Exemplo n.º 1
0
    def _parse_record_ah(self, line, event):
        """
        Parses the 'additional hypocenter' record AH
        """
        date = line[2:10]
        time = line[11:20]
        # unused: hypocenter_quality = line[20]
        latitude = self._float(line[21:27])
        lat_type = line[27]
        longitude = self._float(line[29:36])
        lon_type = line[36]
        # unused: preliminary_flag = line[37]
        depth = self._float(line[38:43])
        # unused: depth_quality = line[43]
        standard_dev = self._float_unused(line[44:48])
        station_number = self._int_unused(line[48:51])
        phase_number = self._int_unused(line[51:55])
        source_code = line[56:60].strip()

        evid = event.resource_id.id.split('/')[-1]
        origin = Origin()
        res_id = '/'.join((res_id_prefix, 'origin', evid, source_code.lower()))
        origin.resource_id = ResourceIdentifier(id=res_id)
        origin.creation_info = CreationInfo(agency_id=source_code)
        origin.time = UTCDateTime(date + time)
        origin.latitude = latitude * self._coordinate_sign(lat_type)
        origin.longitude = longitude * self._coordinate_sign(lon_type)
        origin.depth = depth * 1000
        origin.depth_type = 'from location'
        origin.quality = OriginQuality()
        origin.quality.standard_error = standard_dev
        origin.quality.used_station_count = station_number
        origin.quality.used_phase_count = phase_number
        origin.origin_type = 'hypocenter'
        event.origins.append(origin)
Exemplo n.º 2
0
    def _parseRecordAH(self, line, event):
        """
        Parses the 'additional hypocenter' record AH
        """
        date = line[2:10]
        time = line[11:20]
        #unused: hypocenter_quality = line[20]
        latitude = self._float(line[21:27])
        lat_type = line[27]
        longitude = self._float(line[29:36])
        lon_type = line[36]
        #unused: preliminary_flag = line[37]
        depth = self._float(line[38:43])
        #unused: depth_quality = line[43]
        standard_dev = self._floatUnused(line[44:48])
        station_number = self._intUnused(line[48:51])
        phase_number = self._intUnused(line[51:55])
        source_code = line[56:60].strip()

        evid = event.resource_id.id.split('/')[-1]
        origin = Origin()
        res_id = '/'.join((res_id_prefix, 'origin', evid, source_code.lower()))
        origin.resource_id = ResourceIdentifier(id=res_id)
        origin.creation_info = CreationInfo(agency_id=source_code)
        origin.time = UTCDateTime(date + time)
        origin.latitude = latitude * self._coordinateSign(lat_type)
        origin.longitude = longitude * self._coordinateSign(lon_type)
        origin.depth = depth * 1000
        origin.depth_type = 'from location'
        origin.quality = OriginQuality()
        origin.quality.standard_error = standard_dev
        origin.quality.used_station_count = station_number
        origin.quality.used_phase_count = phase_number
        origin.type = 'hypocenter'
        event.origins.append(origin)
Exemplo n.º 3
0
 def test_multiple_origins(self):
     """
     Parameters of multiple origins should not interfere with each other.
     """
     origin = Origin()
     origin.resource_id = 'smi:ch.ethz.sed/origin/37465'
     origin.time = UTCDateTime(0)
     origin.latitude = 12
     origin.latitude_errors.confidence_level = 95
     origin.longitude = 42
     origin.depth_type = 'from location'
     self.assertEqual(
         origin.resource_id,
         ResourceIdentifier(id='smi:ch.ethz.sed/origin/37465'))
     self.assertEqual(origin.latitude, 12)
     self.assertEqual(origin.latitude_errors.confidence_level, 95)
     self.assertEqual(origin.latitude_errors.uncertainty, None)
     self.assertEqual(origin.longitude, 42)
     origin2 = Origin(force_resource_id=False)
     origin2.latitude = 13.4
     self.assertEqual(origin2.depth_type, None)
     self.assertEqual(origin2.resource_id, None)
     self.assertEqual(origin2.latitude, 13.4)
     self.assertEqual(origin2.latitude_errors.confidence_level, None)
     self.assertEqual(origin2.longitude, None)
Exemplo n.º 4
0
def attach_new_origin(
    old_event: Event,
    new_event: Event,
    new_origin: Origin,
    preferred: bool,
    index: Optional[int] = None,
) -> Catalog:
    """
    Attach a new origin to an existing events object.

    Parameters
    ----------
    old_event : obspy.core.event.Event
        The old event that will receive the new origin
    new_event : obspy.core.event.Event
        The new event that contains the origin, needed for merging picks
        that may not exist in old_event
    new_origin : obspy.core.event.Origin
        The new origin that will be attached to old_event
    preferred : bool
        If True mark the new origin as the preferred_origin
    index : int or None
        The origin index of old_cat that new_origin will overwrite, if None
        append the new_origin to old_cat.origins

    Returns
    -------
    obspy.Catalog
        modifies old_cat in-place, returns old_catalog
    """
    # make sure all the picks/amplitudes in new_event are also in old_event
    merge_events(old_event, new_event, delete_old=False)
    # point the arrivals in the new origin at the old picks
    _associate_picks(old_event, new_event, new_origin)
    # append the origin
    if index is not None:  # if this origin is to replace another
        try:
            old_ori = old_event.origins[index]
        except IndexError:
            msg = ("%d is not valid for an origin list of length %d") % (
                index,
                len(old_event.origins),
            )
            msg += " appending new origin to end of list"
            warnings.warn(msg)
            old_event.origins.append(new_origin)
        else:
            # set resource id and creation info
            new_origin.resource_id = old_ori.resource_id
            new_origin.creation_info = old_ori.creation_info
            old_event.origins[index] = new_origin
    else:
        old_event.origins.append(new_origin)
    # bump origin creation info
    bump_creation_version(new_origin)
    # set preferred
    if preferred:
        old_event.preferred_origin_id = new_origin.resource_id
    validate_catalog(old_event)
    return old_event
Exemplo n.º 5
0
 def test_multipleOrigins(self):
     """
     Parameters of multiple origins should not interfere with each other.
     """
     origin = Origin()
     origin.resource_id = 'smi:ch.ethz.sed/origin/37465'
     origin.time = UTCDateTime(0)
     origin.latitude = 12
     origin.latitude_errors.confidence_level = 95
     origin.longitude = 42
     origin.depth_type = 'from location'
     self.assertEqual(
         origin.resource_id,
         ResourceIdentifier(id='smi:ch.ethz.sed/origin/37465'))
     self.assertEqual(origin.latitude, 12)
     self.assertEqual(origin.latitude_errors.confidence_level, 95)
     self.assertEqual(origin.latitude_errors.uncertainty, None)
     self.assertEqual(origin.longitude, 42)
     origin2 = Origin(force_resource_id=False)
     origin2.latitude = 13.4
     self.assertEqual(origin2.depth_type, None)
     self.assertEqual(origin2.resource_id, None)
     self.assertEqual(origin2.latitude, 13.4)
     self.assertEqual(origin2.latitude_errors.confidence_level, None)
     self.assertEqual(origin2.longitude, None)
Exemplo n.º 6
0
    def _parse_record_hy(self, line):
        """
        Parses the 'hypocenter' record HY
        """
        date = line[2:10]
        time = line[11:20]
        # unused: location_quality = line[20]
        latitude = self._float(line[21:27])
        lat_type = line[27]
        longitude = self._float(line[29:36])
        lon_type = line[36]
        depth = self._float(line[38:43])
        # unused: depth_quality = line[43]
        standard_dev = self._float(line[44:48])
        station_number = self._int(line[48:51])
        # unused: version_flag = line[51]
        fe_region_number = line[52:55]
        fe_region_name = self._decode_fe_region_number(fe_region_number)
        source_code = line[55:60].strip()

        event = Event()
        # FIXME: a smarter way to define evid?
        evid = date + time
        res_id = '/'.join((res_id_prefix, 'event', evid))
        event.resource_id = ResourceIdentifier(id=res_id)
        description = EventDescription(
            type='region name',
            text=fe_region_name)
        event.event_descriptions.append(description)
        description = EventDescription(
            type='Flinn-Engdahl region',
            text=fe_region_number)
        event.event_descriptions.append(description)
        origin = Origin()
        res_id = '/'.join((res_id_prefix, 'origin', evid))
        origin.resource_id = ResourceIdentifier(id=res_id)
        origin.creation_info = CreationInfo()
        if source_code:
            origin.creation_info.agency_id = source_code
        else:
            origin.creation_info.agency_id = 'USGS-NEIC'
        res_id = '/'.join((res_id_prefix, 'earthmodel/ak135'))
        origin.earth_model_id = ResourceIdentifier(id=res_id)
        origin.time = UTCDateTime(date + time)
        origin.latitude = latitude * self._coordinate_sign(lat_type)
        origin.longitude = longitude * self._coordinate_sign(lon_type)
        origin.depth = depth * 1000
        origin.depth_type = 'from location'
        origin.quality = OriginQuality()
        origin.quality.associated_station_count = station_number
        origin.quality.standard_error = standard_dev
        # associated_phase_count can be incremented in records 'P ' and 'S '
        origin.quality.associated_phase_count = 0
        # depth_phase_count can be incremented in record 'S '
        origin.quality.depth_phase_count = 0
        origin.origin_type = 'hypocenter'
        origin.region = fe_region_name
        event.origins.append(origin)
        return event
Exemplo n.º 7
0
    def _parse_record_hy(self, line):
        """
        Parses the 'hypocenter' record HY
        """
        date = line[2:10]
        time = line[11:20]
        # unused: location_quality = line[20]
        latitude = self._float(line[21:27])
        lat_type = line[27]
        longitude = self._float(line[29:36])
        lon_type = line[36]
        depth = self._float(line[38:43])
        # unused: depth_quality = line[43]
        standard_dev = self._float(line[44:48])
        station_number = self._int(line[48:51])
        # unused: version_flag = line[51]
        fe_region_number = line[52:55]
        fe_region_name = self._decode_fe_region_number(fe_region_number)
        source_code = line[55:60].strip()

        event = Event()
        # FIXME: a smarter way to define evid?
        evid = date + time
        res_id = '/'.join((res_id_prefix, 'event', evid))
        event.resource_id = ResourceIdentifier(id=res_id)
        description = EventDescription(
            type='region name',
            text=fe_region_name)
        event.event_descriptions.append(description)
        description = EventDescription(
            type='Flinn-Engdahl region',
            text=fe_region_number)
        event.event_descriptions.append(description)
        origin = Origin()
        res_id = '/'.join((res_id_prefix, 'origin', evid))
        origin.resource_id = ResourceIdentifier(id=res_id)
        origin.creation_info = CreationInfo()
        if source_code:
            origin.creation_info.agency_id = source_code
        else:
            origin.creation_info.agency_id = 'USGS-NEIC'
        res_id = '/'.join((res_id_prefix, 'earthmodel/ak135'))
        origin.earth_model_id = ResourceIdentifier(id=res_id)
        origin.time = UTCDateTime(date + time)
        origin.latitude = latitude * self._coordinate_sign(lat_type)
        origin.longitude = longitude * self._coordinate_sign(lon_type)
        origin.depth = depth * 1000
        origin.depth_type = 'from location'
        origin.quality = OriginQuality()
        origin.quality.associated_station_count = station_number
        origin.quality.standard_error = standard_dev
        # associated_phase_count can be incremented in records 'P ' and 'S '
        origin.quality.associated_phase_count = 0
        # depth_phase_count can be incremented in record 'S '
        origin.quality.depth_phase_count = 0
        origin.origin_type = 'hypocenter'
        origin.region = fe_region_name
        event.origins.append(origin)
        return event
Exemplo n.º 8
0
 def test_multiple_origins(self):
     """
     Parameters of multiple origins should not interfere with each other.
     """
     origin = Origin()
     origin.resource_id = 'smi:ch.ethz.sed/origin/37465'
     origin.time = UTCDateTime(0)
     origin.latitude = 12
     origin.latitude_errors.confidence_level = 95
     origin.longitude = 42
     origin.depth_type = 'from location'
     assert origin.resource_id == \
         ResourceIdentifier(id='smi:ch.ethz.sed/origin/37465')
     assert origin.latitude == 12
     assert origin.latitude_errors.confidence_level == 95
     assert origin.latitude_errors.uncertainty is None
     assert origin.longitude == 42
     origin2 = Origin(force_resource_id=False)
     origin2.latitude = 13.4
     assert origin2.depth_type is None
     assert origin2.resource_id is None
     assert origin2.latitude == 13.4
     assert origin2.latitude_errors.confidence_level is None
     assert origin2.longitude is None
Exemplo n.º 9
0
    def _parse_record_dp(self, line, event):
        """
        Parses the 'source parameter data - primary' record Dp
        """
        source_contributor = line[2:6].strip()
        computation_type = line[6]
        exponent = self._int_zero(line[7])
        scale = math.pow(10, exponent)
        centroid_origin_time = line[8:14] + '.' + line[14]
        orig_time_stderr = line[15:17]
        if orig_time_stderr == 'FX':
            orig_time_stderr = 'Fixed'
        else:
            orig_time_stderr = \
                self._float_with_format(orig_time_stderr, '2.1', scale)
        centroid_latitude = self._float_with_format(line[17:21], '4.2')
        lat_type = line[21]
        if centroid_latitude is not None:
            centroid_latitude *= self._coordinate_sign(lat_type)
        lat_stderr = line[22:25]
        if lat_stderr == 'FX':
            lat_stderr = 'Fixed'
        else:
            lat_stderr = self._float_with_format(lat_stderr, '3.2', scale)
        centroid_longitude = self._float_with_format(line[25:30], '5.2')
        lon_type = line[30]
        if centroid_longitude is not None:
            centroid_longitude *= self._coordinate_sign(lon_type)
        lon_stderr = line[31:34]
        if lon_stderr == 'FX':
            lon_stderr = 'Fixed'
        else:
            lon_stderr = self._float_with_format(lon_stderr, '3.2', scale)
        centroid_depth = self._float_with_format(line[34:38], '4.1')
        depth_stderr = line[38:40]
        if depth_stderr == 'FX' or depth_stderr == 'BD':
            depth_stderr = 'Fixed'
        else:
            depth_stderr = self._float_with_format(depth_stderr, '2.1', scale)
        station_number = self._int_zero(line[40:43])
        component_number = self._int_zero(line[43:46])
        station_number2 = self._int_zero(line[46:48])
        component_number2 = self._int_zero(line[48:51])
        # unused: half_duration = self._float_with_format(line[51:54], '3.1')
        moment = self._float_with_format(line[54:56], '2.1')
        moment_stderr = self._float_with_format(line[56:58], '2.1')
        moment_exponent = self._int(line[58:60])
        if (moment is not None) and (moment_exponent is not None):
            moment *= math.pow(10, moment_exponent)
        if (moment_stderr is not None) and (moment_exponent is not None):
            moment_stderr *= math.pow(10, moment_exponent)

        evid = event.resource_id.id.split('/')[-1]
        # Create a new origin only if centroid time is defined:
        origin = None
        if centroid_origin_time.strip() != '.':
            origin = Origin()
            res_id = '/'.join((res_id_prefix, 'origin',
                               evid, source_contributor.lower(),
                               'mw' + computation_type.lower()))
            origin.resource_id = ResourceIdentifier(id=res_id)
            origin.creation_info = \
                CreationInfo(agency_id=source_contributor)
            date = event.origins[0].time.strftime('%Y%m%d')
            origin.time = UTCDateTime(date + centroid_origin_time)
            # Check if centroid time is on the next day:
            if origin.time < event.origins[0].time:
                origin.time += timedelta(days=1)
            self._store_uncertainty(origin.time_errors, orig_time_stderr)
            origin.latitude = centroid_latitude
            origin.longitude = centroid_longitude
            origin.depth = centroid_depth * 1000
            if lat_stderr == 'Fixed' and lon_stderr == 'Fixed':
                origin.epicenter_fixed = True
            else:
                self._store_uncertainty(origin.latitude_errors,
                                        self._lat_err_to_deg(lat_stderr))
                self._store_uncertainty(origin.longitude_errors,
                                        self._lon_err_to_deg(lon_stderr,
                                                             origin.latitude))
            if depth_stderr == 'Fixed':
                origin.depth_type = 'operator assigned'
            else:
                origin.depth_type = 'from location'
                self._store_uncertainty(origin.depth_errors,
                                        depth_stderr, scale=1000)
            quality = OriginQuality()
            quality.used_station_count = \
                station_number + station_number2
            quality.used_phase_count = \
                component_number + component_number2
            origin.quality = quality
            origin.origin_type = 'centroid'
            event.origins.append(origin)
        focal_mechanism = FocalMechanism()
        res_id = '/'.join((res_id_prefix, 'focalmechanism',
                           evid, source_contributor.lower(),
                           'mw' + computation_type.lower()))
        focal_mechanism.resource_id = ResourceIdentifier(id=res_id)
        focal_mechanism.creation_info = \
            CreationInfo(agency_id=source_contributor)
        moment_tensor = MomentTensor()
        if origin is not None:
            moment_tensor.derived_origin_id = origin.resource_id
        else:
            # this is required for QuakeML validation:
            res_id = '/'.join((res_id_prefix, 'no-origin'))
            moment_tensor.derived_origin_id = \
                ResourceIdentifier(id=res_id)
        for mag in event.magnitudes:
            if mag.creation_info.agency_id == source_contributor:
                moment_tensor.moment_magnitude_id = mag.resource_id
        res_id = '/'.join((res_id_prefix, 'momenttensor',
                           evid, source_contributor.lower(),
                           'mw' + computation_type.lower()))
        moment_tensor.resource_id = ResourceIdentifier(id=res_id)
        moment_tensor.scalar_moment = moment
        self._store_uncertainty(moment_tensor.scalar_moment_errors,
                                moment_stderr)
        data_used = DataUsed()
        data_used.station_count = station_number + station_number2
        data_used.component_count = component_number + component_number2
        if computation_type == 'C':
            res_id = '/'.join((res_id_prefix, 'methodID=CMT'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # CMT algorithm uses long-period body waves,
            # very-long-period surface waves and
            # intermediate period surface waves (since 2004
            # for shallow and intermediate-depth earthquakes
            # --Ekstrom et al., 2012)
            data_used.wave_type = 'combined'
        if computation_type == 'M':
            res_id = '/'.join((res_id_prefix, 'methodID=moment_tensor'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # FIXME: not sure which kind of data is used by
            # "moment tensor" algorithm.
            data_used.wave_type = 'unknown'
        elif computation_type == 'B':
            res_id = '/'.join((res_id_prefix, 'methodID=broadband_data'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # FIXME: is 'combined' correct here?
            data_used.wave_type = 'combined'
        elif computation_type == 'F':
            res_id = '/'.join((res_id_prefix, 'methodID=P-wave_first_motion'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            data_used.wave_type = 'P waves'
        elif computation_type == 'S':
            res_id = '/'.join((res_id_prefix, 'methodID=scalar_moment'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # FIXME: not sure which kind of data is used
            # for scalar moment determination.
            data_used.wave_type = 'unknown'
        moment_tensor.data_used = [data_used]
        focal_mechanism.moment_tensor = moment_tensor
        event.focal_mechanisms.append(focal_mechanism)
        return focal_mechanism
Exemplo n.º 10
0
def _read_ndk(filename, *args, **kwargs):  # @UnusedVariable
    """
    Reads an NDK file to a :class:`~obspy.core.event.Catalog` object.

    :param filename: File or file-like object in text mode.
    """
    # Read the whole file at once. While an iterator would be more efficient
    # the largest NDK file out in the wild is 13.7 MB so it does not matter
    # much.
    if not hasattr(filename, "read"):
        # Check if it exists, otherwise assume its a string.
        try:
            with open(filename, "rt") as fh:
                data = fh.read()
        except Exception:
            try:
                data = filename.decode()
            except Exception:
                data = str(filename)
            data = data.strip()
    else:
        data = filename.read()
        if hasattr(data, "decode"):
            data = data.decode()

    # Create iterator that yields lines.
    def lines_iter():
        prev_line = -1
        while True:
            next_line = data.find("\n", prev_line + 1)
            if next_line < 0:
                break
            yield data[prev_line + 1:next_line]
            prev_line = next_line
        if len(data) > prev_line + 1:
            yield data[prev_line + 1:]

    # Use one Flinn Engdahl object for all region determinations.
    fe = FlinnEngdahl()
    cat = Catalog(resource_id=_get_resource_id("catalog", str(uuid.uuid4())))

    # Loop over 5 lines at once.
    for _i, lines in enumerate(zip_longest(*[lines_iter()] * 5)):
        if None in lines:
            msg = "Skipped last %i lines. Not a multiple of 5 lines." % (
                lines.count(None))
            warnings.warn(msg, ObsPyNDKWarning)
            continue

        # Parse the lines to a human readable dictionary.
        try:
            record = _read_lines(*lines)
        except (ValueError, ObsPyNDKException):
            exc = traceback.format_exc()
            msg = ("Could not parse event %i (faulty file?). Will be "
                   "skipped. Lines of the event:\n"
                   "\t%s\n"
                   "%s") % (_i + 1, "\n\t".join(lines), exc)
            warnings.warn(msg, ObsPyNDKWarning)
            continue

        # Use one creation info for essentially every item.
        creation_info = CreationInfo(agency_id="GCMT",
                                     version=record["version_code"])

        # Use the ObsPy Flinn Engdahl region determiner as the region in the
        # NDK files is oftentimes trimmed.
        region = fe.get_region(record["centroid_longitude"],
                               record["centroid_latitude"])

        # Create an event object.
        event = Event(force_resource_id=False,
                      event_type="earthquake",
                      event_type_certainty="known",
                      event_descriptions=[
                          EventDescription(text=region,
                                           type="Flinn-Engdahl region"),
                          EventDescription(text=record["cmt_event_name"],
                                           type="earthquake name")
                      ])

        # Assemble the time for the reference origin.
        try:
            time = _parse_date_time(record["date"], record["time"])
        except ObsPyNDKException:
            msg = ("Invalid time in event %i. '%s' and '%s' cannot be "
                   "assembled to a valid time. Event will be skipped.") % \
                  (_i + 1, record["date"], record["time"])
            warnings.warn(msg, ObsPyNDKWarning)
            continue

        # Create two origins, one with the reference latitude/longitude and
        # one with the centroidal values.
        ref_origin = Origin(
            force_resource_id=False,
            time=time,
            longitude=record["hypo_lng"],
            latitude=record["hypo_lat"],
            # Convert to m.
            depth=record["hypo_depth_in_km"] * 1000.0,
            origin_type="hypocenter",
            comments=[
                Comment(text="Hypocenter catalog: %s" %
                        record["hypocenter_reference_catalog"],
                        force_resource_id=False)
            ])
        ref_origin.comments[0].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="ref_origin")
        ref_origin.resource_id = _get_resource_id(record["cmt_event_name"],
                                                  "origin",
                                                  tag="reforigin")

        cmt_origin = Origin(
            force_resource_id=False,
            longitude=record["centroid_longitude"],
            longitude_errors={
                "uncertainty": record["centroid_longitude_error"]
            },
            latitude=record["centroid_latitude"],
            latitude_errors={"uncertainty": record["centroid_latitude_error"]},
            # Convert to m.
            depth=record["centroid_depth_in_km"] * 1000.0,
            depth_errors={
                "uncertainty": record["centroid_depth_in_km_error"] * 1000
            },
            time=ref_origin["time"] + record["centroid_time"],
            time_errors={"uncertainty": record["centroid_time_error"]},
            depth_type=record["type_of_centroid_depth"],
            origin_type="centroid",
            time_fixed=False,
            epicenter_fixed=False,
            creation_info=creation_info.copy())
        cmt_origin.resource_id = _get_resource_id(record["cmt_event_name"],
                                                  "origin",
                                                  tag="cmtorigin")
        event.origins = [ref_origin, cmt_origin]
        event.preferred_origin_id = cmt_origin.resource_id.id

        # Create the magnitude object.
        mag = Magnitude(force_resource_id=False,
                        mag=round(record["Mw"], 2),
                        magnitude_type="Mwc",
                        origin_id=cmt_origin.resource_id,
                        creation_info=creation_info.copy())
        mag.resource_id = _get_resource_id(record["cmt_event_name"],
                                           "magnitude",
                                           tag="moment_mag")
        event.magnitudes = [mag]
        event.preferred_magnitude_id = mag.resource_id.id

        # Add the reported mb, MS magnitudes as additional magnitude objects.
        event.magnitudes.append(
            Magnitude(
                force_resource_id=False,
                mag=record["mb"],
                magnitude_type="mb",
                comments=[
                    Comment(
                        force_resource_id=False,
                        text="Reported magnitude in NDK file. Most likely 'mb'."
                    )
                ]))
        event.magnitudes[-1].comments[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="mb_magnitude")
        event.magnitudes[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "magnitude", tag="mb")

        event.magnitudes.append(
            Magnitude(
                force_resource_id=False,
                mag=record["MS"],
                magnitude_type="MS",
                comments=[
                    Comment(
                        force_resource_id=False,
                        text="Reported magnitude in NDK file. Most likely 'MS'."
                    )
                ]))
        event.magnitudes[-1].comments[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="MS_magnitude")
        event.magnitudes[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "magnitude", tag="MS")

        # Take care of the moment tensor.
        tensor = Tensor(m_rr=record["m_rr"],
                        m_rr_errors={"uncertainty": record["m_rr_error"]},
                        m_pp=record["m_pp"],
                        m_pp_errors={"uncertainty": record["m_pp_error"]},
                        m_tt=record["m_tt"],
                        m_tt_errors={"uncertainty": record["m_tt_error"]},
                        m_rt=record["m_rt"],
                        m_rt_errors={"uncertainty": record["m_rt_error"]},
                        m_rp=record["m_rp"],
                        m_rp_errors={"uncertainty": record["m_rp_error"]},
                        m_tp=record["m_tp"],
                        m_tp_errors={"uncertainty": record["m_tp_error"]},
                        creation_info=creation_info.copy())
        mt = MomentTensor(
            force_resource_id=False,
            scalar_moment=record["scalar_moment"],
            tensor=tensor,
            data_used=[DataUsed(**i) for i in record["data_used"]],
            inversion_type=record["source_type"],
            source_time_function=SourceTimeFunction(
                type=record["moment_rate_type"],
                duration=record["moment_rate_duration"]),
            derived_origin_id=cmt_origin.resource_id,
            creation_info=creation_info.copy())
        mt.resource_id = _get_resource_id(record["cmt_event_name"],
                                          "momenttensor")
        axis = [Axis(**i) for i in record["principal_axis"]]
        focmec = FocalMechanism(
            force_resource_id=False,
            moment_tensor=mt,
            principal_axes=PrincipalAxes(
                # The ordering is the same as for the IRIS SPUD service and
                # from a website of the Saint Louis University Earthquake
                # center so it should be correct.
                t_axis=axis[0],
                p_axis=axis[2],
                n_axis=axis[1]),
            nodal_planes=NodalPlanes(
                nodal_plane_1=NodalPlane(**record["nodal_plane_1"]),
                nodal_plane_2=NodalPlane(**record["nodal_plane_2"])),
            comments=[
                Comment(force_resource_id=False,
                        text="CMT Analysis Type: %s" %
                        record["cmt_type"].capitalize()),
                Comment(force_resource_id=False,
                        text="CMT Timestamp: %s" % record["cmt_timestamp"])
            ],
            creation_info=creation_info.copy())
        focmec.comments[0].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="cmt_type")
        focmec.comments[1].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="cmt_timestamp")
        focmec.resource_id = _get_resource_id(record["cmt_event_name"],
                                              "focal_mechanism")
        event.focal_mechanisms = [focmec]
        event.preferred_focal_mechanism_id = focmec.resource_id.id

        # Set at end to avoid duplicate resource id warning.
        event.resource_id = _get_resource_id(record["cmt_event_name"], "event")

        cat.append(event)

    if len(cat) == 0:
        msg = "No valid events found in NDK file."
        raise ObsPyNDKException(msg)

    return cat
Exemplo n.º 11
0
Arquivo: core.py Projeto: Qigaoo/obspy
def _read_ndk(filename, *args, **kwargs):  # @UnusedVariable
    """
    Reads an NDK file to a :class:`~obspy.core.event.Catalog` object.

    :param filename: File or file-like object in text mode.
    """
    # Read the whole file at once. While an iterator would be more efficient
    # the largest NDK file out in the wild is 13.7 MB so it does not matter
    # much.
    if not hasattr(filename, "read"):
        # Check if it exists, otherwise assume its a string.
        try:
            with open(filename, "rt") as fh:
                data = fh.read()
        except:
            try:
                data = filename.decode()
            except:
                data = str(filename)
            data = data.strip()
    else:
        data = filename.read()
        if hasattr(data, "decode"):
            data = data.decode()

    # Create iterator that yields lines.
    def lines_iter():
        prev_line = -1
        while True:
            next_line = data.find("\n", prev_line + 1)
            if next_line < 0:
                break
            yield data[prev_line + 1: next_line]
            prev_line = next_line
        if len(data) > prev_line + 1:
            yield data[prev_line + 1:]

    # Use one Flinn Engdahl object for all region determinations.
    fe = FlinnEngdahl()
    cat = Catalog(resource_id=_get_resource_id("catalog", str(uuid.uuid4())))

    # Loop over 5 lines at once.
    for _i, lines in enumerate(itertools.zip_longest(*[lines_iter()] * 5)):
        if None in lines:
            msg = "Skipped last %i lines. Not a multiple of 5 lines." % (
                lines.count(None))
            warnings.warn(msg, ObsPyNDKWarning)
            continue

        # Parse the lines to a human readable dictionary.
        try:
            record = _read_lines(*lines)
        except (ValueError, ObsPyNDKException):
            exc = traceback.format_exc()
            msg = (
                "Could not parse event %i (faulty file?). Will be "
                "skipped. Lines of the event:\n"
                "\t%s\n"
                "%s") % (_i + 1, "\n\t".join(lines), exc)
            warnings.warn(msg, ObsPyNDKWarning)
            continue

        # Use one creation info for essentially every item.
        creation_info = CreationInfo(
            agency_id="GCMT",
            version=record["version_code"]
        )

        # Use the ObsPy Flinn Engdahl region determiner as the region in the
        # NDK files is oftentimes trimmed.
        region = fe.get_region(record["centroid_longitude"],
                               record["centroid_latitude"])

        # Create an event object.
        event = Event(
            force_resource_id=False,
            event_type="earthquake",
            event_type_certainty="known",
            event_descriptions=[
                EventDescription(text=region, type="Flinn-Engdahl region"),
                EventDescription(text=record["cmt_event_name"],
                                 type="earthquake name")
            ]
        )

        # Assemble the time for the reference origin.
        try:
            time = _parse_date_time(record["date"], record["time"])
        except ObsPyNDKException:
            msg = ("Invalid time in event %i. '%s' and '%s' cannot be "
                   "assembled to a valid time. Event will be skipped.") % \
                  (_i + 1, record["date"], record["time"])
            warnings.warn(msg, ObsPyNDKWarning)
            continue

        # Create two origins, one with the reference latitude/longitude and
        # one with the centroidal values.
        ref_origin = Origin(
            force_resource_id=False,
            time=time,
            longitude=record["hypo_lng"],
            latitude=record["hypo_lat"],
            # Convert to m.
            depth=record["hypo_depth_in_km"] * 1000.0,
            origin_type="hypocenter",
            comments=[Comment(text="Hypocenter catalog: %s" %
                              record["hypocenter_reference_catalog"],
                              force_resource_id=False)]
        )
        ref_origin.comments[0].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="ref_origin")
        ref_origin.resource_id = _get_resource_id(record["cmt_event_name"],
                                                  "origin", tag="reforigin")

        cmt_origin = Origin(
            force_resource_id=False,
            longitude=record["centroid_longitude"],
            longitude_errors={
                "uncertainty": record["centroid_longitude_error"]},
            latitude=record["centroid_latitude"],
            latitude_errors={
                "uncertainty": record["centroid_latitude_error"]},
            # Convert to m.
            depth=record["centroid_depth_in_km"] * 1000.0,
            depth_errors={
                "uncertainty": record["centroid_depth_in_km_error"] * 1000},
            time=ref_origin["time"] + record["centroid_time"],
            time_errors={"uncertainty": record["centroid_time_error"]},
            depth_type=record["type_of_centroid_depth"],
            origin_type="centroid",
            time_fixed=False,
            epicenter_fixed=False,
            creation_info=creation_info.copy()
        )
        cmt_origin.resource_id = _get_resource_id(record["cmt_event_name"],
                                                  "origin",
                                                  tag="cmtorigin")
        event.origins = [ref_origin, cmt_origin]
        event.preferred_origin_id = cmt_origin.resource_id.id

        # Create the magnitude object.
        mag = Magnitude(
            force_resource_id=False,
            mag=round(record["Mw"], 2),
            magnitude_type="Mwc",
            origin_id=cmt_origin.resource_id,
            creation_info=creation_info.copy()
        )
        mag.resource_id = _get_resource_id(record["cmt_event_name"],
                                           "magnitude", tag="moment_mag")
        event.magnitudes = [mag]
        event.preferred_magnitude_id = mag.resource_id.id

        # Add the reported mb, MS magnitudes as additional magnitude objects.
        event.magnitudes.append(Magnitude(
            force_resource_id=False,
            mag=record["mb"],
            magnitude_type="mb",
            comments=[Comment(
                force_resource_id=False,
                text="Reported magnitude in NDK file. Most likely 'mb'."
            )]
        ))
        event.magnitudes[-1].comments[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="mb_magnitude")
        event.magnitudes[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "magnitude", tag="mb")

        event.magnitudes.append(Magnitude(
            force_resource_id=False,
            mag=record["MS"],
            magnitude_type="MS",
            comments=[Comment(
                force_resource_id=False,
                text="Reported magnitude in NDK file. Most likely 'MS'."
            )]
        ))
        event.magnitudes[-1].comments[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="MS_magnitude")
        event.magnitudes[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "magnitude", tag="MS")

        # Take care of the moment tensor.
        tensor = Tensor(
            m_rr=record["m_rr"],
            m_rr_errors={"uncertainty": record["m_rr_error"]},
            m_pp=record["m_pp"],
            m_pp_errors={"uncertainty": record["m_pp_error"]},
            m_tt=record["m_tt"],
            m_tt_errors={"uncertainty": record["m_tt_error"]},
            m_rt=record["m_rt"],
            m_rt_errors={"uncertainty": record["m_rt_error"]},
            m_rp=record["m_rp"],
            m_rp_errors={"uncertainty": record["m_rp_error"]},
            m_tp=record["m_tp"],
            m_tp_errors={"uncertainty": record["m_tp_error"]},
            creation_info=creation_info.copy()
        )
        mt = MomentTensor(
            force_resource_id=False,
            scalar_moment=record["scalar_moment"],
            tensor=tensor,
            data_used=[DataUsed(**i) for i in record["data_used"]],
            inversion_type=record["source_type"],
            source_time_function=SourceTimeFunction(
                type=record["moment_rate_type"],
                duration=record["moment_rate_duration"]
            ),
            derived_origin_id=cmt_origin.resource_id,
            creation_info=creation_info.copy()
        )
        mt.resource_id = _get_resource_id(record["cmt_event_name"],
                                          "momenttensor")
        axis = [Axis(**i) for i in record["principal_axis"]]
        focmec = FocalMechanism(
            force_resource_id=False,
            moment_tensor=mt,
            principal_axes=PrincipalAxes(
                # The ordering is the same as for the IRIS SPUD service and
                # from a website of the Saint Louis University Earthquake
                # center so it should be correct.
                t_axis=axis[0],
                p_axis=axis[2],
                n_axis=axis[1]
            ),
            nodal_planes=NodalPlanes(
                nodal_plane_1=NodalPlane(**record["nodal_plane_1"]),
                nodal_plane_2=NodalPlane(**record["nodal_plane_2"])
            ),
            comments=[
                Comment(force_resource_id=False,
                        text="CMT Analysis Type: %s" %
                             record["cmt_type"].capitalize()),
                Comment(force_resource_id=False,
                        text="CMT Timestamp: %s" %
                             record["cmt_timestamp"])],
            creation_info=creation_info.copy()
        )
        focmec.comments[0].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="cmt_type")
        focmec.comments[1].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="cmt_timestamp")
        focmec.resource_id = _get_resource_id(record["cmt_event_name"],
                                              "focal_mechanism")
        event.focal_mechanisms = [focmec]
        event.preferred_focal_mechanism_id = focmec.resource_id.id

        # Set at end to avoid duplicate resource id warning.
        event.resource_id = _get_resource_id(record["cmt_event_name"],
                                             "event")

        cat.append(event)

    if len(cat) == 0:
        msg = "No valid events found in NDK file."
        raise ObsPyNDKException(msg)

    return cat
Exemplo n.º 12
0
    def _parseRecordDp(self, line, event):
        """
        Parses the 'source parameter data - primary' record Dp
        """
        source_contributor = line[2:6].strip()
        computation_type = line[6]
        exponent = self._intZero(line[7])
        scale = math.pow(10, exponent)
        centroid_origin_time = line[8:14] + '.' + line[14]
        orig_time_stderr = line[15:17]
        if orig_time_stderr == 'FX':
            orig_time_stderr = 'Fixed'
        else:
            orig_time_stderr =\
                self._floatWithFormat(orig_time_stderr, '2.1', scale)
        centroid_latitude = self._floatWithFormat(line[17:21], '4.2')
        lat_type = line[21]
        if centroid_latitude is not None:
            centroid_latitude *= self._coordinateSign(lat_type)
        lat_stderr = line[22:25]
        if lat_stderr == 'FX':
            lat_stderr = 'Fixed'
        else:
            lat_stderr = self._floatWithFormat(lat_stderr, '3.2', scale)
        centroid_longitude = self._floatWithFormat(line[25:30], '5.2')
        lon_type = line[30]
        if centroid_longitude is not None:
            centroid_longitude *= self._coordinateSign(lon_type)
        lon_stderr = line[31:34]
        if lon_stderr == 'FX':
            lon_stderr = 'Fixed'
        else:
            lon_stderr = self._floatWithFormat(lon_stderr, '3.2', scale)
        centroid_depth = self._floatWithFormat(line[34:38], '4.1')
        depth_stderr = line[38:40]
        if depth_stderr == 'FX' or depth_stderr == 'BD':
            depth_stderr = 'Fixed'
        else:
            depth_stderr = self._floatWithFormat(depth_stderr, '2.1', scale)
        station_number = self._intZero(line[40:43])
        component_number = self._intZero(line[43:46])
        station_number2 = self._intZero(line[46:48])
        component_number2 = self._intZero(line[48:51])
        #unused: half_duration = self._floatWithFormat(line[51:54], '3.1')
        moment = self._floatWithFormat(line[54:56], '2.1')
        moment_stderr = self._floatWithFormat(line[56:58], '2.1')
        moment_exponent = self._int(line[58:60])
        if (moment is not None) and (moment_exponent is not None):
            moment *= math.pow(10, moment_exponent)
        if (moment_stderr is not None) and (moment_exponent is not None):
            moment_stderr *= math.pow(10, moment_exponent)

        evid = event.resource_id.id.split('/')[-1]
        #Create a new origin only if centroid time is defined:
        origin = None
        if centroid_origin_time.strip() != '.':
            origin = Origin()
            res_id = '/'.join(
                (res_id_prefix, 'origin', evid, source_contributor.lower(),
                 'mw' + computation_type.lower()))
            origin.resource_id = ResourceIdentifier(id=res_id)
            origin.creation_info =\
                CreationInfo(agency_id=source_contributor)
            date = event.origins[0].time.strftime('%Y%m%d')
            origin.time = UTCDateTime(date + centroid_origin_time)
            #Check if centroid time is on the next day:
            if origin.time < event.origins[0].time:
                origin.time += timedelta(days=1)
            self._storeUncertainty(origin.time_errors, orig_time_stderr)
            origin.latitude = centroid_latitude
            origin.longitude = centroid_longitude
            origin.depth = centroid_depth * 1000
            if lat_stderr == 'Fixed' and lon_stderr == 'Fixed':
                origin.epicenter_fixed = True
            else:
                self._storeUncertainty(origin.latitude_errors,
                                       self._latErrToDeg(lat_stderr))
                self._storeUncertainty(
                    origin.longitude_errors,
                    self._lonErrToDeg(lon_stderr, origin.latitude))
            if depth_stderr == 'Fixed':
                origin.depth_type = 'operator assigned'
            else:
                origin.depth_type = 'from location'
                self._storeUncertainty(origin.depth_errors,
                                       depth_stderr,
                                       scale=1000)
            quality = OriginQuality()
            quality.used_station_count =\
                station_number + station_number2
            quality.used_phase_count =\
                component_number + component_number2
            origin.quality = quality
            origin.type = 'centroid'
            event.origins.append(origin)
        focal_mechanism = FocalMechanism()
        res_id = '/'.join(
            (res_id_prefix, 'focalmechanism', evid, source_contributor.lower(),
             'mw' + computation_type.lower()))
        focal_mechanism.resource_id = ResourceIdentifier(id=res_id)
        focal_mechanism.creation_info =\
            CreationInfo(agency_id=source_contributor)
        moment_tensor = MomentTensor()
        if origin is not None:
            moment_tensor.derived_origin_id = origin.resource_id
        else:
            #this is required for QuakeML validation:
            res_id = '/'.join((res_id_prefix, 'no-origin'))
            moment_tensor.derived_origin_id =\
                ResourceIdentifier(id=res_id)
        for mag in event.magnitudes:
            if mag.creation_info.agency_id == source_contributor:
                moment_tensor.moment_magnitude_id = mag.resource_id
        res_id = '/'.join(
            (res_id_prefix, 'momenttensor', evid, source_contributor.lower(),
             'mw' + computation_type.lower()))
        moment_tensor.resource_id = ResourceIdentifier(id=res_id)
        moment_tensor.scalar_moment = moment
        self._storeUncertainty(moment_tensor.scalar_moment_errors,
                               moment_stderr)
        data_used = DataUsed()
        data_used.station_count = station_number + station_number2
        data_used.component_count = component_number + component_number2
        if computation_type == 'C':
            res_id = '/'.join((res_id_prefix, 'methodID=CMT'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            #CMT algorithm uses long-period body waves,
            #very-long-period surface waves and
            #intermediate period surface waves (since 2004
            #for shallow and intermediate-depth earthquakes
            # --Ekstrom et al., 2012)
            data_used.wave_type = 'combined'
        if computation_type == 'M':
            res_id = '/'.join((res_id_prefix, 'methodID=moment_tensor'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            #FIXME: not sure which kind of data is used by
            #"moment tensor" algorithm.
            data_used.wave_type = 'unknown'
        elif computation_type == 'B':
            res_id = '/'.join((res_id_prefix, 'methodID=broadband_data'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            #FIXME: is 'combined' correct here?
            data_used.wave_type = 'combined'
        elif computation_type == 'F':
            res_id = '/'.join((res_id_prefix, 'methodID=P-wave_first_motion'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            data_used.wave_type = 'P waves'
        elif computation_type == 'S':
            res_id = '/'.join((res_id_prefix, 'methodID=scalar_moment'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            #FIXME: not sure which kind of data is used
            #for scalar moment determination.
            data_used.wave_type = 'unknown'
        moment_tensor.data_used = data_used
        focal_mechanism.moment_tensor = moment_tensor
        event.focal_mechanisms.append(focal_mechanism)
        return focal_mechanism
Exemplo n.º 13
0
    def _map_join2origin(self, db):
        """
        Return an Origin instance from an dict of CSS key/values
        
        Inputs
        ======
        db : dict of key/values of CSS fields related to the origin (see Join)

        Returns
        =======
        obspy.core.event.Origin

        Notes
        =====
        Any object that supports the dict 'get' method can be passed as
        input, e.g. OrderedDict, custom classes, etc.
        
        Join
        ----
        origin <- origerr (outer)

        """ 
        #-- Basic location ------------------------------------------
        origin = Origin()
        origin.latitude = db.get('lat')
        origin.longitude = db.get('lon')
        origin.depth = _km2m(db.get('depth'))
        origin.time = _utc(db.get('time'))
        origin.extra = {}
        
        #-- Quality -------------------------------------------------
        quality = OriginQuality(
            associated_phase_count = db.get('nass'),
            used_phase_count = db.get('ndef'),
            standard_error = db.get('sdobs'),
            )
        origin.quality = quality

        #-- Solution Uncertainties ----------------------------------
        # in CSS the ellipse is projected onto the horizontal plane
        # using the covariance matrix
        uncertainty = OriginUncertainty()
        a = _km2m(db.get('smajax'))
        b = _km2m(db.get('sminax'))
        s = db.get('strike')
        dep_u = _km2m(db.get('sdepth'))
        time_u = db.get('stime')

        uncertainty.max_horizontal_uncertainty = a
        uncertainty.min_horizontal_uncertainty = b
        uncertainty.azimuth_max_horizontal_uncertainty = s
        uncertainty.horizontal_uncertainty = a
        uncertainty.preferred_description = "horizontal uncertainty"

        if db.get('conf') is not None:
            uncertainty.confidence_level = db.get('conf') * 100.  

        if uncertainty.horizontal_uncertainty is not None:
            origin.origin_uncertainty = uncertainty

        #-- Parameter Uncertainties ---------------------------------
        if all([a, b, s]):
            n, e = _get_NE_on_ellipse(a, b, s)
            lat_u = _m2deg_lat(n)
            lon_u = _m2deg_lon(e, lat=origin.latitude)
            origin.latitude_errors = {'uncertainty': lat_u} 
            origin.longitude_errors = {'uncertainty': lon_u}
        if dep_u:
            origin.depth_errors = {'uncertainty': dep_u}
        if time_u:
            origin.time_errors = {'uncertainty': time_u}

        #-- Analyst-determined Status -------------------------------
        posted_author = _str(db.get('auth'))
        mode, status = self.get_event_status(posted_author)
        origin.evaluation_mode = mode
        origin.evaluation_status = status
        
        # Save etype per origin due to schema differences...
        css_etype = _str(db.get('etype'))
        # Compatible with future patch rename "_namespace" -> "namespace"
        origin.extra['etype'] = {
            'value': css_etype, 
            'namespace': CSS_NAMESPACE
            }

        origin.creation_info = CreationInfo(
            creation_time = _utc(db.get('lddate')),
            agency_id = self.agency, 
            version = db.get('orid'),
            author = posted_author,
            )
        origin.resource_id = self._rid(origin)
        return origin
Exemplo n.º 14
0
def __read_single_fnetmt_entry(line, **kwargs):
    """
    Reads a single F-net moment tensor solution to a
    :class:`~obspy.core.event.Event` object.

    :param line: String containing moment tensor information.
    :type line: str.
    """

    a = line.split()
    try:
        ot = UTCDateTime().strptime(a[0], '%Y/%m/%d,%H:%M:%S.%f')
    except ValueError:
        ot = UTCDateTime().strptime(a[0], '%Y/%m/%d,%H:%M:%S')
    lat, lon, depjma, magjma = map(float, a[1:5])
    depjma *= 1000
    region = a[5]
    strike = tuple(map(int, a[6].split(';')))
    dip = tuple(map(int, a[7].split(';')))
    rake = tuple(map(int, a[8].split(';')))
    mo = float(a[9])
    depmt = float(a[10]) * 1000
    magmt = float(a[11])
    var_red = float(a[12])
    mxx, mxy, mxz, myy, myz, mzz, unit = map(float, a[13:20])

    event_name = util.gen_sc3_id(ot)
    e = Event(event_type="earthquake")
    e.resource_id = _get_resource_id(event_name, 'event')

    # Standard JMA solution
    o_jma = Origin(time=ot, latitude=lat, longitude=lon,
                   depth=depjma, depth_type="from location",
                   region=region)
    o_jma.resource_id = _get_resource_id(event_name,
                                         'origin', 'JMA')
    m_jma = Magnitude(mag=magjma, magnitude_type='ML',
                      origin_id=o_jma.resource_id)
    m_jma.resource_id = _get_resource_id(event_name,
                                         'magnitude', 'JMA')
    # MT solution
    o_mt = Origin(time=ot, latitude=lat, longitude=lon,
                  depth=depmt, region=region,
                  depth_type="from moment tensor inversion")
    o_mt.resource_id = _get_resource_id(event_name,
                                        'origin', 'MT')
    m_mt = Magnitude(mag=magmt, magnitude_type='Mw',
                     origin_id=o_mt.resource_id)
    m_mt.resource_id = _get_resource_id(event_name,
                                        'magnitude', 'MT')
    foc_mec = FocalMechanism(triggering_origin_id=o_jma.resource_id)
    foc_mec.resource_id = _get_resource_id(event_name,
                                           "focal_mechanism")
    nod1 = NodalPlane(strike=strike[0], dip=dip[0], rake=rake[0])
    nod2 = NodalPlane(strike=strike[1], dip=dip[1], rake=rake[1])
    nod = NodalPlanes(nodal_plane_1=nod1, nodal_plane_2=nod2)
    foc_mec.nodal_planes = nod

    tensor = Tensor(m_rr=mxx, m_tt=myy, m_pp=mzz, m_rt=mxy, m_rp=mxz, m_tp=myz)
    cm = Comment(text="Basis system: North,East,Down (Jost and \
    Herrmann 1989")
    cm.resource_id = _get_resource_id(event_name, 'comment', 'mt')
    mt = MomentTensor(derived_origin_id=o_mt.resource_id,
                      moment_magnitude_id=m_mt.resource_id,
                      scalar_moment=mo, comments=[cm],
                      tensor=tensor, variance_reduction=var_red)
    mt.resource_id = _get_resource_id(event_name,
                                      'moment_tensor')
    foc_mec.moment_tensor = mt
    e.origins = [o_jma, o_mt]
    e.magnitudes = [m_jma, m_mt]
    e.focal_mechanisms = [foc_mec]
    e.preferred_magnitude_id = m_mt.resource_id.id
    e.preferred_origin_id = o_mt.resource_id.id
    e.preferred_focal_mechanism_id = foc_mec.resource_id.id
    return e
Exemplo n.º 15
0
def __read_single_fnetmt_entry(line, **kwargs):
    """
    Reads a single F-net moment tensor solution to a
    :class:`~obspy.core.event.Event` object.

    :param line: String containing moment tensor information.
    :type line: str.
    """

    a = line.split()
    try:
        ot = UTCDateTime().strptime(a[0], '%Y/%m/%d,%H:%M:%S.%f')
    except ValueError:
        ot = UTCDateTime().strptime(a[0], '%Y/%m/%d,%H:%M:%S')
    lat, lon, depjma, magjma = map(float, a[1:5])
    depjma *= 1000
    region = a[5]
    strike = tuple(map(int, a[6].split(';')))
    dip = tuple(map(int, a[7].split(';')))
    rake = tuple(map(int, a[8].split(';')))
    mo = float(a[9])
    depmt = float(a[10]) * 1000
    magmt = float(a[11])
    var_red = float(a[12])
    mxx, mxy, mxz, myy, myz, mzz, unit = map(float, a[13:20])

    event_name = util.gen_sc3_id(ot)
    e = Event(event_type="earthquake")
    e.resource_id = _get_resource_id(event_name, 'event')

    # Standard JMA solution
    o_jma = Origin(time=ot,
                   latitude=lat,
                   longitude=lon,
                   depth=depjma,
                   depth_type="from location",
                   region=region)
    o_jma.resource_id = _get_resource_id(event_name, 'origin', 'JMA')
    m_jma = Magnitude(mag=magjma,
                      magnitude_type='ML',
                      origin_id=o_jma.resource_id)
    m_jma.resource_id = _get_resource_id(event_name, 'magnitude', 'JMA')
    # MT solution
    o_mt = Origin(time=ot,
                  latitude=lat,
                  longitude=lon,
                  depth=depmt,
                  region=region,
                  depth_type="from moment tensor inversion")
    o_mt.resource_id = _get_resource_id(event_name, 'origin', 'MT')
    m_mt = Magnitude(mag=magmt,
                     magnitude_type='Mw',
                     origin_id=o_mt.resource_id)
    m_mt.resource_id = _get_resource_id(event_name, 'magnitude', 'MT')
    foc_mec = FocalMechanism(triggering_origin_id=o_jma.resource_id)
    foc_mec.resource_id = _get_resource_id(event_name, "focal_mechanism")
    nod1 = NodalPlane(strike=strike[0], dip=dip[0], rake=rake[0])
    nod2 = NodalPlane(strike=strike[1], dip=dip[1], rake=rake[1])
    nod = NodalPlanes(nodal_plane_1=nod1, nodal_plane_2=nod2)
    foc_mec.nodal_planes = nod

    tensor = Tensor(m_rr=mxx, m_tt=myy, m_pp=mzz, m_rt=mxy, m_rp=mxz, m_tp=myz)
    cm = Comment(text="Basis system: North,East,Down (Jost and \
    Herrmann 1989")
    cm.resource_id = _get_resource_id(event_name, 'comment', 'mt')
    mt = MomentTensor(derived_origin_id=o_mt.resource_id,
                      moment_magnitude_id=m_mt.resource_id,
                      scalar_moment=mo,
                      comments=[cm],
                      tensor=tensor,
                      variance_reduction=var_red)
    mt.resource_id = _get_resource_id(event_name, 'moment_tensor')
    foc_mec.moment_tensor = mt
    e.origins = [o_jma, o_mt]
    e.magnitudes = [m_jma, m_mt]
    e.focal_mechanisms = [foc_mec]
    e.preferred_magnitude_id = m_mt.resource_id.id
    e.preferred_origin_id = o_mt.resource_id.id
    e.preferred_focal_mechanism_id = foc_mec.resource_id.id
    return e
Exemplo n.º 16
0
def outputOBSPY(hp, event=None, only_fm_picks=False):
    """
    Make an Event which includes the current focal mechanism information from HASH
    
    Use the 'only_fm_picks' flag to only include the picks HASH used for the FocalMechanism.
    This flag will replace the 'picks' and 'arrivals' lists of existing events with new ones.
    
    Inputs
    -------
    hp    : hashpy.HashPype instance
    
    event : obspy.core.event.Event
    
    only_fm_picks : bool of whether to overwrite the picks/arrivals lists
    
    
    Returns
    -------
    obspy.core.event.Event
    
    Event will be new if no event was input, FocalMech added to existing event
    """
    # Returns new (or updates existing) Event with HASH solution
    n = hp.npol
    if event is None:
        event = Event(focal_mechanisms=[], picks=[], origins=[])
        origin = Origin(arrivals=[])
        origin.time = UTCDateTime(hp.tstamp)
        origin.latitude = hp.qlat
        origin.longitude = hp.qlon
        origin.depth = hp.qdep
        origin.creation_info = CreationInfo(version=hp.icusp)
        origin.resource_id = ResourceIdentifier('smi:hash/Origin/{0}'.format(
            hp.icusp))
        for _i in range(n):
            p = Pick()
            p.creation_info = CreationInfo(version=hp.arid[_i])
            p.resource_id = ResourceIdentifier('smi:nsl/Pick/{0}'.format(
                p.creation_info.version))
            p.waveform_id = WaveformStreamID(network_code=hp.snet[_i],
                                             station_code=hp.sname[_i],
                                             channel_code=hp.scomp[_i])
            if hp.p_pol[_i] > 0:
                p.polarity = 'positive'
            else:
                p.polarity = 'negative'
            a = Arrival()
            a.creation_info = CreationInfo(version=hp.arid[_i])
            a.resource_id = ResourceIdentifier('smi:nsl/Arrival/{0}'.format(
                p.creation_info.version))
            a.azimuth = hp.p_azi_mc[_i, 0]
            a.takeoff_angle = 180. - hp.p_the_mc[_i, 0]
            a.pick_id = p.resource_id
            origin.arrivals.append(a)
            event.picks.append(p)
        event.origins.append(origin)
        event.preferred_origin_id = origin.resource_id.resource_id
    else:  # just update the changes
        origin = event.preferred_origin()
        picks = []
        arrivals = []
        for _i in range(n):
            ind = hp.p_index[_i]
            a = origin.arrivals[ind]
            p = a.pick_id.getReferredObject()
            a.takeoff_angle = hp.p_the_mc[_i, 0]
            picks.append(p)
            arrivals.append(a)
        if only_fm_picks:
            origin.arrivals = arrivals
            event.picks = picks
    # Use me double couple calculator and populate planes/axes etc
    x = hp._best_quality_index
    # Put all the mechanisms into the 'focal_mechanisms' list, mark "best" as preferred
    for s in range(hp.nmult):
        dc = DoubleCouple([hp.str_avg[s], hp.dip_avg[s], hp.rak_avg[s]])
        ax = dc.axis
        focal_mech = FocalMechanism()
        focal_mech.creation_info = CreationInfo(creation_time=UTCDateTime(),
                                                author=hp.author)
        focal_mech.triggering_origin_id = origin.resource_id
        focal_mech.resource_id = ResourceIdentifier(
            'smi:hash/FocalMechanism/{0}/{1}'.format(hp.icusp, s + 1))
        focal_mech.method_id = ResourceIdentifier('HASH')
        focal_mech.nodal_planes = NodalPlanes()
        focal_mech.nodal_planes.nodal_plane_1 = NodalPlane(*dc.plane1)
        focal_mech.nodal_planes.nodal_plane_2 = NodalPlane(*dc.plane2)
        focal_mech.principal_axes = PrincipalAxes()
        focal_mech.principal_axes.t_axis = Axis(azimuth=ax['T']['azimuth'],
                                                plunge=ax['T']['dip'])
        focal_mech.principal_axes.p_axis = Axis(azimuth=ax['P']['azimuth'],
                                                plunge=ax['P']['dip'])
        focal_mech.station_polarity_count = n
        focal_mech.azimuthal_gap = hp.magap
        focal_mech.misfit = hp.mfrac[s]
        focal_mech.station_distribution_ratio = hp.stdr[s]
        focal_mech.comments.append(
            Comment(
                hp.qual[s],
                resource_id=ResourceIdentifier(
                    focal_mech.resource_id.resource_id + '/comment/quality')))
        #----------------------------------------
        event.focal_mechanisms.append(focal_mech)
        if s == x:
            event.preferred_focal_mechanism_id = focal_mech.resource_id.resource_id
    return event
def __toOrigin(parser, origin_el):
    """
    Parses a given origin etree element.

    :type parser: :class:`~obspy.core.util.xmlwrapper.XMLParser`
    :param parser: Open XMLParser object.
    :type origin_el: etree.element
    :param origin_el: origin element to be parsed.
    :return: A ObsPy :class:`~obspy.core.event.Origin` object.
    """
    global CURRENT_TYPE

    origin = Origin()
    origin.resource_id = ResourceIdentifier(prefix="/".join([RESOURCE_ROOT, "origin"]))

    # I guess setting the program used as the method id is fine.
    origin.method_id = "%s/location_method/%s/1" % (RESOURCE_ROOT,
        parser.xpath2obj('program', origin_el))
    if str(origin.method_id).lower().endswith("none"):
        origin.method_id = None

    # Standard parameters.
    origin.time, origin.time_errors = \
        __toTimeQuantity(parser, origin_el, "time")
    origin.latitude, origin_latitude_error = \
        __toFloatQuantity(parser, origin_el, "latitude")
    origin.longitude, origin_longitude_error = \
        __toFloatQuantity(parser, origin_el, "longitude")
    origin.depth, origin.depth_errors = \
        __toFloatQuantity(parser, origin_el, "depth")

    if origin_longitude_error:
        origin_longitude_error = origin_longitude_error["uncertainty"]
    if origin_latitude_error:
        origin_latitude_error = origin_latitude_error["uncertainty"]

    # Figure out the depth type.
    depth_type = parser.xpath2obj("depth_type", origin_el)

    # Map Seishub specific depth type to the QuakeML depth type.
    if depth_type == "from location program":
        depth_type = "from location"
    if depth_type is not None:
        origin.depth_type = depth_type

    # XXX: CHECK DEPTH ORIENTATION!!

    if CURRENT_TYPE == "seiscomp3":
        origin.depth *= 1000
        if origin.depth_errors.uncertainty:
            origin.depth_errors.uncertainty *= 1000
    else:
        # Convert to m.
        origin.depth *= -1000
        if origin.depth_errors.uncertainty:
            origin.depth_errors.uncertainty *= 1000

    # Earth model.
    earth_mod = parser.xpath2obj('earth_mod', origin_el, str)
    if earth_mod:
        earth_mod = earth_mod.split()
        earth_mod = ",".join(earth_mod)
        origin.earth_model_id = "%s/earth_model/%s/1" % (RESOURCE_ROOT,
            earth_mod)

    if (origin_latitude_error is None or origin_longitude_error is None) and \
        CURRENT_TYPE not in ["seiscomp3", "toni"]:
        print "AAAAAAAAAAAAA"
        raise Exception

    if origin_latitude_error and origin_latitude_error:
        if CURRENT_TYPE in ["baynet", "obspyck"]:
            uncert = OriginUncertainty()
            if origin_latitude_error > origin_longitude_error:
                uncert.azimuth_max_horizontal_uncertainty = 0
            else:
                uncert.azimuth_max_horizontal_uncertainty = 90
            uncert.min_horizontal_uncertainty, \
                uncert.max_horizontal_uncertainty = \
                sorted([origin_longitude_error, origin_latitude_error])
            uncert.min_horizontal_uncertainty *= 1000.0
            uncert.max_horizontal_uncertainty *= 1000.0
            uncert.preferred_description = "uncertainty ellipse"
            origin.origin_uncertainty = uncert
        elif CURRENT_TYPE == "earthworm":
            uncert = OriginUncertainty()
            uncert.horizontal_uncertainty = origin_latitude_error
            uncert.horizontal_uncertainty *= 1000.0
            uncert.preferred_description = "horizontal uncertainty"
            origin.origin_uncertainty = uncert
        elif CURRENT_TYPE in ["seiscomp3", "toni"]:
            pass
        else:
            raise Exception

    # Parse the OriginQuality if applicable.
    if not origin_el.xpath("originQuality"):
        return origin

    origin_quality_el = origin_el.xpath("originQuality")[0]
    origin.quality = OriginQuality()
    origin.quality.associated_phase_count = \
        parser.xpath2obj("associatedPhaseCount", origin_quality_el, int)
    # QuakeML does apparently not distinguish between P and S wave phase
    # count. Some Seishub event files do.
    p_phase_count = parser.xpath2obj("P_usedPhaseCount", origin_quality_el,
                                     int)
    s_phase_count = parser.xpath2obj("S_usedPhaseCount", origin_quality_el,
                                     int)
    # Use both in case they are set.
    if p_phase_count is not None and s_phase_count is not None:
        phase_count = p_phase_count + s_phase_count
        # Also add two Seishub element file specific elements.
        origin.quality.p_used_phase_count = p_phase_count
        origin.quality.s_used_phase_count = s_phase_count
    # Otherwise the total usedPhaseCount should be specified.
    else:
        phase_count = parser.xpath2obj("usedPhaseCount",
                                       origin_quality_el, int)
    if p_phase_count is not None:
        origin.quality.setdefault("extra", AttribDict())
        origin.quality.extra.usedPhaseCountP = {'value': p_phase_count,
                                                'namespace': NAMESPACE}
    if s_phase_count is not None:
        origin.quality.setdefault("extra", AttribDict())
        origin.quality.extra.usedPhaseCountS = {'value': s_phase_count,
                                                'namespace': NAMESPACE}
    origin.quality.used_phase_count = phase_count

    associated_station_count = \
        parser.xpath2obj("associatedStationCount", origin_quality_el, int)
    used_station_count = parser.xpath2obj("usedStationCount",
        origin_quality_el, int)
    depth_phase_count = parser.xpath2obj("depthPhaseCount", origin_quality_el,
        int)
    standard_error = parser.xpath2obj("standardError", origin_quality_el,
        float)
    azimuthal_gap = parser.xpath2obj("azimuthalGap", origin_quality_el, float)
    secondary_azimuthal_gap = \
        parser.xpath2obj("secondaryAzimuthalGap", origin_quality_el, float)
    ground_truth_level = parser.xpath2obj("groundTruthLevel",
        origin_quality_el, str)
    minimum_distance = parser.xpath2obj("minimumDistance", origin_quality_el,
        float)
    maximum_distance = parser.xpath2obj("maximumDistance", origin_quality_el,
        float)
    median_distance = parser.xpath2obj("medianDistance", origin_quality_el,
        float)
    if minimum_distance is not None:
        minimum_distance = kilometer2degrees(minimum_distance)
    if maximum_distance is not None:
        maximum_distance = kilometer2degrees(maximum_distance)
    if median_distance is not None:
        median_distance = kilometer2degrees(median_distance)

    if associated_station_count is not None:
        origin.quality.associated_station_count = associated_station_count
    if used_station_count is not None:
        origin.quality.used_station_count = used_station_count
    if depth_phase_count is not None:
        origin.quality.depth_phase_count = depth_phase_count
    if standard_error is not None and not math.isnan(standard_error):
        origin.quality.standard_error = standard_error
    if azimuthal_gap is not None:
        origin.quality.azimuthal_gap = azimuthal_gap
    if secondary_azimuthal_gap is not None:
        origin.quality.secondary_azimuthal_gap = secondary_azimuthal_gap
    if ground_truth_level is not None:
        origin.quality.ground_truth_level = ground_truth_level
    if minimum_distance is not None:
        origin.quality.minimum_distance = minimum_distance
    if maximum_distance is not None:
        origin.quality.maximum_distance = maximum_distance
    if median_distance is not None and not math.isnan(median_distance):
        origin.quality.median_distance = median_distance

    return origin
Exemplo n.º 18
0
    def _parseRecordDp(self, line, event):
        """
        Parses the 'source parameter data - primary' record Dp
        """
        source_contributor = line[2:6].strip()
        computation_type = line[6]
        exponent = self._intZero(line[7])
        scale = math.pow(10, exponent)
        centroid_origin_time = line[8:14] + "." + line[14]
        orig_time_stderr = line[15:17]
        if orig_time_stderr == "FX":
            orig_time_stderr = "Fixed"
        else:
            orig_time_stderr = self._floatWithFormat(orig_time_stderr, "2.1", scale)
        centroid_latitude = self._floatWithFormat(line[17:21], "4.2")
        lat_type = line[21]
        if centroid_latitude is not None:
            centroid_latitude *= self._coordinateSign(lat_type)
        lat_stderr = line[22:25]
        if lat_stderr == "FX":
            lat_stderr = "Fixed"
        else:
            lat_stderr = self._floatWithFormat(lat_stderr, "3.2", scale)
        centroid_longitude = self._floatWithFormat(line[25:30], "5.2")
        lon_type = line[30]
        if centroid_longitude is not None:
            centroid_longitude *= self._coordinateSign(lon_type)
        lon_stderr = line[31:34]
        if lon_stderr == "FX":
            lon_stderr = "Fixed"
        else:
            lon_stderr = self._floatWithFormat(lon_stderr, "3.2", scale)
        centroid_depth = self._floatWithFormat(line[34:38], "4.1")
        depth_stderr = line[38:40]
        if depth_stderr == "FX" or depth_stderr == "BD":
            depth_stderr = "Fixed"
        else:
            depth_stderr = self._floatWithFormat(depth_stderr, "2.1", scale)
        station_number = self._intZero(line[40:43])
        component_number = self._intZero(line[43:46])
        station_number2 = self._intZero(line[46:48])
        component_number2 = self._intZero(line[48:51])
        # unused: half_duration = self._floatWithFormat(line[51:54], '3.1')
        moment = self._floatWithFormat(line[54:56], "2.1")
        moment_stderr = self._floatWithFormat(line[56:58], "2.1")
        moment_exponent = self._int(line[58:60])
        if (moment is not None) and (moment_exponent is not None):
            moment *= math.pow(10, moment_exponent)
        if (moment_stderr is not None) and (moment_exponent is not None):
            moment_stderr *= math.pow(10, moment_exponent)

        evid = event.resource_id.id.split("/")[-1]
        # Create a new origin only if centroid time is defined:
        origin = None
        if centroid_origin_time.strip() != ".":
            origin = Origin()
            res_id = "/".join(
                (res_id_prefix, "origin", evid, source_contributor.lower(), "mw" + computation_type.lower())
            )
            origin.resource_id = ResourceIdentifier(id=res_id)
            origin.creation_info = CreationInfo(agency_id=source_contributor)
            date = event.origins[0].time.strftime("%Y%m%d")
            origin.time = UTCDateTime(date + centroid_origin_time)
            # Check if centroid time is on the next day:
            if origin.time < event.origins[0].time:
                origin.time += timedelta(days=1)
            self._storeUncertainty(origin.time_errors, orig_time_stderr)
            origin.latitude = centroid_latitude
            origin.longitude = centroid_longitude
            origin.depth = centroid_depth * 1000
            if lat_stderr == "Fixed" and lon_stderr == "Fixed":
                origin.epicenter_fixed = True
            else:
                self._storeUncertainty(origin.latitude_errors, self._latErrToDeg(lat_stderr))
                self._storeUncertainty(origin.longitude_errors, self._lonErrToDeg(lon_stderr, origin.latitude))
            if depth_stderr == "Fixed":
                origin.depth_type = "operator assigned"
            else:
                origin.depth_type = "from location"
                self._storeUncertainty(origin.depth_errors, depth_stderr, scale=1000)
            quality = OriginQuality()
            quality.used_station_count = station_number + station_number2
            quality.used_phase_count = component_number + component_number2
            origin.quality = quality
            origin.type = "centroid"
            event.origins.append(origin)
        focal_mechanism = FocalMechanism()
        res_id = "/".join(
            (res_id_prefix, "focalmechanism", evid, source_contributor.lower(), "mw" + computation_type.lower())
        )
        focal_mechanism.resource_id = ResourceIdentifier(id=res_id)
        focal_mechanism.creation_info = CreationInfo(agency_id=source_contributor)
        moment_tensor = MomentTensor()
        if origin is not None:
            moment_tensor.derived_origin_id = origin.resource_id
        else:
            # this is required for QuakeML validation:
            res_id = "/".join((res_id_prefix, "no-origin"))
            moment_tensor.derived_origin_id = ResourceIdentifier(id=res_id)
        for mag in event.magnitudes:
            if mag.creation_info.agency_id == source_contributor:
                moment_tensor.moment_magnitude_id = mag.resource_id
        res_id = "/".join(
            (res_id_prefix, "momenttensor", evid, source_contributor.lower(), "mw" + computation_type.lower())
        )
        moment_tensor.resource_id = ResourceIdentifier(id=res_id)
        moment_tensor.scalar_moment = moment
        self._storeUncertainty(moment_tensor.scalar_moment_errors, moment_stderr)
        data_used = DataUsed()
        data_used.station_count = station_number + station_number2
        data_used.component_count = component_number + component_number2
        if computation_type == "C":
            res_id = "/".join((res_id_prefix, "methodID=CMT"))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # CMT algorithm uses long-period body waves,
            # very-long-period surface waves and
            # intermediate period surface waves (since 2004
            # for shallow and intermediate-depth earthquakes
            # --Ekstrom et al., 2012)
            data_used.wave_type = "combined"
        if computation_type == "M":
            res_id = "/".join((res_id_prefix, "methodID=moment_tensor"))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # FIXME: not sure which kind of data is used by
            # "moment tensor" algorithm.
            data_used.wave_type = "unknown"
        elif computation_type == "B":
            res_id = "/".join((res_id_prefix, "methodID=broadband_data"))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # FIXME: is 'combined' correct here?
            data_used.wave_type = "combined"
        elif computation_type == "F":
            res_id = "/".join((res_id_prefix, "methodID=P-wave_first_motion"))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            data_used.wave_type = "P waves"
        elif computation_type == "S":
            res_id = "/".join((res_id_prefix, "methodID=scalar_moment"))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # FIXME: not sure which kind of data is used
            # for scalar moment determination.
            data_used.wave_type = "unknown"
        moment_tensor.data_used = data_used
        focal_mechanism.moment_tensor = moment_tensor
        event.focal_mechanisms.append(focal_mechanism)
        return focal_mechanism
Exemplo n.º 19
0
def __toOrigin(parser, origin_el):
    """
    Parses a given origin etree element.

    :type parser: :class:`~obspy.core.util.xmlwrapper.XMLParser`
    :param parser: Open XMLParser object.
    :type origin_el: etree.element
    :param origin_el: origin element to be parsed.
    :return: A ObsPy :class:`~obspy.core.event.Origin` object.
    """
    global CURRENT_TYPE

    origin = Origin()
    origin.resource_id = ResourceIdentifier(
        prefix="/".join([RESOURCE_ROOT, "origin"]))

    # I guess setting the program used as the method id is fine.
    origin.method_id = "%s/location_method/%s/1" % (
        RESOURCE_ROOT, parser.xpath2obj('program', origin_el))
    if str(origin.method_id).lower().endswith("none"):
        origin.method_id = None

    # Standard parameters.
    origin.time, origin.time_errors = \
        __toTimeQuantity(parser, origin_el, "time")
    origin.latitude, origin_latitude_error = \
        __toFloatQuantity(parser, origin_el, "latitude")
    origin.longitude, origin_longitude_error = \
        __toFloatQuantity(parser, origin_el, "longitude")
    origin.depth, origin.depth_errors = \
        __toFloatQuantity(parser, origin_el, "depth")

    if origin_longitude_error:
        origin_longitude_error = origin_longitude_error["uncertainty"]
    if origin_latitude_error:
        origin_latitude_error = origin_latitude_error["uncertainty"]

    # Figure out the depth type.
    depth_type = parser.xpath2obj("depth_type", origin_el)

    # Map Seishub specific depth type to the QuakeML depth type.
    if depth_type == "from location program":
        depth_type = "from location"
    if depth_type is not None:
        origin.depth_type = depth_type

    # XXX: CHECK DEPTH ORIENTATION!!

    if CURRENT_TYPE == "seiscomp3":
        origin.depth *= 1000
        if origin.depth_errors.uncertainty:
            origin.depth_errors.uncertainty *= 1000
    else:
        # Convert to m.
        origin.depth *= -1000
        if origin.depth_errors.uncertainty:
            origin.depth_errors.uncertainty *= 1000

    # Earth model.
    earth_mod = parser.xpath2obj('earth_mod', origin_el, str)
    if earth_mod:
        earth_mod = earth_mod.split()
        earth_mod = ",".join(earth_mod)
        origin.earth_model_id = "%s/earth_model/%s/1" % (RESOURCE_ROOT,
                                                         earth_mod)

    if (origin_latitude_error is None or origin_longitude_error is None) and \
        CURRENT_TYPE not in ["seiscomp3", "toni"]:
        print "AAAAAAAAAAAAA"
        raise Exception

    if origin_latitude_error and origin_latitude_error:
        if CURRENT_TYPE in ["baynet", "obspyck"]:
            uncert = OriginUncertainty()
            if origin_latitude_error > origin_longitude_error:
                uncert.azimuth_max_horizontal_uncertainty = 0
            else:
                uncert.azimuth_max_horizontal_uncertainty = 90
            uncert.min_horizontal_uncertainty, \
                uncert.max_horizontal_uncertainty = \
                sorted([origin_longitude_error, origin_latitude_error])
            uncert.min_horizontal_uncertainty *= 1000.0
            uncert.max_horizontal_uncertainty *= 1000.0
            uncert.preferred_description = "uncertainty ellipse"
            origin.origin_uncertainty = uncert
        elif CURRENT_TYPE == "earthworm":
            uncert = OriginUncertainty()
            uncert.horizontal_uncertainty = origin_latitude_error
            uncert.horizontal_uncertainty *= 1000.0
            uncert.preferred_description = "horizontal uncertainty"
            origin.origin_uncertainty = uncert
        elif CURRENT_TYPE in ["seiscomp3", "toni"]:
            pass
        else:
            raise Exception

    # Parse the OriginQuality if applicable.
    if not origin_el.xpath("originQuality"):
        return origin

    origin_quality_el = origin_el.xpath("originQuality")[0]
    origin.quality = OriginQuality()
    origin.quality.associated_phase_count = \
        parser.xpath2obj("associatedPhaseCount", origin_quality_el, int)
    # QuakeML does apparently not distinguish between P and S wave phase
    # count. Some Seishub event files do.
    p_phase_count = parser.xpath2obj("P_usedPhaseCount", origin_quality_el,
                                     int)
    s_phase_count = parser.xpath2obj("S_usedPhaseCount", origin_quality_el,
                                     int)
    # Use both in case they are set.
    if p_phase_count is not None and s_phase_count is not None:
        phase_count = p_phase_count + s_phase_count
        # Also add two Seishub element file specific elements.
        origin.quality.p_used_phase_count = p_phase_count
        origin.quality.s_used_phase_count = s_phase_count
    # Otherwise the total usedPhaseCount should be specified.
    else:
        phase_count = parser.xpath2obj("usedPhaseCount", origin_quality_el,
                                       int)
    if p_phase_count is not None:
        origin.quality.setdefault("extra", AttribDict())
        origin.quality.extra.usedPhaseCountP = {
            'value': p_phase_count,
            'namespace': NAMESPACE
        }
    if s_phase_count is not None:
        origin.quality.setdefault("extra", AttribDict())
        origin.quality.extra.usedPhaseCountS = {
            'value': s_phase_count,
            'namespace': NAMESPACE
        }
    origin.quality.used_phase_count = phase_count

    associated_station_count = \
        parser.xpath2obj("associatedStationCount", origin_quality_el, int)
    used_station_count = parser.xpath2obj("usedStationCount",
                                          origin_quality_el, int)
    depth_phase_count = parser.xpath2obj("depthPhaseCount", origin_quality_el,
                                         int)
    standard_error = parser.xpath2obj("standardError", origin_quality_el,
                                      float)
    azimuthal_gap = parser.xpath2obj("azimuthalGap", origin_quality_el, float)
    secondary_azimuthal_gap = \
        parser.xpath2obj("secondaryAzimuthalGap", origin_quality_el, float)
    ground_truth_level = parser.xpath2obj("groundTruthLevel",
                                          origin_quality_el, str)
    minimum_distance = parser.xpath2obj("minimumDistance", origin_quality_el,
                                        float)
    maximum_distance = parser.xpath2obj("maximumDistance", origin_quality_el,
                                        float)
    median_distance = parser.xpath2obj("medianDistance", origin_quality_el,
                                       float)
    if minimum_distance is not None:
        minimum_distance = kilometer2degrees(minimum_distance)
    if maximum_distance is not None:
        maximum_distance = kilometer2degrees(maximum_distance)
    if median_distance is not None:
        median_distance = kilometer2degrees(median_distance)

    if associated_station_count is not None:
        origin.quality.associated_station_count = associated_station_count
    if used_station_count is not None:
        origin.quality.used_station_count = used_station_count
    if depth_phase_count is not None:
        origin.quality.depth_phase_count = depth_phase_count
    if standard_error is not None and not math.isnan(standard_error):
        origin.quality.standard_error = standard_error
    if azimuthal_gap is not None:
        origin.quality.azimuthal_gap = azimuthal_gap
    if secondary_azimuthal_gap is not None:
        origin.quality.secondary_azimuthal_gap = secondary_azimuthal_gap
    if ground_truth_level is not None:
        origin.quality.ground_truth_level = ground_truth_level
    if minimum_distance is not None:
        origin.quality.minimum_distance = minimum_distance
    if maximum_distance is not None:
        origin.quality.maximum_distance = maximum_distance
    if median_distance is not None and not math.isnan(median_distance):
        origin.quality.median_distance = median_distance

    return origin
Exemplo n.º 20
0
    def build(self):
        """
        Build an obspy moment tensor focal mech event

        This makes the tensor output into an Event containing:
        1) a FocalMechanism with a MomentTensor, NodalPlanes, and PrincipalAxes
        2) a Magnitude of the Mw from the Tensor

        Which is what we want for outputting QuakeML using
        the (slightly modified) obspy code.

        Input
        -----
        filehandle => open file OR str from filehandle.read()

        Output
        ------
        event => instance of Event() class as described above
        """
        p = self.parser
        event         = Event(event_type='earthquake')
        origin        = Origin()
        focal_mech    = FocalMechanism()
        nodal_planes  = NodalPlanes()
        moment_tensor = MomentTensor()
        principal_ax  = PrincipalAxes()
        magnitude     = Magnitude()
        data_used     = DataUsed()
        creation_info = CreationInfo(agency_id='NN')
        ev_mode = 'automatic'
        ev_stat = 'preliminary'
        evid = None
        orid = None
        # Parse the entire file line by line.
        for n,l in enumerate(p.line):
            if 'REVIEWED BY NSL STAFF' in l:
                ev_mode = 'manual'
                ev_stat = 'reviewed'
            if 'Event ID' in l:
                evid = p._id(n)
            if 'Origin ID' in l:
                orid = p._id(n)
            if 'Ichinose' in l:
                moment_tensor.category = 'regional'
            if re.match(r'^\d{4}\/\d{2}\/\d{2}', l):
                ev = p._event_info(n)
            if 'Depth' in l:
                derived_depth = p._depth(n)
            if 'Mw' in l:
                magnitude.mag = p._mw(n) 
                magnitude.magnitude_type = 'Mw'
            if 'Mo' in l and 'dyne' in l:
                moment_tensor.scalar_moment = p._mo(n)
            if 'Percent Double Couple' in l:
                moment_tensor.double_couple = p._percent(n)
            if 'Percent CLVD' in l:
                moment_tensor.clvd = p._percent(n)
            if 'Epsilon' in l:
                moment_tensor.variance = p._epsilon(n)
            if 'Percent Variance Reduction' in l:
                moment_tensor.variance_reduction = p._percent(n)
            if 'Major Double Couple' in l and 'strike' in p.line[n+1]:
                np = p._double_couple(n)
                nodal_planes.nodal_plane_1 = NodalPlane(*np[0])
                nodal_planes.nodal_plane_2 = NodalPlane(*np[1])
                nodal_planes.preferred_plane = 1
            if 'Spherical Coordinates' in l:
                mt = p._mt_sphere(n)
                moment_tensor.tensor = Tensor(
                    m_rr = mt['Mrr'],
                    m_tt = mt['Mtt'],
                    m_pp = mt['Mff'],
                    m_rt = mt['Mrt'],
                    m_rp = mt['Mrf'],
                    m_tp = mt['Mtf'],
                    )
            if 'Eigenvalues and eigenvectors of the Major Double Couple' in l:
                ax = p._vectors(n)
                principal_ax.t_axis = Axis(ax['T']['trend'], ax['T']['plunge'], ax['T']['ev'])
                principal_ax.p_axis = Axis(ax['P']['trend'], ax['P']['plunge'], ax['P']['ev'])
                principal_ax.n_axis = Axis(ax['N']['trend'], ax['N']['plunge'], ax['N']['ev'])
            if 'Number of Stations' in l:
                data_used.station_count = p._number_of_stations(n)
            if 'Maximum' in l and 'Gap' in l:
                focal_mech.azimuthal_gap = p._gap(n)
            if re.match(r'^Date', l):
                creation_info.creation_time = p._creation_time(n)
        # Creation Time
        creation_info.version = orid
        # Fill in magnitude values
        magnitude.evaluation_mode = ev_mode
        magnitude.evaluation_status = ev_stat
        magnitude.creation_info = creation_info.copy()
        magnitude.resource_id = self._rid(magnitude)
        # Stub origin
        origin.time = ev.get('time')
        origin.latitude = ev.get('lat')
        origin.longitude = ev.get('lon')
        origin.depth = derived_depth * 1000.
        origin.depth_type = "from moment tensor inversion"
        origin.creation_info = creation_info.copy()
         # Unique from true origin ID
        _oid = self._rid(origin)
        origin.resource_id = ResourceIdentifier(str(_oid) + '/mt')
        del _oid
        # Make an id for the MT that references this origin
        ogid = str(origin.resource_id)
        doid = ResourceIdentifier(ogid, referred_object=origin)
        # Make an id for the moment tensor mag which references this mag
        mrid = str(magnitude.resource_id)
        mmid = ResourceIdentifier(mrid, referred_object=magnitude)
        # MT todo: could check/use URL for RID if parsing the php file
        moment_tensor.evaluation_mode = ev_mode
        moment_tensor.evaluation_status = ev_stat
        moment_tensor.data_used = data_used
        moment_tensor.moment_magnitude_id = mmid
        moment_tensor.derived_origin_id = doid
        moment_tensor.creation_info = creation_info.copy()
        moment_tensor.resource_id = self._rid(moment_tensor)
        # Fill in focal_mech values
        focal_mech.nodal_planes  = nodal_planes
        focal_mech.moment_tensor = moment_tensor
        focal_mech.principal_axes = principal_ax
        focal_mech.creation_info = creation_info.copy()
        focal_mech.resource_id = self._rid(focal_mech)
        # add mech and new magnitude to event
        event.focal_mechanisms = [focal_mech]
        event.magnitudes = [magnitude]
        event.origins = [origin]
        event.creation_info = creation_info.copy()
        # If an MT was done, that's the preferred mag/mech
        event.preferred_magnitude_id = str(magnitude.resource_id)
        event.preferred_focal_mechanism_id = str(focal_mech.resource_id)
        if evid:
            event.creation_info.version = evid
        event.resource_id = self._rid(event)
        self.event = event
Exemplo n.º 21
0
def outputOBSPY(hp, event=None, only_fm_picks=False):
    """
    Make an Event which includes the current focal mechanism information from HASH
    
    Use the 'only_fm_picks' flag to only include the picks HASH used for the FocalMechanism.
    This flag will replace the 'picks' and 'arrivals' lists of existing events with new ones.
    
    Inputs
    -------
    hp    : hashpy.HashPype instance
    
    event : obspy.core.event.Event
    
    only_fm_picks : bool of whether to overwrite the picks/arrivals lists
    
    
    Returns
    -------
    obspy.core.event.Event
    
    Event will be new if no event was input, FocalMech added to existing event
    """
    # Returns new (or updates existing) Event with HASH solution
    n = hp.npol
    if event is None:
	event = Event(focal_mechanisms=[], picks=[], origins=[])
	origin = Origin(arrivals=[])
	origin.time = UTCDateTime(hp.tstamp)
	origin.latitude = hp.qlat
	origin.longitude = hp.qlon
	origin.depth = hp.qdep
	origin.creation_info = CreationInfo(version=hp.icusp)
	origin.resource_id = ResourceIdentifier('smi:hash/Origin/{0}'.format(hp.icusp))
	for _i in range(n):
	    p = Pick()
	    p.creation_info = CreationInfo(version=hp.arid[_i])
	    p.resource_id = ResourceIdentifier('smi:hash/Pick/{0}'.format(p.creation_info.version))
	    p.waveform_id = WaveformStreamID(network_code=hp.snet[_i], station_code=hp.sname[_i], channel_code=hp.scomp[_i])
	    if hp.p_pol[_i] > 0:
		p.polarity = 'positive'
	    else:
		p.polarity = 'negative'
	    a = Arrival()
	    a.creation_info = CreationInfo(version=hp.arid[_i])
	    a.resource_id = ResourceIdentifier('smi:hash/Arrival/{0}'.format(p.creation_info.version))
	    a.azimuth = hp.p_azi_mc[_i,0]
	    a.takeoff_angle = 180. - hp.p_the_mc[_i,0]
	    a.pick_id = p.resource_id
	    origin.arrivals.append(a)
	    event.picks.append(p)
	event.origins.append(origin)
	event.preferred_origin_id = str(origin.resource_id)
    else: # just update the changes
	origin = event.preferred_origin()
	picks = []
	arrivals = []
	for _i in range(n):
	    ind = hp.p_index[_i]
	    a = origin.arrivals[ind]
	    p = a.pick_id.getReferredObject()
	    a.takeoff_angle = hp.p_the_mc[_i,0]
	    picks.append(p)
	    arrivals.append(a)
	if only_fm_picks:
	    origin.arrivals = arrivals
	    event.picks = picks
    # Use me double couple calculator and populate planes/axes etc
    x = hp._best_quality_index
    # Put all the mechanisms into the 'focal_mechanisms' list, mark "best" as preferred
    for s in range(hp.nmult):
        dc = DoubleCouple([hp.str_avg[s], hp.dip_avg[s], hp.rak_avg[s]])
        ax = dc.axis
        focal_mech = FocalMechanism()
        focal_mech.creation_info = CreationInfo(creation_time=UTCDateTime(), author=hp.author)
        focal_mech.triggering_origin_id = origin.resource_id
        focal_mech.resource_id = ResourceIdentifier('smi:hash/FocalMechanism/{0}/{1}'.format(hp.icusp, s+1))
        focal_mech.method_id = ResourceIdentifier('HASH')
        focal_mech.nodal_planes = NodalPlanes()
        focal_mech.nodal_planes.nodal_plane_1 = NodalPlane(*dc.plane1)
        focal_mech.nodal_planes.nodal_plane_2 = NodalPlane(*dc.plane2)
        focal_mech.principal_axes = PrincipalAxes()
        focal_mech.principal_axes.t_axis = Axis(azimuth=ax['T']['azimuth'], plunge=ax['T']['dip'])
        focal_mech.principal_axes.p_axis = Axis(azimuth=ax['P']['azimuth'], plunge=ax['P']['dip'])
        focal_mech.station_polarity_count = n
        focal_mech.azimuthal_gap = hp.magap
        focal_mech.misfit = hp.mfrac[s]
        focal_mech.station_distribution_ratio = hp.stdr[s]
        focal_mech.comments.append(
            Comment(hp.qual[s], resource_id=ResourceIdentifier(str(focal_mech.resource_id) + '/comment/quality'))
            )
        #----------------------------------------
        event.focal_mechanisms.append(focal_mech)
        if s == x:
            event.preferred_focal_mechanism_id = str(focal_mech.resource_id)
    return event