        source_radii = []
        corner_frequencies = []
        for pick in event.picks:
            # Only p phase picks.
            if pick.phase_hint.lower() == "p":
                radiation_pattern = 0.52
                velocity = V_P
                k = 0.32
            elif pick.phase_hint.lower() == "s":
                radiation_pattern = 0.63
                velocity = V_S
                k = 0.21
            else:
                continue
            distance = (pick.time - origin_time) * velocity
            if distance <= 0.0:
                continue
            stream = get_corresponding_stream(pick.waveform_id, pick.time,
                                              PADDING)
            if stream is None or len(stream) != 3:
                continue
            omegas = []
            corner_freqs = []
            for trace in stream:
                # Get the index of the pick.
                pick_index = int(round((pick.time - trace.stats.starttime) / \
                    trace.stats.delta))
                # Choose date window 0.5 seconds before and 1 second after pick.
                data_window = trace.data[pick_index - \
                    int(TIME_BEFORE_PICK * trace.stats.sampling_rate): \
                    pick_index + int(TIME_AFTER_PICK * trace.stats.sampling_rate)]
                # Calculate the spectrum.
                spec, freq = mtspec.mtspec(data_window, trace.stats.delta, 2)
                try:
                    fit = fit_spectrum(spec, freq, pick.time - origin_time,
                            spec.max(), 10.0)
                except:
                    continue
                if fit is None:
                    continue
                Omega_0, f_c, err, _ = fit
                Omega_0 = np.sqrt(Omega_0)
                omegas.append(Omega_0)
                corner_freqs.append(f_c)
            M_0 = 4.0 * np.pi * DENSITY * velocity ** 3 * distance * \
                np.sqrt(omegas[0] ** 2 + omegas[1] ** 2 + omegas[2] ** 2) / \
                radiation_pattern
            r = 3 * k * V_S / sum(corner_freqs)
            moments.append(M_0)
            source_radii.append(r)
            corner_frequencies.extend(corner_freqs)
        if not len(moments):
            print "No moments could be calculated for event %s" % \
                event.resource_id.resource_id
            continue

        # Calculate the seismic moment via basic statistics.
        moments = np.array(moments)
        moment = moments.mean()
        moment_std = moments.std()

        corner_frequencies = np.array(corner_frequencies)
        corner_frequency = corner_frequencies.mean()
        corner_frequency_std = corner_frequencies.std()

        # Calculate the source radius.
        source_radii = np.array(source_radii)
        source_radius = source_radii.mean()
        source_radius_std = source_radii.std()

        # Calculate the stress drop of the event based on the average moment and
        # source radii.
        stress_drop = (7 * moment) / (16 * source_radius ** 3)
        stress_drop_std = np.sqrt((stress_drop ** 2) * \
            (((moment_std ** 2) / (moment ** 2)) + \
            (9 * source_radius * source_radius_std ** 2)))
        if source_radius > 0 and source_radius_std < source_radius:
            print "Source radius:", source_radius, " Std:", source_radius_std
            print "Stress drop:", stress_drop / 1E5, " Std:", stress_drop_std / 1E5

        Mw = 2.0 / 3.0 * (np.log10(moment) - 9.1)
        Mw_std = 2.0 / 3.0 * moment_std / (moment * np.log(10))
        Mws_std.append(Mw_std)
        Mws.append(Mw)
        Mls.append(local_magnitude)
        calc_diff = abs(Mw - local_magnitude)
        Mw = ("%.3f" % Mw).rjust(7)
        Ml = ("%.3f" % local_magnitude).rjust(7)
        diff = ("%.3e" % calc_diff).rjust(7)

        ret_string = colorama.Fore.GREEN + \
            "For event %s: Ml=%s | Mw=%s | " % (event.resource_id.resource_id,
            Ml, Mw)
        if calc_diff >= 1.0:
            ret_string += colorama.Fore.RED
        ret_string += "Diff=%s" % diff
        ret_string += colorama.Fore.GREEN
        ret_string += " | Determined at %i stations" % len(moments)
        ret_string += colorama.Style.RESET_ALL
        print ret_string

        mag = Magnitude()
        mag.mag = Mw
        mag.mag_errors.uncertainty = Mw_std
        mag.magnitude_type = "Mw"
        mag.origin_id = event.origins[0].resource_id
        mag.method_id = "Custom fit to Boatwright spectrum"
        mag.station_count = len(moments)
        mag.evaluation_mode = "automatic"
        mag.evaluation_status = "preliminary"
        mag.comments.append(Comment( \
            "Seismic Moment=%e Nm; standard deviation=%e" % (moment,
            moment_std)))
        if source_radius > 0 and source_radius_std < source_radius:
            mag.comments.append(Comment( \
                "Source radius=%.2fm; standard deviation=%.2f" % (source_radius,
                source_radius_std)))
        event.magnitudes.append(mag)

    print "Writing output file..."
    cat.write(output_file, format="quakeml")
Exemplo n.º 25
0
def write_qml(config, sourcepar):
    if not config.options.qml_file:
        return
    qml_file = config.options.qml_file
    cat = read_events(qml_file)
    evid = config.hypo.evid
    try:
        ev = [e for e in cat if evid in str(e.resource_id)][0]
    except Exception:
        logging.warning('Unable to find evid "{}" in QuakeML file. '
                        'QuakeML output will not be written.'.format(evid))

    origin = ev.preferred_origin()
    if origin is None:
        origin = ev.origins[0]
    origin_id = origin.resource_id
    origin_id_strip = origin_id.id.split('/')[-1]
    origin_id_strip = origin_id_strip.replace(config.smi_strip_from_origin_id,
                                              '')

    # Common parameters
    ssp_version = get_versions()['version']
    method_id = config.smi_base + '/sourcespec/' + ssp_version
    cr_info = CreationInfo()
    cr_info.agency_id = config.agency_id
    if config.author is None:
        author = '{}@{}'.format(getuser(), gethostname())
    else:
        author = config.author
    cr_info.author = author
    cr_info.creation_time = UTCDateTime()

    means = sourcepar.means_weight
    errors = sourcepar.errors_weight
    stationpar = sourcepar.station_parameters

    # Magnitude
    mag = Magnitude()
    _id = config.smi_magnitude_template.replace('$SMI_BASE', config.smi_base)
    _id = _id.replace('$ORIGIN_ID', origin_id_strip)
    mag.resource_id = ResourceIdentifier(id=_id)
    mag.method_id = ResourceIdentifier(id=method_id)
    mag.origin_id = origin_id
    mag.magnitude_type = 'Mw'
    mag.mag = means['Mw']
    mag_err = QuantityError()
    mag_err.uncertainty = errors['Mw']
    mag_err.confidence_level = 68.2
    mag.mag_errors = mag_err
    mag.station_count = len([_s for _s in stationpar.keys()])
    mag.evaluation_mode = 'automatic'
    mag.creation_info = cr_info

    # Seismic moment -- It has to be stored in a MomentTensor object
    # which, in turn, is part of a FocalMechanism object
    mt = MomentTensor()
    _id = config.smi_moment_tensor_template.replace('$SMI_BASE',
                                                    config.smi_base)
    _id = _id.replace('$ORIGIN_ID', origin_id_strip)
    mt.resource_id = ResourceIdentifier(id=_id)
    mt.derived_origin_id = origin_id
    mt.moment_magnitude_id = mag.resource_id
    mt.scalar_moment = means['Mo']
    mt_err = QuantityError()
    mt_err.lower_uncertainty = errors['Mo'][0]
    mt_err.upper_uncertainty = errors['Mo'][1]
    mt_err.confidence_level = 68.2
    mt.scalar_moment_errors = mt_err
    mt.method_id = method_id
    mt.creation_info = cr_info
    # And here is the FocalMechanism object
    fm = FocalMechanism()
    _id = config.smi_focal_mechanism_template.replace('$SMI_BASE',
                                                      config.smi_base)
    _id = _id.replace('$ORIGIN_ID', origin_id_strip)
    fm.resource_id = ResourceIdentifier(id=_id)
    fm.triggering_origin_id = origin_id
    fm.method_id = ResourceIdentifier(id=method_id)
    fm.moment_tensor = mt
    fm.creation_info = cr_info
    ev.focal_mechanisms.append(fm)

    # Station magnitudes
    for statId in sorted(stationpar.keys()):
        par = stationpar[statId]
        st_mag = StationMagnitude()
        seed_id = statId.split()[0]
        _id = config.smi_station_magnitude_template.replace(
            '$SMI_MAGNITUDE_TEMPLATE', config.smi_magnitude_template)
        _id = _id.replace('$ORIGIN_ID', origin_id_strip)
        _id = _id.replace('$SMI_BASE', config.smi_base)
        _id = _id.replace('$WAVEFORM_ID', seed_id)
        st_mag.resource_id = ResourceIdentifier(id=_id)
        st_mag.origin_id = origin_id
        st_mag.mag = par['Mw']
        st_mag.station_magnitude_type = 'Mw'
        st_mag.method_id = mag.method_id
        st_mag.creation_info = cr_info
        st_mag.waveform_id = WaveformStreamID(seed_string=seed_id)
        st_mag.extra = SSPExtra()
        st_mag.extra.moment = SSPTag(par['Mo'])
        st_mag.extra.corner_frequency = SSPTag(par['fc'])
        st_mag.extra.t_star = SSPTag(par['t_star'])
        ev.station_magnitudes.append(st_mag)
        st_mag_contrib = StationMagnitudeContribution()
        st_mag_contrib.station_magnitude_id = st_mag.resource_id
        mag.station_magnitude_contributions.append(st_mag_contrib)
    ev.magnitudes.append(mag)

    # Write other average parameters as custom tags
    ev.extra = SSPExtra()
    ev.extra.corner_frequency = SSPContainerTag()
    ev.extra.corner_frequency.value.value = SSPTag(means['fc'])
    ev.extra.corner_frequency.value.lower_uncertainty =\
        SSPTag(errors['fc'][0])
    ev.extra.corner_frequency.value.upper_uncertainty =\
        SSPTag(errors['fc'][1])
    ev.extra.corner_frequency.value.confidence_level = SSPTag(68.2)
    ev.extra.t_star = SSPContainerTag()
    ev.extra.t_star.value.value = SSPTag(means['t_star'])
    ev.extra.t_star.value.uncertainty = SSPTag(errors['t_star'])
    ev.extra.t_star.value.confidence_level = SSPTag(68.2)
    ev.extra.source_radius = SSPContainerTag()
    ev.extra.source_radius.value.value = SSPTag(means['ra'])
    ev.extra.source_radius.value.lower_uncertainty =\
        SSPTag(errors['ra'][0])
    ev.extra.source_radius.value.upper_uncertainty =\
        SSPTag(errors['ra'][1])
    ev.extra.source_radius.value.confidence_level = SSPTag(68.2)
    ev.extra.stress_drop = SSPContainerTag()
    ev.extra.stress_drop.value.value = SSPTag(means['bsd'])
    ev.extra.stress_drop.value.lower_uncertainty =\
        SSPTag(errors['bsd'][0])
    ev.extra.stress_drop.value.upper_uncertainty =\
        SSPTag(errors['bsd'][1])
    ev.extra.stress_drop.value.confidence_level = SSPTag(68.2)

    if config.set_preferred_magnitude:
        ev.preferred_magnitude_id = mag.resource_id.id

    qml_file_out = os.path.join(config.options.outdir, evid + '.xml')
    ev.write(qml_file_out, format='QUAKEML')
    logging.info('QuakeML file written to: ' + qml_file_out)
Exemplo n.º 26
0
def request_gcmt(starttime, endtime, minmagnitude=None, mindepth=None, maxdepth=None, minlatitude=None, maxlatitude=None, minlongitude=None, maxlongitude=None):
	import mechanize
	from mechanize import Browser
	import re

	"""
	Description
	I am using mechanize. My attempt is just preliminary, for the current globalcmt.org site. 
	"""

	#Split numbers and text
	r = re.compile("([a-zA-Z]+)([0-9]+)")


	br = Browser()
	br.open('http://www.globalcmt.org/CMTsearch.html')
	#Site has just one form
	br.select_form(nr=0)

	br.form['yr']    = str(starttime.year)
	br.form['mo']    = str(starttime.month)
	br.form['day']   = str(starttime.day)
	br.form['oyr']   = str(endtime.year)
	br.form['omo']   = str(endtime.month)
	br.form['oday']  = str(endtime.day)
	br.form['list']  = ['4']
	br.form['itype'] = ['ymd']
	br.form['otype'] = ['ymd']

	if minmagnitude: br.form['lmw']   = str(minmagnitude)
	if minlatitude : br.form['llat']  = str(minlatitude)
	if maxlatitude : br.form['ulat']  = str(maxlatitude)
	if minlongitude: br.form['llon']  = str(minlongitude)
	if maxlongitude: br.form['ulon']  = str(maxlongitude)
	if mindepth    : br.form['lhd']   = str(mindepth)
	if maxdepth    : br.form['uhd']   = str(maxdepth)

	print("Submitting parameters to globalcmt.")
	req = br.submit()
	print("Retrieving data, creating catalog.")

	data = []
	for line in req:
		data.append(line) 

	data_chunked = _chunking_list(keyword='\n', list=data)
	origins = []
	magnitudes = []
	tensor = []

	for line in data_chunked:
		for element in line:
			if 'event name' in element:
				for content in element:
					org       = line[1].split()
					year      = int(r.match(org[0]).groups()[1])
					mon       = int(org[1])
					day       = int(org[2])
					hour      = int(org[3])
					minute    = int(org[4])
					sec_temp  = int(org[5].split('.')[0])
					msec_temp = int(org[5].split('.')[1])

				origins_temp = UTCDateTime(year, mon, day, hour, minute, sec_temp, msec_temp)
				#adding time shift located in line[3]
				origin       = origins_temp + float(line[3].split()[2])
				magnitude    = float(line[1].split()[10])
				latitude     = float(line[5].split()[1])
				longitude    = float(line[6].split()[1])
				depth        = 1000. * float(line[7].split()[1])
				m_rr         = float(line[8].split()[1])
				m_tt         = float(line[9].split()[1])
				m_pp         = float(line[10].split()[1])
				m_rt         = float(line[11].split()[1])
				m_rp         = float(line[12].split()[1])
				m_tp         = float(line[13].split()[1])

				magnitudes.append( ("Mw", magnitude) )
				origins.append( (latitude, longitude, depth, origin) )
				tensor.append( (m_rr, m_tt, m_pp, m_rt, m_rp, m_tp) )

	cat = Catalog()

	for mag, org, ten in zip(magnitudes, origins, tensor):
		# Create magnitude object.
		magnitude = Magnitude()


		magnitude.magnitude_type = mag[0]
		magnitude.mag = mag[1]
		# Write origin object.
		origin = Origin()
		origin.latitude = org[0]
		origin.longitude = org[1]
		origin.depth = org[2]
		origin.time = org[3]
		# Create event object and append to catalog object.
		event = Event()
		event.magnitudes.append(magnitude)
		event.origins.append(origin)

		event.MomentTensor = MomentTensor()
		event.MomentTensor.m_rr = ten[0]
		event.MomentTensor.m_tt = ten[1]
		event.MomentTensor.m_pp = ten[2]
		event.MomentTensor.m_rt = ten[3]
		event.MomentTensor.m_rp = ten[4]
		event.MomentTensor.m_tp = ten[5]

		cat.append(event)

	return cat
Exemplo n.º 27
0
    def _parseRecordE(self, line, event):
        """
        Parses the 'error and magnitude' record E
        """
        orig_time_stderr = self._float(line[2:7])
        latitude_stderr = self._float(line[8:14])
        longitude_stderr = self._float(line[15:21])
        depth_stderr = self._float(line[22:27])
        mb_mag = self._float(line[28:31])
        mb_nsta = self._int(line[32:35])
        Ms_mag = self._float(line[36:39])
        Ms_nsta = self._int(line[39:42])
        mag1 = self._float(line[42:45])
        mag1_type = line[45:47]
        mag1_source_code = line[47:51].strip()
        mag2 = self._float(line[51:54])
        mag2_type = line[54:56]
        mag2_source_code = line[56:60].strip()

        evid = event.resource_id.id.split("/")[-1]
        origin = event.origins[0]
        self._storeUncertainty(origin.time_errors, orig_time_stderr)
        self._storeUncertainty(origin.latitude_errors, self._latErrToDeg(latitude_stderr))
        self._storeUncertainty(origin.longitude_errors, self._lonErrToDeg(longitude_stderr, origin.latitude))
        self._storeUncertainty(origin.depth_errors, depth_stderr, scale=1000)
        if mb_mag is not None:
            mag = Magnitude()
            res_id = "/".join((res_id_prefix, "magnitude", evid, "mb"))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id="USGS-NEIC")
            mag.mag = mb_mag
            mag.magnitude_type = "Mb"
            mag.station_count = mb_nsta
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if Ms_mag is not None:
            mag = Magnitude()
            res_id = "/".join((res_id_prefix, "magnitude", evid, "ms"))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id="USGS-NEIC")
            mag.mag = Ms_mag
            mag.magnitude_type = "Ms"
            mag.station_count = Ms_nsta
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if mag1 is not None:
            mag = Magnitude()
            mag1_id = mag1_type.lower()
            res_id = "/".join((res_id_prefix, "magnitude", evid, mag1_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id=mag1_source_code)
            mag.mag = mag1
            mag.magnitude_type = mag1_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if mag2 is not None:
            mag = Magnitude()
            mag2_id = mag2_type.lower()
            if mag2_id == mag1_id:
                mag2_id += "2"
            res_id = "/".join((res_id_prefix, "magnitude", evid, mag2_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id=mag2_source_code)
            mag.mag = mag2
            mag.magnitude_type = mag2_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
e = Event()
e.event_type = "not existing"

o = Origin()
o.time = UTCDateTime(2014, 2, 23, 18, 0, 0)
o.latitude = 47.6
o.longitude = 12.0
o.depth = 10000
o.depth_type = "operator assigned"
o.evaluation_mode = "manual"
o.evaluation_status = "preliminary"
o.region = FlinnEngdahl().get_region(o.longitude, o.latitude)

m = Magnitude()
m.mag = 7.2
m.magnitude_type = "Mw"

m2 = Magnitude()
m2.mag = 7.4
m2.magnitude_type = "Ms"

# also included could be: custom picks, amplitude measurements, station magnitudes,
# focal mechanisms, moment tensors, ...

# make associations, put everything together
cat.append(e)
e.origins = [o]
e.magnitudes = [m, m2]
m.origin_id = o.resource_id
m2.origin_id = o.resource_id
Exemplo n.º 29
0
def calculate_moment_magnitudes(cat, output_file):
    """
    :param cat: obspy.core.event.Catalog object.
    """

    Mws = []
    Mls = []
    Mws_std = []

    for event in cat:
        if not event.origins:
            print "No origin for event %s" % event.resource_id
            continue
        if not event.magnitudes:
            print "No magnitude for event %s" % event.resource_id
            continue
        origin_time = event.origins[0].time
        local_magnitude = event.magnitudes[0].mag
        #if local_magnitude < 1.0:
            #continue
        moments = []
        source_radii = []
        corner_frequencies = []
        for pick in event.picks:
            # Only p phase picks.
            if pick.phase_hint.lower() == "p":
                radiation_pattern = 0.52
                velocity = V_P
                k = 0.32
            elif pick.phase_hint.lower() == "s":
                radiation_pattern = 0.63
                velocity = V_S
                k = 0.21
            else:
                continue
            distance = (pick.time - origin_time) * velocity
            if distance <= 0.0:
                continue
            stream = get_corresponding_stream(pick.waveform_id, pick.time,
                                              PADDING)
            if stream is None or len(stream) != 3:
                continue
            omegas = []
            corner_freqs = []
            for trace in stream:
                # Get the index of the pick.
                pick_index = int(round((pick.time - trace.stats.starttime) / \
                    trace.stats.delta))
                # Choose date window 0.5 seconds before and 1 second after pick.
                data_window = trace.data[pick_index - \
                    int(TIME_BEFORE_PICK * trace.stats.sampling_rate): \
                    pick_index + int(TIME_AFTER_PICK * trace.stats.sampling_rate)]
                # Calculate the spectrum.
                spec, freq = mtspec.mtspec(data_window, trace.stats.delta, 2)
                try:
                    fit = fit_spectrum(spec, freq, pick.time - origin_time,
                            spec.max(), 10.0)
                except:
                    continue
                if fit is None:
                    continue
                Omega_0, f_c, err, _ = fit
                Omega_0 = np.sqrt(Omega_0)
                omegas.append(Omega_0)
                corner_freqs.append(f_c)
            M_0 = 4.0 * np.pi * DENSITY * velocity ** 3 * distance * \
                np.sqrt(omegas[0] ** 2 + omegas[1] ** 2 + omegas[2] ** 2) / \
                radiation_pattern
            r = 3 * k * V_S / sum(corner_freqs)
            moments.append(M_0)
            source_radii.append(r)
            corner_frequencies.extend(corner_freqs)
        if not len(moments):
            print "No moments could be calculated for event %s" % \
                event.resource_id.resource_id
            continue

        # Calculate the seismic moment via basic statistics.
        moments = np.array(moments)
        moment = moments.mean()
        moment_std = moments.std()

        corner_frequencies = np.array(corner_frequencies)
        corner_frequency = corner_frequencies.mean()
        corner_frequency_std = corner_frequencies.std()

        # Calculate the source radius.
        source_radii = np.array(source_radii)
        source_radius = source_radii.mean()
        source_radius_std = source_radii.std()

        # Calculate the stress drop of the event based on the average moment and
        # source radii.
        stress_drop = (7 * moment) / (16 * source_radius ** 3)
        stress_drop_std = np.sqrt((stress_drop ** 2) * \
            (((moment_std ** 2) / (moment ** 2)) + \
            (9 * source_radius * source_radius_std ** 2)))
        if source_radius > 0 and source_radius_std < source_radius:
            print "Source radius:", source_radius, " Std:", source_radius_std
            print "Stress drop:", stress_drop / 1E5, " Std:", stress_drop_std / 1E5

        Mw = 2.0 / 3.0 * (np.log10(moment) - 9.1)
        Mw_std = 2.0 / 3.0 * moment_std / (moment * np.log(10))
        Mws_std.append(Mw_std)
        Mws.append(Mw)
        Mls.append(local_magnitude)
        calc_diff = abs(Mw - local_magnitude)
        Mw = ("%.3f" % Mw).rjust(7)
        Ml = ("%.3f" % local_magnitude).rjust(7)
        diff = ("%.3e" % calc_diff).rjust(7)

        ret_string = colorama.Fore.GREEN + \
            "For event %s: Ml=%s | Mw=%s | " % (event.resource_id.resource_id,
            Ml, Mw)
        if calc_diff >= 1.0:
            ret_string += colorama.Fore.RED
        ret_string += "Diff=%s" % diff
        ret_string += colorama.Fore.GREEN
        ret_string += " | Determined at %i stations" % len(moments)
        ret_string += colorama.Style.RESET_ALL
        print ret_string

        mag = Magnitude()
        mag.mag = Mw
        mag.mag_errors.uncertainty = Mw_std
        mag.magnitude_type = "Mw"
        mag.origin_id = event.origins[0].resource_id
        mag.method_id = "smi:com.github/krischer/moment_magnitude_calculator/automatic/1"
        mag.station_count = len(moments)
        mag.evaluation_mode = "automatic"
        mag.evaluation_status = "preliminary"
        mag.comments.append(Comment( \
            "Seismic Moment=%e Nm; standard deviation=%e" % (moment,
            moment_std)))
        mag.comments.append(Comment("Custom fit to Boatwright spectrum"))
        if source_radius > 0 and source_radius_std < source_radius:
            mag.comments.append(Comment( \
                "Source radius=%.2fm; standard deviation=%.2f" % (source_radius,
                source_radius_std)))
        event.magnitudes.append(mag)

    print "Writing output file..."
    cat.write(output_file, format="quakeml")
Exemplo n.º 30
0
    def _parseRecordE(self, line, event):
        """
        Parses the 'error and magnitude' record E
        """
        orig_time_stderr = self._float(line[2:7])
        latitude_stderr = self._float(line[8:14])
        longitude_stderr = self._float(line[15:21])
        depth_stderr = self._float(line[22:27])
        mb_mag = self._float(line[28:31])
        mb_nsta = self._int(line[32:35])
        Ms_mag = self._float(line[36:39])
        Ms_nsta = self._int(line[39:42])
        mag1 = self._float(line[42:45])
        mag1_type = line[45:47]
        mag1_source_code = line[47:51].strip()
        mag2 = self._float(line[51:54])
        mag2_type = line[54:56]
        mag2_source_code = line[56:60].strip()

        evid = event.resource_id.id.split('/')[-1]
        origin = event.origins[0]
        self._storeUncertainty(origin.time_errors, orig_time_stderr)
        self._storeUncertainty(origin.latitude_errors,
                               self._latErrToDeg(latitude_stderr))
        self._storeUncertainty(
            origin.longitude_errors,
            self._lonErrToDeg(longitude_stderr, origin.latitude))
        self._storeUncertainty(origin.depth_errors, depth_stderr, scale=1000)
        if mb_mag is not None:
            mag = Magnitude()
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, 'mb'))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id='USGS-NEIC')
            mag.mag = mb_mag
            mag.magnitude_type = 'Mb'
            mag.station_count = mb_nsta
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if Ms_mag is not None:
            mag = Magnitude()
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, 'ms'))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id='USGS-NEIC')
            mag.mag = Ms_mag
            mag.magnitude_type = 'Ms'
            mag.station_count = Ms_nsta
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if mag1 is not None:
            mag = Magnitude()
            mag1_id = mag1_type.lower()
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, mag1_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id=mag1_source_code)
            mag.mag = mag1
            mag.magnitude_type = mag1_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
        if mag2 is not None:
            mag = Magnitude()
            mag2_id = mag2_type.lower()
            if mag2_id == mag1_id:
                mag2_id += '2'
            res_id = '/'.join((res_id_prefix, 'magnitude', evid, mag2_id))
            mag.resource_id = ResourceIdentifier(id=res_id)
            mag.creation_info = CreationInfo(agency_id=mag2_source_code)
            mag.mag = mag2
            mag.magnitude_type = mag2_type
            mag.origin_id = origin.resource_id
            event.magnitudes.append(mag)
Exemplo n.º 31
0
def par2quakeml(Par_filename, QuakeML_filename, rotation_axis=[0.0, 1.0, 0.0],
                rotation_angle=-57.5, origin_time="2000-01-01 00:00:00.0",
                event_type="other event"):
    # initialise event
    ev = Event()

    # open and read Par file
    fid = open(Par_filename, 'r')

    fid.readline()
    fid.readline()
    fid.readline()
    fid.readline()

    lat_old = 90.0 - float(fid.readline().strip().split()[0])
    lon_old = float(fid.readline().strip().split()[0])
    depth = float(fid.readline().strip().split()[0])

    fid.readline()

    Mtt_old = float(fid.readline().strip().split()[0])
    Mpp_old = float(fid.readline().strip().split()[0])
    Mrr_old = float(fid.readline().strip().split()[0])
    Mtp_old = float(fid.readline().strip().split()[0])
    Mtr_old = float(fid.readline().strip().split()[0])
    Mpr_old = float(fid.readline().strip().split()[0])

    # rotate event into physical domain

    lat, lon = rot.rotate_lat_lon(lat_old, lon_old, rotation_axis,
                                  rotation_angle)
    Mrr, Mtt, Mpp, Mtr, Mpr, Mtp = rot.rotate_moment_tensor(
        Mrr_old, Mtt_old, Mpp_old, Mtr_old, Mpr_old, Mtp_old, lat_old, lon_old,
        rotation_axis, rotation_angle)

    # populate event origin data
    ev.event_type = event_type

    ev_origin = Origin()
    ev_origin.time = UTCDateTime(origin_time)
    ev_origin.latitude = lat
    ev_origin.longitude = lon
    ev_origin.depth = depth
    ev.origins.append(ev_origin)

    # populte event moment tensor

    ev_tensor = Tensor()
    ev_tensor.m_rr = Mrr
    ev_tensor.m_tt = Mtt
    ev_tensor.m_pp = Mpp
    ev_tensor.m_rt = Mtr
    ev_tensor.m_rp = Mpr
    ev_tensor.m_tp = Mtp

    ev_momenttensor = MomentTensor()
    ev_momenttensor.tensor = ev_tensor
    ev_momenttensor.scalar_moment = np.sqrt(Mrr ** 2 + Mtt ** 2 + Mpp ** 2 +
                                            Mtr ** 2 + Mpr ** 2 + Mtp ** 2)

    ev_focalmechanism = FocalMechanism()
    ev_focalmechanism.moment_tensor = ev_momenttensor
    ev_focalmechanism.nodal_planes = NodalPlanes().setdefault(0, 0)

    ev.focal_mechanisms.append(ev_focalmechanism)

    # populate event magnitude
    ev_magnitude = Magnitude()
    ev_magnitude.mag = 0.667 * (np.log10(ev_momenttensor.scalar_moment) - 9.1)
    ev_magnitude.magnitude_type = 'Mw'
    ev.magnitudes.append(ev_magnitude)

    # write QuakeML file
    cat = Catalog()
    cat.append(ev)
    cat.write(QuakeML_filename, format="quakeml")

    # clean up
    fid.close()
    eid = line_elements[-1]
    otime = uh.eid2otime(eid)
    elon = line_elements[6]
    elat = line_elements[7]
    edep = float(line_elements[8]) * 1000.0  # meters
    emag = line_elements[16]

    # create event object
    orig = Origin()
    orig.longitude = elon
    orig.latitude = elat
    orig.depth = edep
    orig.time = otime
    mag = Magnitude()
    mag.mag = emag
    mag.magnitude_type = "Mw"
    ev = Event()
    ev.origins.append(orig)
    ev.magnitudes.append(mag)

    if send_request:
        # get waveforms
        client = Client("IRIS")
        getwaveform_iris.run_get_waveform(c=client,
                                          event=ev,
                                          min_dist=min_dist,
                                          max_dist=max_dist,
                                          before=tbefore_sec,
                                          after=tafter_sec,
                                          network=network,
                                          station=station,
Exemplo n.º 33
0
def getwf_iris_ncedc_llnl(origin0, client_pick):

    print("Running function getwf_iris_ncedc_llnl")

    # parameters for waveform request
    tbefore_sec = 100
    tafter_sec = 600

    # DEFAULT SETTINGS (see getwaveform_iris.py)
    rotateRTZ = True
    rotateUVW = False  # works only if 'rotateRTZ = True'
    output_cap_weight_file = True
    detrend = True
    demean = True
    output_event_info = True
    taper = False
    ifplot_spectrogram = False

    # for CAP all waveforms need to have the same sample rate
    resample_TF = True
    resample_freq = 20.0  # 0 for no resampling
    scale_factor = 10**2  # for CAP use 10**2  (to convert m/s to cm/s)

    # event parameters
    sec_before_after_event = 10  # time window to search for a target event in a catalog
    min_dist = 0
    max_dist = 1200

    # station parameters
    # 20170321 [email protected] -- I disabled retrieving data for the
    # networks listed below
    # reason 1 some are dense/local and don't improve station coverage
    # reason 2 many have crappy data (noisy)
    # reason 3 some have very large amplitudes. Bad response?
    network = '*,-XK,-XM,-XS,-XC,-XU,-XT,-XE'
    station = '*,-PURD,-NV33,-GPO'  # all stations
    channel = 'BH?,LH?'

    overwrite_ddir = 1  # 1 = delete data directory if it already exists
    icreateNull = 0  # create Null traces so that rotation can work (obsby stream.rotate require 3 traces)

    # filter
    # set ipre_filt = 0 to prevent extra filtering
    ifFilter = False
    filter_type = 'bandpass'
    # LLNL filter 10-50 sec is most stable. Some waveforms >= 100 sec show
    # oscillations. Use factor of 2 limit = 200 sec for prefilter
    f1 = 1 / 200
    f2 = 1 / 10
    zerophase = True  # False = causal, True = acausal
    corners = 4  # Is corner in Obspy same as Pole in SAC?
    remove_response = True
    iplot_response = False
    ipre_filt = 2  # 0 No pre_filter
    # 1 default pre_filter (see getwaveform_iris.py)
    # 2 user-defined pre_filter
    f0 = 0.5 * f1
    f3 = 2.0 * f2
    # The following are for the FMTU paper
    f0 = 0.005
    f1 = 0.006
    f3 = 10
    f4 = 15
    pre_filt = (f0, f1, f2, f3)  # applies for ipre_filt = 2 only

    # NOTE event data from user-defined catalog!
    # initialize objects
    ev = Event()
    org = Origin()
    mag = Magnitude()

    # build objects
    org.time = UTCDateTime(origin0[0])
    org.longitude = origin0[1]
    org.latitude = origin0[2]
    org.depth = origin0[3]
    mag.mag = origin0[5]
    mag.magnitude_type = origin0[6]  # Mw, ml, mb, ...

    ev.origins.append(org)
    ev.magnitudes.append(mag)

    # Delete existing data directory
    eid = util_helpers.otime2eid(ev.origins[0].time)
    ddir = './' + eid
    if os.path.exists('RAW'):
        print("WARNING. %s already exists. Deleting ..." % ddir)
        shutil.rmtree('RAW')
    if overwrite_ddir and os.path.exists(ddir):
        print("WARNING. %s already exists. Deleting ..." % ddir)
        shutil.rmtree(ddir)

    if client_pick is "IRIS":
        print('Using client %s' % client_pick)
        idb = 1
        client_list = ["IRIS", "NCEDC"]
        print("WARNING using event data from user-defined catalog")

    # LLNL
    if client_pick is "LLNL":
        print('Using client %s' % client_pick)
        idb = 3
        client_list = ["LLNL"]

        client = llnl_db_client.LLNLDBClient(
            "/store/raw/LLNL/UCRL-MI-222502/westernus.wfdisc")
        # get event time and event ID
        otime = obspy.UTCDateTime(origin0[0])
        cat = client.get_catalog()
        mintime_str = "time > %s" % (otime - sec_before_after_event)
        maxtime_str = "time < %s" % (otime + sec_before_after_event)
        print(mintime_str + "\n" + maxtime_str)
        ev = cat.filter(mintime_str, maxtime_str)
        nev = len(ev)
        if nev == 1:
            ev = ev[0]  # doesn't have magnitude (ATRISCO)
        elif nev > 1:
            ev = ev[1]  # [0] may not include magnitude. [1] may (LLNL)
        else:
            print("No events in the catalog for the given time period. Stop.")

    # The IRIS requests include BK data, but it has to be requested through
    # the NCEDC client
    for iclient in client_list:
        if iclient is "IRIS":
            network = network
            client = Client(iclient)
        elif iclient is "NCEDC":
            network = 'BK'
            station = '*'  # doesn't like "-staX"
            client = Client(iclient)

        try:
            gw.run_get_waveform(c=client,
                                event=ev,
                                idb=idb,
                                ref_time_place=ev,
                                min_dist=min_dist,
                                max_dist=max_dist,
                                before=tbefore_sec,
                                after=tafter_sec,
                                network=network,
                                station=station,
                                channel=channel,
                                resample_freq=resample_freq,
                                ifrotateRTZ=rotateRTZ,
                                ifrotateUVW=rotateUVW,
                                ifCapInp=output_cap_weight_file,
                                ifRemoveResponse=remove_response,
                                ifDetrend=detrend,
                                ifDemean=demean,
                                Taper=taper,
                                ifEvInfo=output_event_info,
                                scale_factor=scale_factor,
                                icreateNull=icreateNull,
                                ipre_filt=ipre_filt,
                                pre_filt=pre_filt,
                                ifFilter=ifFilter,
                                fmin=f1,
                                fmax=f2,
                                filter_type=filter_type,
                                zerophase=zerophase,
                                corners=corners,
                                iplot_response=iplot_response,
                                ifplot_spectrogram=ifplot_spectrogram)
        except:
            print("~~~~~ SOMETHING HAPPENED ~~~~~~~~~~")
            print(ev, client)
            print("Continuing")
            continue
Exemplo n.º 34
0
    def test_creating_minimal_quakeml_with_mt(self):
        """
        Tests the creation of a minimal QuakeML containing origin, magnitude
        and moment tensor.
        """
        # Rotate into physical domain
        lat, lon, depth, org_time = 10.0, -20.0, 12000, UTCDateTime(2012, 1, 1)
        mrr, mtt, mpp, mtr, mpr, mtp = 1E18, 2E18, 3E18, 3E18, 2E18, 1E18
        scalar_moment = math.sqrt(
            mrr ** 2 + mtt ** 2 + mpp ** 2 + mtr ** 2 + mpr ** 2 + mtp ** 2)
        moment_magnitude = 0.667 * (math.log10(scalar_moment) - 9.1)

        # Initialise event
        ev = Event(event_type="earthquake")

        ev_origin = Origin(time=org_time, latitude=lat, longitude=lon,
                           depth=depth, resource_id=ResourceIdentifier())
        ev.origins.append(ev_origin)

        # populate event moment tensor
        ev_tensor = Tensor(m_rr=mrr, m_tt=mtt, m_pp=mpp, m_rt=mtr, m_rp=mpr,
                           m_tp=mtp)

        ev_momenttensor = MomentTensor(tensor=ev_tensor)
        ev_momenttensor.scalar_moment = scalar_moment
        ev_momenttensor.derived_origin_id = ev_origin.resource_id

        ev_focalmechanism = FocalMechanism(moment_tensor=ev_momenttensor)
        ev.focal_mechanisms.append(ev_focalmechanism)

        # populate event magnitude
        ev_magnitude = Magnitude()
        ev_magnitude.mag = moment_magnitude
        ev_magnitude.magnitude_type = 'Mw'
        ev_magnitude.evaluation_mode = 'automatic'
        ev.magnitudes.append(ev_magnitude)

        # write QuakeML file
        cat = Catalog(events=[ev])
        memfile = io.BytesIO()
        cat.write(memfile, format="quakeml", validate=IS_RECENT_LXML)

        memfile.seek(0, 0)
        new_cat = _read_quakeml(memfile)
        self.assertEqual(len(new_cat), 1)
        event = new_cat[0]
        self.assertEqual(len(event.origins), 1)
        self.assertEqual(len(event.magnitudes), 1)
        self.assertEqual(len(event.focal_mechanisms), 1)
        org = event.origins[0]
        mag = event.magnitudes[0]
        fm = event.focal_mechanisms[0]
        self.assertEqual(org.latitude, lat)
        self.assertEqual(org.longitude, lon)
        self.assertEqual(org.depth, depth)
        self.assertEqual(org.time, org_time)
        # Moment tensor.
        mt = fm.moment_tensor.tensor
        self.assertTrue((fm.moment_tensor.scalar_moment - scalar_moment) /
                        scalar_moment < scalar_moment * 1E-10)
        self.assertEqual(mt.m_rr, mrr)
        self.assertEqual(mt.m_pp, mpp)
        self.assertEqual(mt.m_tt, mtt)
        self.assertEqual(mt.m_rt, mtr)
        self.assertEqual(mt.m_rp, mpr)
        self.assertEqual(mt.m_tp, mtp)
        # Mag
        self.assertAlmostEqual(mag.mag, moment_magnitude)
        self.assertEqual(mag.magnitude_type, "Mw")
        self.assertEqual(mag.evaluation_mode, "automatic")
Exemplo n.º 35
0
def iris2quakeml(url, output_folder=None):
    if not "/spudservice/" in url:
        url = url.replace("/spud/", "/spudservice/")
        if url.endswith("/"):
            url += "quakeml"
        else:
            url += "/quakeml"
    print "Downloading %s..." % url
    r = requests.get(url)
    if r.status_code != 200:
        msg = "Error Downloading file!"
        raise Exception(msg)

    # For some reason the quakeml file is escaped HTML.
    h = HTMLParser.HTMLParser()

    data = h.unescape(r.content)

    # Replace some XML tags.
    data = data.replace("long-period body waves", "body waves")
    data = data.replace("intermediate-period surface waves", "surface waves")
    data = data.replace("long-period mantle waves", "mantle waves")

    data = data.replace("<html><body><pre>", "")
    data = data.replace("</pre></body></html>", "")

    # Change the resource identifiers. Colons are not allowed in QuakeML.
    pattern = r"(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2})\.(\d{6})"
    data = re.sub(pattern, r"\1-\2-\3T\4-\5-\6.\7", data)

    data = StringIO(data)

    try:
        cat = readEvents(data)
    except:
        msg = "Could not read downloaded event data"
        raise ValueError(msg)

    # Parse the event, and use only one origin, magnitude and focal mechanism.
    # Only the first event is used. Should not be a problem for the chosen
    # global cmt application.
    ev = cat[0]

    if ev.preferred_origin():
        ev.origins = [ev.preferred_origin()]
    else:
        ev.origins = [ev.origins[0]]
    if ev.preferred_focal_mechanism():
        ev.focal_mechanisms = [ev.preferred_focal_mechanism()]
    else:
        ev.focal_mechanisms = [ev.focal_mechanisms[0]]

    try:
        mt = ev.focal_mechanisms[0].moment_tensor
    except:
        msg = "No moment tensor found in file."
        raise ValueError
    seismic_moment_in_dyn_cm = mt.scalar_moment
    if not seismic_moment_in_dyn_cm:
        msg = "No scalar moment found in file."
        raise ValueError(msg)

    # Create a new magnitude object with the moment magnitude calculated from
    # the given seismic moment.
    mag = Magnitude()
    mag.magnitude_type = "Mw"
    mag.origin_id = ev.origins[0].resource_id
    # This is the formula given on the GCMT homepage.
    mag.mag = (2.0 / 3.0) * (math.log10(seismic_moment_in_dyn_cm) - 16.1)
    mag.resource_id = ev.origins[0].resource_id.resource_id.replace(
        "Origin", "Magnitude")
    ev.magnitudes = [mag]
    ev.preferred_magnitude_id = mag.resource_id

    # Convert the depth to meters.
    org = ev.origins[0]
    org.depth *= 1000.0
    if org.depth_errors.uncertainty:
        org.depth_errors.uncertainty *= 1000.0

    # Ugly asserts -- this is just a simple script.
    assert (len(ev.magnitudes) == 1)
    assert (len(ev.origins) == 1)
    assert (len(ev.focal_mechanisms) == 1)

    # All values given in the QuakeML file are given in dyne * cm. Convert them
    # to N * m.
    for key, value in mt.tensor.iteritems():
        if key.startswith("m_") and len(key) == 4:
            mt.tensor[key] /= 1E7
        if key.endswith("_errors") and hasattr(value, "uncertainty"):
            mt.tensor[key].uncertainty /= 1E7
    mt.scalar_moment /= 1E7
    if mt.scalar_moment_errors.uncertainty:
        mt.scalar_moment_errors.uncertainty /= 1E7
    p_axes = ev.focal_mechanisms[0].principal_axes
    for ax in [p_axes.t_axis, p_axes.p_axis, p_axes.n_axis]:
        if ax is None or not ax.length:
            continue
        ax.length /= 1E7

    # Check if it has a source time function
    stf = mt.source_time_function
    if stf:
        if stf.type != "triangle":
            msg = ("Source time function type '%s' not yet mapped. Please "
                   "contact the developers.") % stf.type
            raise NotImplementedError(msg)
        if not stf.duration:
            if not stf.decay_time:
                msg = "Not known how to derive duration without decay time."
                raise NotImplementedError(msg)
            # Approximate the duraction for triangular STF.
            stf.duration = 2 * stf.decay_time

    # Get the flinn_engdahl region for a nice name.
    fe = FlinnEngdahl()
    region_name = fe.get_region(ev.origins[0].longitude,
                                ev.origins[0].latitude)
    region_name = region_name.replace(" ", "_")
    event_name = "GCMT_event_%s_Mag_%.1f_%s-%s-%s-%s-%s.xml" % \
        (region_name, ev.magnitudes[0].mag, ev.origins[0].time.year,
        ev.origins[0].time.month, ev.origins[0].time.day,
        ev.origins[0].time.hour, ev.origins[0].time.minute)

    # Check if the ids of the magnitude and origin contain the corresponding
    # tag. Otherwise replace tme.
    ev.origins[0].resource_id = ev.origins[0].resource_id.resource_id.replace(
        "quakeml/gcmtid", "quakeml/origin/gcmtid")
    ev.magnitudes[0].resource_id = \
        ev.magnitudes[0].resource_id.resource_id.replace(
            "quakeml/gcmtid", "quakeml/magnitude/gcmtid")

    # Fix up the moment tensor resource_ids.
    mt.derived_origin_id = ev.origins[0].resource_id
    mt.resource_id = mt.resource_id.resource_id.replace(
        "focalmechanism", "momenttensor")

    cat = Catalog()
    cat.resource_id = ev.origins[0].resource_id.resource_id.replace(
        "origin", "event_parameters")
    cat.append(ev)
    if output_folder:
        event_name = os.path.join(output_folder, event_name)
    cat.write(event_name, format="quakeml", validate=True)
    print "Written file", event_name