Exemplo n.º 1
0
        inverse
        """
        if self.is_orthogonal:
            scale = self.range.partition.cell_volume
            return scale * self.inverse
        else:
            # TODO: put adjoint here
            return super().adjoint

    @property
    def inverse(self):
        """Inverse of this operator.

        Returns
        -------
        inverse : `WaveletTransform`

        See Also
        --------
        adjoint
        """
        return WaveletTransform(
            domain=self.range, nlevels=self.nlevels, wavelet=self.pywt_wavelet,
            pad_mode=self.pad_mode, pad_const=self.pad_const, impl=self.impl)


if __name__ == '__main__':
    # pylint: disable=wrong-import-position
    from odl.util.testutils import run_doctests
    run_doctests(skip_if=not PYWT_AVAILABLE)
Exemplo n.º 2
0
    # at a long edge
    x0 = (cen + 2 * dx)[1]
    x1 = (cen + 3 * dx)[1]
    y1 = cen[1]
    z = (cen - dx)[2]
    phan[x0:x1, y:y1, z:-z] = 1

    return discr_space.element(phan)

if __name__ == '__main__':
    # Show the phantoms
    import odl

    # 1D
    discr = odl.uniform_discr(-1, 1, 300)
    cuboid(discr).show('cuboid 1d')

    # 2D
    discr = odl.uniform_discr([-1, -1], [1, 1], [300, 300])
    cuboid(discr).show('cuboid 2d')

    # 3D
    discr = odl.uniform_discr([-1, -1, -1], [1, 1, 1], [300, 300, 300])
    cuboid(discr).show('cuboid 3d')
    indicate_proj_axis(discr).show('indicate_proj_axis 3d')

    # Run also the doctests
    # pylint: disable=wrong-import-position
    from odl.util.testutils import run_doctests
    run_doctests()
Exemplo n.º 3
0
                raise_from(IndexError('axis index {} out of range for array '
                                      'with {} axes'
                                      ''.format(axes[-1], arr_out.ndim)),
                           err)

        if arr_in.shape != tuple(in_shape):
            raise ValueError('expected input shape {}, got {}'
                             ''.format(tuple(in_shape), arr_in.shape))

        if is_real_dtype(arr_out.dtype):
            in_dtype = complex_dtype(arr_out.dtype)
        elif halfcomplex:
            raise ValueError('cannot combine halfcomplex backward transform '
                             'with complex output')
        else:
            in_dtype = arr_out.dtype

        if arr_in.dtype != in_dtype:
            raise ValueError('expected input dtype {}, got {}'
                             ''.format(dtype_repr(in_dtype),
                                       dtype_repr(arr_in.dtype)))

    else:  # Shouldn't happen
        raise RuntimeError


if __name__ == '__main__':
    # pylint: disable=wrong-import-position
    from odl.util.testutils import run_doctests
    run_doctests(skip_if=not PYFFTW_AVAILABLE)
Exemplo n.º 4
0
        --------
        inverse
        """
        if self.is_orthogonal:
            scale = self.range.partition.cell_volume
            return scale * self.inverse
        else:
            # TODO: put adjoint here
            return super(WaveletTransformInverse, self).adjoint

    @property
    def inverse(self):
        """Inverse of this operator.

        Returns
        -------
        inverse : `WaveletTransform`

        See Also
        --------
        adjoint
        """
        return WaveletTransform(
            domain=self.range, wavelet=self.pywt_wavelet, nlevels=self.nlevels,
            pad_mode=self.pad_mode, pad_const=self.pad_const, impl=self.impl)


if __name__ == '__main__':
    from odl.util.testutils import run_doctests
    run_doctests(skip_if=not PYWT_AVAILABLE)
Exemplo n.º 5
0
      to:

        .. math::
            \sigma = \frac{0.9}{\tau \|L\|^2}

    - If both are given, they are returned as-is without further validation.
    """
    if tau is None and sigma is None:
        L_norm = L.norm(estimate=True)

        tau = sigma = np.sqrt(0.9) / L_norm

        return tau, sigma
    elif tau is None:
        L_norm = L.norm(estimate=True)

        tau = 0.9 / (sigma * L_norm**2)
        return tau, float(sigma)
    elif sigma is None:
        L_norm = L.norm(estimate=True)

        sigma = 0.9 / (tau * L_norm**2)
        return float(tau), sigma
    else:
        return float(tau), float(sigma)


if __name__ == '__main__':
    from odl.util.testutils import run_doctests
    run_doctests()
Exemplo n.º 6
0
                in_shape[axes[-1]] = arr_out.shape[axes[-1]] // 2 + 1
            except IndexError as err:
                raise IndexError('axis index {} out of range for array '
                                 'with {} axes'
                                 ''.format(axes[-1], arr_out.ndim))

        if arr_in.shape != tuple(in_shape):
            raise ValueError('expected input shape {}, got {}'
                             ''.format(tuple(in_shape), arr_in.shape))

        if is_real_dtype(arr_out.dtype):
            in_dtype = complex_dtype(arr_out.dtype)
        elif halfcomplex:
            raise ValueError('cannot combine halfcomplex backward transform '
                             'with complex output')
        else:
            in_dtype = arr_out.dtype

        if arr_in.dtype != in_dtype:
            raise ValueError('expected input dtype {}, got {}'
                             ''.format(dtype_repr(in_dtype),
                                       dtype_repr(arr_in.dtype)))

    else:  # Shouldn't happen
        raise RuntimeError


if __name__ == '__main__':
    from odl.util.testutils import run_doctests
    run_doctests(skip_if=not PYFFTW_AVAILABLE)
Exemplo n.º 7
0
        # Reshape the resulting stack to the expected output shape
        stack_flat_xtra = torch.stack(results)
        return stack_flat_xtra.view(extra_shape + op_out_shape)

    def __repr__(self):
        """Return ``repr(self)``."""
        op_name = self.op_func.operator.__class__.__name__
        op_dom_shape = self.op_func.operator.domain.shape
        if len(op_dom_shape) == 1:
            op_dom_shape = op_dom_shape[0]
        op_ran_shape = self.op_func.operator.range.shape
        if len(op_ran_shape) == 1:
            op_ran_shape = op_ran_shape[0]

        return '{}({}) ({} -> {})'.format(self.__class__.__name__, op_name,
                                          op_dom_shape, op_ran_shape)


if __name__ == '__main__':
    from odl.util.testutils import run_doctests
    import odl
    from torch import autograd, nn
    run_doctests(extraglobs={
        'np': np,
        'odl': odl,
        'torch': torch,
        'nn': nn,
        'autograd': autograd
    })