Exemplo n.º 1
0
def test_reciprocal_grid_nd_axes():

    grid = odl.uniform_sampling([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)
    axes_list = [[1, -1], [0], 0, [0, 2, 1], [2, 0]]

    for axes in axes_list:
        active = np.zeros(grid.ndim, dtype=bool)
        active[axes] = True
        inactive = np.logical_not(active)

        true_recip_stride = np.empty(grid.ndim)
        true_recip_stride[active] = 2 * np.pi / (s[active] * n[active])
        true_recip_stride[inactive] = s[inactive]

        # Without shift altogether
        rgrid = reciprocal_grid(grid, shift=False, axes=axes,
                                halfcomplex=False)

        assert all_equal(rgrid.shape, n)
        assert all_almost_equal(rgrid.stride, true_recip_stride)
        assert all_almost_equal(rgrid.min_pt[active], -rgrid.max_pt[active])
        assert all_equal(rgrid.min_pt[inactive], grid.min_pt[inactive])
        assert all_equal(rgrid.max_pt[inactive], grid.max_pt[inactive])

        # Inverting should give back the original
        irgrid = realspace_grid(rgrid, grid.min_pt, axes=axes,
                                halfcomplex=False)
        assert irgrid.approx_equals(grid, atol=1e-6)
Exemplo n.º 2
0
def test_reciprocal_grid_nd_halfcomplex():

    grid = odl.uniform_sampling([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)
    stride_last = 2 * np.pi / (s[-1] * n[-1])
    n[-1] = n[-1] // 2 + 1

    # Without shift
    rgrid = reciprocal_grid(grid, shift=False, halfcomplex=True)
    assert all_equal(rgrid.shape, n)
    assert rgrid.max_pt[-1] == 0  # last dim is odd

    # With shift
    rgrid = reciprocal_grid(grid, shift=True, halfcomplex=True)
    assert all_equal(rgrid.shape, n)
    assert rgrid.max_pt[-1] == -stride_last / 2

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=True,
                            halfcx_parity='odd')
    assert irgrid.approx_equals(grid, atol=1e-6)

    with pytest.raises(ValueError):
        realspace_grid(rgrid, grid.min_pt, halfcomplex=True,
                       halfcx_parity='+')
Exemplo n.º 3
0
def test_reciprocal_grid_nd_halfcomplex():

    grid = odl.uniform_grid([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)
    stride_last = 2 * np.pi / (s[-1] * n[-1])
    n[-1] = n[-1] // 2 + 1

    # Without shift
    rgrid = reciprocal_grid(grid, shift=False, halfcomplex=True)
    assert all_equal(rgrid.shape, n)
    assert rgrid.max_pt[-1] == 0  # last dim is odd

    # With shift
    rgrid = reciprocal_grid(grid, shift=True, halfcomplex=True)
    assert all_equal(rgrid.shape, n)
    assert rgrid.max_pt[-1] == -stride_last / 2

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=True,
                            halfcx_parity='odd')
    assert irgrid.approx_equals(grid, atol=1e-6)

    with pytest.raises(ValueError):
        realspace_grid(rgrid, grid.min_pt, halfcomplex=True,
                       halfcx_parity='+')
Exemplo n.º 4
0
def test_reciprocal_grid_nd_axes():

    grid = odl.uniform_grid([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)
    axes_list = [[1, -1], [0], 0, [0, 2, 1], [2, 0]]

    for axes in axes_list:
        active = np.zeros(grid.ndim, dtype=bool)
        active[axes] = True
        inactive = np.logical_not(active)

        true_recip_stride = np.empty(grid.ndim)
        true_recip_stride[active] = 2 * np.pi / (s[active] * n[active])
        true_recip_stride[inactive] = s[inactive]

        # Without shift altogether
        rgrid = reciprocal_grid(grid, shift=False, axes=axes,
                                halfcomplex=False)

        assert all_equal(rgrid.shape, n)
        assert all_almost_equal(rgrid.stride, true_recip_stride)
        assert all_almost_equal(rgrid.min_pt[active], -rgrid.max_pt[active])
        assert all_equal(rgrid.min_pt[inactive], grid.min_pt[inactive])
        assert all_equal(rgrid.max_pt[inactive], grid.max_pt[inactive])

        # Inverting should give back the original
        irgrid = realspace_grid(rgrid, grid.min_pt, axes=axes,
                                halfcomplex=False)
        assert irgrid.approx_equals(grid, atol=1e-6)
Exemplo n.º 5
0
def test_reciprocal_grid_1d(halfcomplex, shift, parity):

    shape = 10 if parity == 'even' else 11
    grid = odl.uniform_grid(0, 1, shape=shape)
    s = grid.stride
    n = np.array(grid.shape)

    rgrid = reciprocal_grid(grid, shift=shift, halfcomplex=halfcomplex)

    # Independent of halfcomplex, shift and parity
    true_recip_stride = 2 * np.pi / (s * n)
    assert all_almost_equal(rgrid.stride, true_recip_stride)

    if halfcomplex:
        assert all_equal(rgrid.shape, n // 2 + 1)

        if parity == 'odd' and shift:
            # Max point should be half a negative recip stride
            assert all_almost_equal(rgrid.max_pt, -true_recip_stride / 2)
        elif parity == 'even' and not shift:
            # Max point should be half a positive recip stride
            assert all_almost_equal(rgrid.max_pt, true_recip_stride / 2)
        elif (parity == 'odd' and not shift) or (parity == 'even' and shift):
            # Max should be zero
            assert all_almost_equal(rgrid.max_pt, 0)
        else:
            raise RuntimeError('parameter combination not covered')
    else:  # halfcomplex = False
        assert all_equal(rgrid.shape, n)

        if (parity == 'even' and shift) or (parity == 'odd' and not shift):
            # Zero should be at index n // 2
            assert all_almost_equal(rgrid[n // 2], 0)
        elif (parity == 'odd' and shift) or (parity == 'even' and not shift):
            # No point should be closer to 0 than half a recip stride
            atol = 0.999 * true_recip_stride / 2
            assert not rgrid.approx_contains(0, atol=atol)
        else:
            raise RuntimeError('parameter combination not covered')

        if not shift:
            # Grid Should be symmetric
            assert all_almost_equal(rgrid.min_pt, -rgrid.max_pt)
            if parity == 'odd':
                # Midpoint should be 0
                assert all_almost_equal(rgrid.mid_pt, 0)

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid,
                            grid.min_pt,
                            halfcomplex=halfcomplex,
                            halfcx_parity=parity)
    assert irgrid.approx_equals(grid, atol=1e-6)
Exemplo n.º 6
0
def test_reciprocal_grid_1d(halfcomplex, shift, parity):

    shape = 10 if parity == 'even' else 11
    grid = odl.uniform_sampling(0, 1, shape=shape)
    s = grid.stride
    n = np.array(grid.shape)

    rgrid = reciprocal_grid(grid, shift=shift, halfcomplex=halfcomplex)

    # Independent of halfcomplex, shift and parity
    true_recip_stride = 2 * np.pi / (s * n)
    assert all_almost_equal(rgrid.stride, true_recip_stride)

    if halfcomplex:
        assert all_equal(rgrid.shape, n // 2 + 1)

        if parity == 'odd' and shift:
            # Max point should be half a negative recip stride
            assert all_almost_equal(rgrid.max_pt, -true_recip_stride / 2)
        elif parity == 'even' and not shift:
            # Max point should be half a positive recip stride
            assert all_almost_equal(rgrid.max_pt, true_recip_stride / 2)
        elif (parity == 'odd' and not shift) or (parity == 'even' and shift):
            # Max should be zero
            assert all_almost_equal(rgrid.max_pt, 0)
        else:
            raise RuntimeError('parameter combination not covered')
    else:  # halfcomplex = False
        assert all_equal(rgrid.shape, n)

        if (parity == 'even' and shift) or (parity == 'odd' and not shift):
            # Zero should be at index n // 2
            assert all_almost_equal(rgrid[n // 2], 0)
        elif (parity == 'odd' and shift) or (parity == 'even' and not shift):
            # No point should be closer to 0 than half a recip stride
            atol = 0.999 * true_recip_stride / 2
            assert not rgrid.approx_contains(0, atol=atol)
        else:
            raise RuntimeError('parameter combination not covered')

        if not shift:
            # Grid Should be symmetric
            assert all_almost_equal(rgrid.min_pt, -rgrid.max_pt)
            if parity == 'odd':
                # Midpoint should be 0
                assert all_almost_equal(rgrid.mid_pt, 0)

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=halfcomplex,
                            halfcx_parity=parity)
    assert irgrid.approx_equals(grid, atol=1e-6)
Exemplo n.º 7
0
def test_reciprocal_grid_nd():

    grid = odl.uniform_sampling([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)

    true_recip_stride = 2 * np.pi / (s * n)

    # Without shift altogether
    rgrid = reciprocal_grid(grid, shift=False, halfcomplex=False)

    assert all_equal(rgrid.shape, n)
    assert all_almost_equal(rgrid.stride, true_recip_stride)
    assert all_almost_equal(rgrid.min_pt, -rgrid.max_pt)

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=False)
    assert irgrid.approx_equals(grid, atol=1e-6)
Exemplo n.º 8
0
def test_reciprocal_grid_nd():

    grid = odl.uniform_grid([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)

    true_recip_stride = 2 * np.pi / (s * n)

    # Without shift altogether
    rgrid = reciprocal_grid(grid, shift=False, halfcomplex=False)

    assert all_equal(rgrid.shape, n)
    assert all_almost_equal(rgrid.stride, true_recip_stride)
    assert all_almost_equal(rgrid.min_pt, -rgrid.max_pt)

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=False)
    assert irgrid.approx_equals(grid, atol=1e-6)
Exemplo n.º 9
0
def test_reciprocal_grid_nd_shift_list():

    grid = odl.uniform_sampling([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)
    shift = [False, True, False]

    true_recip_stride = 2 * np.pi / (s * n)

    # Shift only the even dimension, then zero must be contained
    rgrid = reciprocal_grid(grid, shift=shift, halfcomplex=False)
    noshift = np.where(np.logical_not(shift))

    assert all_equal(rgrid.shape, n)
    assert all_almost_equal(rgrid.stride, true_recip_stride)
    assert all_almost_equal(rgrid.min_pt[noshift], -rgrid.max_pt[noshift])
    assert all_almost_equal(rgrid[n // 2], [0] * 3)

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=False)
    assert irgrid.approx_equals(grid, atol=1e-6)
Exemplo n.º 10
0
def test_reciprocal_grid_nd_shift_list():

    grid = odl.uniform_grid([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)
    shift = [False, True, False]

    true_recip_stride = 2 * np.pi / (s * n)

    # Shift only the even dimension, then zero must be contained
    rgrid = reciprocal_grid(grid, shift=shift, halfcomplex=False)
    noshift = np.where(np.logical_not(shift))

    assert all_equal(rgrid.shape, n)
    assert all_almost_equal(rgrid.stride, true_recip_stride)
    assert all_almost_equal(rgrid.min_pt[noshift], -rgrid.max_pt[noshift])
    assert all_almost_equal(rgrid[n // 2], [0] * 3)

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=False)
    assert irgrid.approx_equals(grid, atol=1e-6)