Exemplo n.º 1
0
    def test_shape(self):
        x = K.variable(np.ones((25, 8, 12)))

        def test_func(func):
            y = func(x)
            yT = func.T(func(x))
            self.assertEquals(K.eval(y).shape, tuple(y.shape.as_list()))
            self.assertEquals(K.eval(yT).shape, (25, 8, 12))
            self.assertEquals(K.eval(yT).shape, tuple(yT.shape.as_list()))

        test_func(N.Flatten(outdim=2))
        test_func(N.Flatten(outdim=1))
        test_func(N.Reshape((25, 4, 2, 6, 2)))
        test_func(N.Dimshuffle((2, 0, 1)))
Exemplo n.º 2
0
def ladder1(X, y, states, **kwargs):
    noise = kwargs.get('noise', 0.3)
    # hyperparameters that denote the importance of each layer
    denoising_cost = [1000.0, 10.0, 0.10, 0.10, 0.10]

    if states is None:
        #
        f_encoder = N.Sequence([
            N.Flatten(outdim=2),
            N.Dense(num_units=1024, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=256, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=128, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=10, activation=K.softmax),
        ],
                               all_layers=True,
                               debug=True,
                               name='Encoder')
        #
        f_decoder = N.Sequence([
            N.Dense(num_units=128, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=256, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=1024, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Reshape(shape=(-1, 28, 28)),
        ],
                               all_layers=True,
                               debug=True,
                               name='Decoder')
    else:
        f_encoder, f_decoder = states
    y_encoder_clean = f_encoder(X, noise=-1)[2::2]
    y_encoder_corrp = f_encoder(X, noise=1)[2::2]
    print(len(y_encoder_clean), len(y_encoder_corrp))
    exit()
    return (None, None), [f_encoder, f_decoder]
Exemplo n.º 3
0
        N.Dense(num_units=512),
        N.BatchNorm(axes=0, activation=K.relu),
        N.Dense(num_units=512),
        N.BatchNorm(axes=0, activation=K.relu),
        N.Dense(num_units=args.dim)
    ], debug=True, name='EncoderNetwork')

    f_decoder = N.Sequence([
        N.Dropout(level=LATENT_DROPOUT, noise_type='uniform'),
        N.Noise(level=1.0, noise_type='gaussian'),
        N.Dense(num_units=512, activation=K.relu),
        N.BatchNorm(axes=0, activation=K.relu),
        N.Dense(num_units=512, activation=K.relu),
        N.BatchNorm(axes=0, activation=K.relu),
        N.Dense(num_units=np.prod(input_shape[1:]), activation=K.linear),
        N.Reshape(shape=([0],) + input_shape[1:])
    ], debug=True, name='DecoderNetwork')
# ===========================================================================
# Create model and objectives
# ===========================================================================
Z = f_encoder(X)
X_logits = f_decoder(Z)

X_probas = tf.nn.sigmoid(X_logits)
f_X = K.function(inputs=X, outputs=X_probas,
                 training=True)

X_samples = f_decoder(tf.random_normal(shape=(25, args.dim),
                      dtype=X_probas.dtype))
f_samples = K.function(inputs=[], outputs=X_samples, training=False)
# ====== `distortion` is the negative log likelihood ====== #
Exemplo n.º 4
0
def convolutional_vae(X, saved_states, **kwargs):
    """ convolutional_vae

    Return
    ------
    [y_encoder, y_decoder]

    States
    ------
    [f_inference (encoder), f_generative (decoder)]

    """
    n = kwargs.get('n', 10)
    batch_size = K.get_shape(X)[0]
    if batch_size is None:
        raise ValueError(
            "You must specify batch_size dimension for the input placeholder.")
    # ====== init ====== #
    if saved_states is None:
        # Encoder
        f_inference = N.Sequence([
            N.Reshape(shape=(-1, 28, 28, 1)),
            N.Conv(num_filters=32,
                   filter_size=3,
                   strides=1,
                   pad='valid',
                   b_init=init_ops.constant_initializer(0.),
                   activation=K.elu),
            N.Conv(num_filters=64,
                   filter_size=5,
                   strides=2,
                   pad='same',
                   b_init=init_ops.constant_initializer(0.),
                   activation=K.elu),
            N.Dropout(level=0.1),
            N.Flatten(outdim=2),
            N.Dense(num_units=n * 2, b_init=None),
            N.BatchNorm(axes=0)
        ],
                                 debug=True,
                                 name='Encoder')
        # Decoder
        f_generative = N.Sequence([
            N.Dimshuffle(pattern=(0, 'x', 'x', 1)),
            N.TransposeConv(num_filters=64,
                            filter_size=3,
                            strides=1,
                            pad='valid',
                            b_init=init_ops.constant_initializer(0.),
                            activation=K.elu),
            N.TransposeConv(num_filters=32,
                            filter_size=5,
                            strides=2,
                            pad='same',
                            b_init=init_ops.constant_initializer(0.),
                            activation=K.elu),
            N.TransposeConv(num_filters=1,
                            filter_size=13,
                            strides=3,
                            pad='valid',
                            b_init=None),
            N.BatchNorm(activation=K.linear),
            N.Flatten(outdim=3)
        ],
                                  debug=True,
                                  name="Decoder")
    else:
        f_inference, f_generative = saved_states
    # ====== Perfrom ====== #
    # Encoder
    y_encoder = f_inference(K.cast(X, 'float32'))
    mu = y_encoder[:, :n]
    sigma = K.softplus(y_encoder[:, n:])
    qz = Normal(mu=mu, sigma=sigma, name='Normal_qz')
    # Decoder
    z = Normal(mu=K.zeros(shape=(batch_size, n)),
               sigma=K.ones(shape=(batch_size, n)),
               name="Normal_pz")
    logits = f_generative(z)
    X_reconstruct = Bernoulli(logits=logits)
    # inference
    params = f_inference.parameters + f_generative.parameters
    inference = ed.KLqp(latent_vars={z: qz}, data={X_reconstruct: X})
    # ====== get cost for training ====== #
    # Bind p(x, z) and q(z | x) to the same placeholder for x.
    if K.is_training():
        import tensorflow as tf
        inference.initialize()
        if True:
            optimizer = tf.train.AdamOptimizer(0.01, epsilon=1.0)
            updates = optimizer.apply_gradients(
                optimizer.compute_gradients(inference.loss, var_list=params))
            init = tf.global_variables_initializer()
            init.run()
            f_train = K.function(X, inference.loss, updates)
        else:
            optimizer = tf.train.AdamOptimizer(0.01, epsilon=1.0)
            inference.initialize(optimizer=optimizer, var_list=params)
            init = tf.global_variables_initializer()
            init.run()
            f_train = lambda x: inference.update(feed_dict={X: x})['loss']
    samples = K.sigmoid(logits)
    return (samples, z, qz), (f_inference, f_generative)