Exemplo n.º 1
0
	def __init__(self, n_classes=1000, width_mult=1.0, bn_param=(0.1, 1e-5), dropout_rate=0,
	             expand_ratio=None, depth_param=None):

		expand_ratio = 0.25 if expand_ratio is None else expand_ratio

		input_channel = make_divisible(64 * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
		mid_input_channel = make_divisible(input_channel // 2, MyNetwork.CHANNEL_DIVISIBLE)
		stage_width_list = ResNets.STAGE_WIDTH_LIST.copy()
		for i, width in enumerate(stage_width_list):
			stage_width_list[i] = make_divisible(width * width_mult, MyNetwork.CHANNEL_DIVISIBLE)

		depth_list = [3, 4, 6, 3]
		if depth_param is not None:
			for i, depth in enumerate(ResNets.BASE_DEPTH_LIST):
				depth_list[i] = depth + depth_param

		stride_list = [1, 2, 2, 2]

		# build input stem
		input_stem = [
			ConvLayer(3, mid_input_channel, 3, stride=2, use_bn=True, act_func='relu'),
			ResidualBlock(
				ConvLayer(mid_input_channel, mid_input_channel, 3, stride=1, use_bn=True, act_func='relu'),
				IdentityLayer(mid_input_channel, mid_input_channel)
			),
			ConvLayer(mid_input_channel, input_channel, 3, stride=1, use_bn=True, act_func='relu')
		]

		# blocks
		blocks = []
		for d, width, s in zip(depth_list, stage_width_list, stride_list):
			for i in range(d):
				stride = s if i == 0 else 1
				bottleneck_block = ResNetBottleneckBlock(
					input_channel, width, kernel_size=3, stride=stride, expand_ratio=expand_ratio,
					act_func='relu', downsample_mode='avgpool_conv',
				)
				blocks.append(bottleneck_block)
				input_channel = width
		# classifier
		classifier = LinearLayer(input_channel, n_classes, dropout_rate=dropout_rate)

		super(ResNet50D, self).__init__(input_stem, blocks, classifier)

		# set bn param
		self.set_bn_param(*bn_param)
Exemplo n.º 2
0
    def __init__(self,
                 in_channel_list,
                 out_channel_list,
                 kernel_size_list=3,
                 expand_ratio_list=6,
                 stride=1,
                 act_func='relu6',
                 use_se=False):
        super(DynamicMBConvLayer, self).__init__()

        self.in_channel_list = in_channel_list
        self.out_channel_list = out_channel_list

        self.kernel_size_list = val2list(kernel_size_list)
        self.expand_ratio_list = val2list(expand_ratio_list)

        self.stride = stride
        self.act_func = act_func
        self.use_se = use_se

        # build modules
        max_middle_channel = make_divisible(
            round(max(self.in_channel_list) * max(self.expand_ratio_list)),
            MyNetwork.CHANNEL_DIVISIBLE)
        if max(self.expand_ratio_list) == 1:
            self.inverted_bottleneck = None
        else:
            self.inverted_bottleneck = nn.Sequential(
                OrderedDict([
                    ('conv',
                     DynamicConv2d(max(self.in_channel_list),
                                   max_middle_channel)),
                    ('bn', DynamicBatchNorm2d(max_middle_channel)),
                    ('act', build_activation(self.act_func)),
                ]))

        self.depth_conv = nn.Sequential(
            OrderedDict([('conv',
                          DynamicSeparableConv2d(max_middle_channel,
                                                 self.kernel_size_list,
                                                 self.stride)),
                         ('bn', DynamicBatchNorm2d(max_middle_channel)),
                         ('act', build_activation(self.act_func))]))
        if self.use_se:
            self.depth_conv.add_module('se', DynamicSE(max_middle_channel))

        self.point_linear = nn.Sequential(
            OrderedDict([
                ('conv',
                 DynamicConv2d(max_middle_channel,
                               max(self.out_channel_list))),
                ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
            ]))

        self.active_kernel_size = max(self.kernel_size_list)
        self.active_expand_ratio = max(self.expand_ratio_list)
        self.active_out_channel = max(self.out_channel_list)
Exemplo n.º 3
0
    def forward(self, x):
        in_channel = x.size(1)

        if self.inverted_bottleneck is not None:
            self.inverted_bottleneck.conv.active_out_channel = \
                make_divisible(round(in_channel * self.active_expand_ratio), MyNetwork.CHANNEL_DIVISIBLE)

        self.depth_conv.conv.active_kernel_size = self.active_kernel_size
        self.point_linear.conv.active_out_channel = self.active_out_channel

        if self.inverted_bottleneck is not None:
            x = self.inverted_bottleneck(x)
        x = self.depth_conv(x)
        x = self.point_linear(x)
        return x
Exemplo n.º 4
0
    def get_active_subnet(self, in_channel, preserve_weight=True):
        # build the new layer
        sub_layer = set_layer_from_config(
            self.get_active_subnet_config(in_channel))
        sub_layer = sub_layer.to(get_net_device(self))
        if not preserve_weight:
            return sub_layer

        middle_channel = self.active_middle_channel(in_channel)
        # copy weight from current layer
        if sub_layer.inverted_bottleneck is not None:
            sub_layer.inverted_bottleneck.conv.weight.data.copy_(
                self.inverted_bottleneck.conv.get_active_filter(
                    middle_channel, in_channel).data, )
            copy_bn(sub_layer.inverted_bottleneck.bn,
                    self.inverted_bottleneck.bn.bn)

        sub_layer.depth_conv.conv.weight.data.copy_(
            self.depth_conv.conv.get_active_filter(
                middle_channel, self.active_kernel_size).data)
        copy_bn(sub_layer.depth_conv.bn, self.depth_conv.bn.bn)

        if self.use_se:
            se_mid = make_divisible(middle_channel // SEModule.REDUCTION,
                                    divisor=MyNetwork.CHANNEL_DIVISIBLE)
            sub_layer.depth_conv.se.fc.reduce.weight.data.copy_(
                self.depth_conv.se.get_active_reduce_weight(
                    se_mid, middle_channel).data)
            sub_layer.depth_conv.se.fc.reduce.bias.data.copy_(
                self.depth_conv.se.get_active_reduce_bias(se_mid).data)

            sub_layer.depth_conv.se.fc.expand.weight.data.copy_(
                self.depth_conv.se.get_active_expand_weight(
                    se_mid, middle_channel).data)
            sub_layer.depth_conv.se.fc.expand.bias.data.copy_(
                self.depth_conv.se.get_active_expand_bias(middle_channel).data)

        sub_layer.point_linear.conv.weight.data.copy_(
            self.point_linear.conv.get_active_filter(self.active_out_channel,
                                                     middle_channel).data)
        copy_bn(sub_layer.point_linear.bn, self.point_linear.bn.bn)

        return sub_layer
Exemplo n.º 5
0
    def forward(self, x, groups=None):
        in_channel = x.size(1)
        num_mid = make_divisible(in_channel // self.reduction,
                                 divisor=MyNetwork.CHANNEL_DIVISIBLE)

        y = x.mean(3, keepdim=True).mean(2, keepdim=True)
        # reduce
        reduce_filter = self.get_active_reduce_weight(
            num_mid, in_channel, groups=groups).contiguous()
        reduce_bias = self.get_active_reduce_bias(num_mid)
        y = F.conv2d(y, reduce_filter, reduce_bias, 1, 0, 1, 1)
        # relu
        y = self.fc.relu(y)
        # expand
        expand_filter = self.get_active_expand_weight(
            num_mid, in_channel, groups=groups).contiguous()
        expand_bias = self.get_active_expand_bias(in_channel, groups=groups)
        y = F.conv2d(y, expand_filter, expand_bias, 1, 0, 1, 1)
        # hard sigmoid
        y = self.fc.h_sigmoid(y)

        return x * y
Exemplo n.º 6
0
    def re_organize_middle_weights(self, expand_ratio_stage=0):
        # conv3 -> conv2
        importance = torch.sum(torch.abs(self.conv3.conv.conv.weight.data),
                               dim=(0, 2, 3))
        if isinstance(self.conv2.bn, DynamicGroupNorm):
            channel_per_group = self.conv2.bn.channel_per_group
            importance_chunks = torch.split(importance, channel_per_group)
            for chunk in importance_chunks:
                chunk.data.fill_(torch.mean(chunk))
            importance = torch.cat(importance_chunks, dim=0)
        if expand_ratio_stage > 0:
            sorted_expand_list = copy.deepcopy(self.expand_ratio_list)
            sorted_expand_list.sort(reverse=True)
            target_width_list = [
                make_divisible(round(max(self.out_channel_list) * expand),
                               MyNetwork.CHANNEL_DIVISIBLE)
                for expand in sorted_expand_list
            ]
            right = len(importance)
            base = -len(target_width_list) * 1e5
            for i in range(expand_ratio_stage + 1):
                left = target_width_list[i]
                importance[left:right] += base
                base += 1e5
                right = left

        sorted_importance, sorted_idx = torch.sort(importance,
                                                   dim=0,
                                                   descending=True)
        self.conv3.conv.conv.weight.data = torch.index_select(
            self.conv3.conv.conv.weight.data, 1, sorted_idx)
        adjust_bn_according_to_idx(self.conv2.bn.bn, sorted_idx)
        self.conv2.conv.conv.weight.data = torch.index_select(
            self.conv2.conv.conv.weight.data, 0, sorted_idx)

        # conv2 -> conv1
        importance = torch.sum(torch.abs(self.conv2.conv.conv.weight.data),
                               dim=(0, 2, 3))
        if isinstance(self.conv1.bn, DynamicGroupNorm):
            channel_per_group = self.conv1.bn.channel_per_group
            importance_chunks = torch.split(importance, channel_per_group)
            for chunk in importance_chunks:
                chunk.data.fill_(torch.mean(chunk))
            importance = torch.cat(importance_chunks, dim=0)
        if expand_ratio_stage > 0:
            sorted_expand_list = copy.deepcopy(self.expand_ratio_list)
            sorted_expand_list.sort(reverse=True)
            target_width_list = [
                make_divisible(round(max(self.out_channel_list) * expand),
                               MyNetwork.CHANNEL_DIVISIBLE)
                for expand in sorted_expand_list
            ]
            right = len(importance)
            base = -len(target_width_list) * 1e5
            for i in range(expand_ratio_stage + 1):
                left = target_width_list[i]
                importance[left:right] += base
                base += 1e5
                right = left
        sorted_importance, sorted_idx = torch.sort(importance,
                                                   dim=0,
                                                   descending=True)

        self.conv2.conv.conv.weight.data = torch.index_select(
            self.conv2.conv.conv.weight.data, 1, sorted_idx)
        adjust_bn_according_to_idx(self.conv1.bn.bn, sorted_idx)
        self.conv1.conv.conv.weight.data = torch.index_select(
            self.conv1.conv.conv.weight.data, 0, sorted_idx)

        return None
Exemplo n.º 7
0
 def active_middle_channels(self):
     feature_dim = round(self.active_out_channel * self.active_expand_ratio)
     feature_dim = make_divisible(feature_dim, MyNetwork.CHANNEL_DIVISIBLE)
     return feature_dim
Exemplo n.º 8
0
    def __init__(self,
                 in_channel_list,
                 out_channel_list,
                 expand_ratio_list=0.25,
                 kernel_size=3,
                 stride=1,
                 act_func='relu',
                 downsample_mode='avgpool_conv'):
        super(DynamicResNetBottleneckBlock, self).__init__()

        self.in_channel_list = in_channel_list
        self.out_channel_list = out_channel_list
        self.expand_ratio_list = val2list(expand_ratio_list)

        self.kernel_size = kernel_size
        self.stride = stride
        self.act_func = act_func
        self.downsample_mode = downsample_mode

        # build modules
        max_middle_channel = make_divisible(
            round(max(self.out_channel_list) * max(self.expand_ratio_list)),
            MyNetwork.CHANNEL_DIVISIBLE)

        self.conv1 = nn.Sequential(
            OrderedDict([
                ('conv',
                 DynamicConv2d(max(self.in_channel_list), max_middle_channel)),
                ('bn', DynamicBatchNorm2d(max_middle_channel)),
                ('act', build_activation(self.act_func, inplace=True)),
            ]))

        self.conv2 = nn.Sequential(
            OrderedDict([('conv',
                          DynamicConv2d(max_middle_channel, max_middle_channel,
                                        kernel_size, stride)),
                         ('bn', DynamicBatchNorm2d(max_middle_channel)),
                         ('act', build_activation(self.act_func,
                                                  inplace=True))]))

        self.conv3 = nn.Sequential(
            OrderedDict([
                ('conv',
                 DynamicConv2d(max_middle_channel,
                               max(self.out_channel_list))),
                ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
            ]))

        if self.stride == 1 and self.in_channel_list == self.out_channel_list:
            self.downsample = IdentityLayer(max(self.in_channel_list),
                                            max(self.out_channel_list))
        elif self.downsample_mode == 'conv':
            self.downsample = nn.Sequential(
                OrderedDict([
                    ('conv',
                     DynamicConv2d(max(self.in_channel_list),
                                   max(self.out_channel_list),
                                   stride=stride)),
                    ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
                ]))
        elif self.downsample_mode == 'avgpool_conv':
            self.downsample = nn.Sequential(
                OrderedDict([
                    ('avg_pool',
                     nn.AvgPool2d(kernel_size=stride,
                                  stride=stride,
                                  padding=0,
                                  ceil_mode=True)),
                    ('conv',
                     DynamicConv2d(max(self.in_channel_list),
                                   max(self.out_channel_list))),
                    ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
                ]))
        else:
            raise NotImplementedError

        self.final_act = build_activation(self.act_func, inplace=True)

        self.active_expand_ratio = max(self.expand_ratio_list)
        self.active_out_channel = max(self.out_channel_list)
Exemplo n.º 9
0
    def re_organize_middle_weights(self, expand_ratio_stage=0):
        importance = torch.sum(torch.abs(
            self.point_linear.conv.conv.weight.data),
                               dim=(0, 2, 3))
        if isinstance(self.depth_conv.bn, DynamicGroupNorm):
            channel_per_group = self.depth_conv.bn.channel_per_group
            importance_chunks = torch.split(importance, channel_per_group)
            for chunk in importance_chunks:
                chunk.data.fill_(torch.mean(chunk))
            importance = torch.cat(importance_chunks, dim=0)
        if expand_ratio_stage > 0:
            sorted_expand_list = copy.deepcopy(self.expand_ratio_list)
            sorted_expand_list.sort(reverse=True)
            target_width_list = [
                make_divisible(round(max(self.in_channel_list) * expand),
                               MyNetwork.CHANNEL_DIVISIBLE)
                for expand in sorted_expand_list
            ]

            right = len(importance)
            base = -len(target_width_list) * 1e5
            for i in range(expand_ratio_stage + 1):
                left = target_width_list[i]
                importance[left:right] += base
                base += 1e5
                right = left

        sorted_importance, sorted_idx = torch.sort(importance,
                                                   dim=0,
                                                   descending=True)
        self.point_linear.conv.conv.weight.data = torch.index_select(
            self.point_linear.conv.conv.weight.data, 1, sorted_idx)

        adjust_bn_according_to_idx(self.depth_conv.bn.bn, sorted_idx)
        self.depth_conv.conv.conv.weight.data = torch.index_select(
            self.depth_conv.conv.conv.weight.data, 0, sorted_idx)

        if self.use_se:
            # se expand: output dim 0 reorganize
            se_expand = self.depth_conv.se.fc.expand
            se_expand.weight.data = torch.index_select(se_expand.weight.data,
                                                       0, sorted_idx)
            se_expand.bias.data = torch.index_select(se_expand.bias.data, 0,
                                                     sorted_idx)
            # se reduce: input dim 1 reorganize
            se_reduce = self.depth_conv.se.fc.reduce
            se_reduce.weight.data = torch.index_select(se_reduce.weight.data,
                                                       1, sorted_idx)
            # middle weight reorganize
            se_importance = torch.sum(torch.abs(se_expand.weight.data),
                                      dim=(0, 2, 3))
            se_importance, se_idx = torch.sort(se_importance,
                                               dim=0,
                                               descending=True)

            se_expand.weight.data = torch.index_select(se_expand.weight.data,
                                                       1, se_idx)
            se_reduce.weight.data = torch.index_select(se_reduce.weight.data,
                                                       0, se_idx)
            se_reduce.bias.data = torch.index_select(se_reduce.bias.data, 0,
                                                     se_idx)

        if self.inverted_bottleneck is not None:
            adjust_bn_according_to_idx(self.inverted_bottleneck.bn.bn,
                                       sorted_idx)
            self.inverted_bottleneck.conv.conv.weight.data = torch.index_select(
                self.inverted_bottleneck.conv.conv.weight.data, 0, sorted_idx)
            return None
        else:
            return sorted_idx
Exemplo n.º 10
0
 def active_middle_channel(self, in_channel):
     return make_divisible(round(in_channel * self.active_expand_ratio),
                           MyNetwork.CHANNEL_DIVISIBLE)
Exemplo n.º 11
0
    def __init__(self,
                 n_classes=1000,
                 bn_param=(0.1, 1e-3),
                 dropout_rate=0.1,
                 base_stage_width=None,
                 width_mult=1.0,
                 ks_list=3,
                 expand_ratio_list=6,
                 depth_list=4):

        self.width_mult = width_mult
        self.ks_list = val2list(ks_list, 1)
        self.expand_ratio_list = val2list(expand_ratio_list, 1)
        self.depth_list = val2list(depth_list, 1)

        self.ks_list.sort()
        self.expand_ratio_list.sort()
        self.depth_list.sort()

        if base_stage_width == 'google':
            # MobileNetV2 Stage Width
            base_stage_width = [32, 16, 24, 32, 64, 96, 160, 320, 1280]
        else:
            # ProxylessNAS Stage Width
            base_stage_width = [32, 16, 24, 40, 80, 96, 192, 320, 1280]

        input_channel = make_divisible(base_stage_width[0] * self.width_mult,
                                       MyNetwork.CHANNEL_DIVISIBLE)
        first_block_width = make_divisible(
            base_stage_width[1] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE)
        last_channel = make_divisible(base_stage_width[-1] * self.width_mult,
                                      MyNetwork.CHANNEL_DIVISIBLE)

        # first conv layer
        first_conv = ConvLayer(3,
                               input_channel,
                               kernel_size=3,
                               stride=2,
                               use_bn=True,
                               act_func='relu6',
                               ops_order='weight_bn_act')
        # first block
        first_block_conv = MBConvLayer(
            in_channels=input_channel,
            out_channels=first_block_width,
            kernel_size=3,
            stride=1,
            expand_ratio=1,
            act_func='relu6',
        )
        first_block = ResidualBlock(first_block_conv, None)

        input_channel = first_block_width
        # inverted residual blocks
        self.block_group_info = []
        blocks = [first_block]
        _block_index = 1

        stride_stages = [2, 2, 2, 1, 2, 1]
        n_block_list = [max(self.depth_list)] * 5 + [1]

        width_list = []
        for base_width in base_stage_width[2:-1]:
            width = make_divisible(base_width * self.width_mult,
                                   MyNetwork.CHANNEL_DIVISIBLE)
            width_list.append(width)

        for width, n_block, s in zip(width_list, n_block_list, stride_stages):
            self.block_group_info.append(
                [_block_index + i for i in range(n_block)])
            _block_index += n_block

            output_channel = width
            for i in range(n_block):
                if i == 0:
                    stride = s
                else:
                    stride = 1

                mobile_inverted_conv = DynamicMBConvLayer(
                    in_channel_list=val2list(input_channel, 1),
                    out_channel_list=val2list(output_channel, 1),
                    kernel_size_list=ks_list,
                    expand_ratio_list=expand_ratio_list,
                    stride=stride,
                    act_func='relu6',
                )

                if stride == 1 and input_channel == output_channel:
                    shortcut = IdentityLayer(input_channel, input_channel)
                else:
                    shortcut = None

                mb_inverted_block = ResidualBlock(mobile_inverted_conv,
                                                  shortcut)

                blocks.append(mb_inverted_block)
                input_channel = output_channel
        # 1x1_conv before global average pooling
        feature_mix_layer = ConvLayer(
            input_channel,
            last_channel,
            kernel_size=1,
            use_bn=True,
            act_func='relu6',
        )
        classifier = LinearLayer(last_channel,
                                 n_classes,
                                 dropout_rate=dropout_rate)

        super(OFAProxylessNASNets,
              self).__init__(first_conv, blocks, feature_mix_layer, classifier)

        # set bn param
        self.set_bn_param(momentum=bn_param[0], eps=bn_param[1])

        # runtime_depth
        self.runtime_depth = [
            len(block_idx) for block_idx in self.block_group_info
        ]
Exemplo n.º 12
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 expand_ratio=0.25,
                 mid_channels=None,
                 act_func='relu',
                 groups=1,
                 downsample_mode='avgpool_conv'):
        super(ResNetBottleneckBlock, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels

        self.kernel_size = kernel_size
        self.stride = stride
        self.expand_ratio = expand_ratio
        self.mid_channels = mid_channels
        self.act_func = act_func
        self.groups = groups

        self.downsample_mode = downsample_mode

        if self.mid_channels is None:
            feature_dim = round(self.out_channels * self.expand_ratio)
        else:
            feature_dim = self.mid_channels

        feature_dim = make_divisible(feature_dim, MyNetwork.CHANNEL_DIVISIBLE)
        self.mid_channels = feature_dim

        # build modules
        self.conv1 = nn.Sequential(
            OrderedDict([
                ('conv',
                 nn.Conv2d(self.in_channels, feature_dim, 1, 1, 0,
                           bias=False)),
                ('bn', nn.BatchNorm2d(feature_dim)),
                ('act', build_activation(self.act_func, inplace=True)),
            ]))

        pad = get_same_padding(self.kernel_size)
        self.conv2 = nn.Sequential(
            OrderedDict([('conv',
                          nn.Conv2d(feature_dim,
                                    feature_dim,
                                    kernel_size,
                                    stride,
                                    pad,
                                    groups=groups,
                                    bias=False)),
                         ('bn', nn.BatchNorm2d(feature_dim)),
                         ('act', build_activation(self.act_func,
                                                  inplace=True))]))

        self.conv3 = nn.Sequential(
            OrderedDict([
                ('conv',
                 nn.Conv2d(feature_dim, self.out_channels, 1, 1, 0,
                           bias=False)),
                ('bn', nn.BatchNorm2d(self.out_channels)),
            ]))

        if stride == 1 and in_channels == out_channels:
            self.downsample = IdentityLayer(in_channels, out_channels)
        elif self.downsample_mode == 'conv':
            self.downsample = nn.Sequential(
                OrderedDict([
                    ('conv',
                     nn.Conv2d(in_channels,
                               out_channels,
                               1,
                               stride,
                               0,
                               bias=False)),
                    ('bn', nn.BatchNorm2d(out_channels)),
                ]))
        elif self.downsample_mode == 'avgpool_conv':
            self.downsample = nn.Sequential(
                OrderedDict([
                    ('avg_pool',
                     nn.AvgPool2d(kernel_size=stride,
                                  stride=stride,
                                  padding=0,
                                  ceil_mode=True)),
                    ('conv',
                     nn.Conv2d(in_channels, out_channels, 1, 1, 0,
                               bias=False)),
                    ('bn', nn.BatchNorm2d(out_channels)),
                ]))
        else:
            raise NotImplementedError

        self.final_act = build_activation(self.act_func, inplace=True)
Exemplo n.º 13
0
    def __init__(self,
                 n_classes=1000,
                 bn_param=(0.1, 1e-5),
                 dropout_rate=0.1,
                 base_stage_width=None,
                 width_mult=1.0,
                 ks_list=3,
                 expand_ratio_list=6,
                 depth_list=4,
                 dropblock=False,
                 block_size=0):

        self.width_mult = width_mult
        self.ks_list = val2list(ks_list, 1)
        self.expand_ratio_list = val2list(expand_ratio_list, 1)
        self.depth_list = val2list(depth_list, 1)

        self.ks_list.sort()
        self.expand_ratio_list.sort()
        self.depth_list.sort()

        base_stage_width = [16, 16, 24, 40, 80, 112, 160, 960, 1280]

        final_expand_width = make_divisible(
            base_stage_width[-2] * self.width_mult,
            MyNetwork.CHANNEL_DIVISIBLE)
        last_channel = make_divisible(base_stage_width[-1] * self.width_mult,
                                      MyNetwork.CHANNEL_DIVISIBLE)

        stride_stages = [1, 2, 2, 2, 1, 2]
        act_stages = ['relu', 'relu', 'relu', 'h_swish', 'h_swish', 'h_swish']
        se_stages = [False, False, True, False, True, True]
        n_block_list = [1] + [max(self.depth_list)] * 5
        width_list = []
        for base_width in base_stage_width[:-2]:
            width = make_divisible(base_width * self.width_mult,
                                   MyNetwork.CHANNEL_DIVISIBLE)
            width_list.append(width)

        input_channel, first_block_dim = width_list[0], width_list[1]
        # first conv layer
        first_conv = ConvLayer(3,
                               input_channel,
                               kernel_size=3,
                               stride=2,
                               act_func='h_swish')
        first_block_conv = MBConvLayer(
            in_channels=input_channel,
            out_channels=first_block_dim,
            kernel_size=3,
            stride=stride_stages[0],
            expand_ratio=1,
            act_func=act_stages[0],
            use_se=se_stages[0],
        )
        first_block = ResidualBlock(
            first_block_conv,
            IdentityLayer(first_block_dim, first_block_dim) if input_channel
            == first_block_dim else None, dropout_rate, dropblock, block_size)

        # inverted residual blocks
        self.block_group_info = []
        blocks = [first_block]
        _block_index = 1
        feature_dim = first_block_dim

        for width, n_block, s, act_func, use_se in zip(width_list[2:],
                                                       n_block_list[1:],
                                                       stride_stages[1:],
                                                       act_stages[1:],
                                                       se_stages[1:]):
            self.block_group_info.append(
                [_block_index + i for i in range(n_block)])
            _block_index += n_block

            output_channel = width
            for i in range(n_block):
                if i == 0:
                    stride = s
                else:
                    stride = 1
                mobile_inverted_conv = DynamicMBConvLayer(
                    in_channel_list=val2list(feature_dim),
                    out_channel_list=val2list(output_channel),
                    kernel_size_list=ks_list,
                    expand_ratio_list=expand_ratio_list,
                    stride=stride,
                    act_func=act_func,
                    use_se=use_se,
                )
                if stride == 1 and feature_dim == output_channel:
                    shortcut = IdentityLayer(feature_dim, feature_dim)
                else:
                    shortcut = None
                blocks.append(
                    ResidualBlock(mobile_inverted_conv, shortcut, dropout_rate,
                                  dropblock, block_size))
                feature_dim = output_channel
        # final expand layer, feature mix layer & classifier
        final_expand_layer = ConvLayer(feature_dim,
                                       final_expand_width,
                                       kernel_size=1,
                                       act_func='h_swish')
        feature_mix_layer = ConvLayer(
            final_expand_width,
            last_channel,
            kernel_size=1,
            bias=False,
            use_bn=False,
            act_func='h_swish',
        )

        classifier = LinearLayer(last_channel,
                                 n_classes,
                                 dropout_rate=dropout_rate)

        super(OFAMobileNetV3,
              self).__init__(first_conv, blocks, final_expand_layer,
                             feature_mix_layer, classifier)

        # set bn param
        self.set_bn_param(momentum=bn_param[0], eps=bn_param[1])

        # runtime_depth
        self.runtime_depth = [
            len(block_idx) for block_idx in self.block_group_info
        ]
Exemplo n.º 14
0
    def __init__(self,
                 n_classes=1000,
                 bn_param=(0.1, 1e-5),
                 dropout_rate=0,
                 depth_list=2,
                 expand_ratio_list=0.25,
                 width_mult_list=1.0):

        self.depth_list = val2list(depth_list)
        self.expand_ratio_list = val2list(expand_ratio_list)
        self.width_mult_list = val2list(width_mult_list)
        # sort
        self.depth_list.sort()
        self.expand_ratio_list.sort()
        self.width_mult_list.sort()

        input_channel = [
            make_divisible(64 * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
            for width_mult in self.width_mult_list
        ]
        mid_input_channel = [
            make_divisible(channel // 2, MyNetwork.CHANNEL_DIVISIBLE)
            for channel in input_channel
        ]

        stage_width_list = ResNets.STAGE_WIDTH_LIST.copy()
        for i, width in enumerate(stage_width_list):
            stage_width_list[i] = [
                make_divisible(width * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
                for width_mult in self.width_mult_list
            ]

        n_block_list = [
            base_depth + max(self.depth_list)
            for base_depth in ResNets.BASE_DEPTH_LIST
        ]
        stride_list = [1, 2, 2, 2]

        # build input stem
        input_stem = [
            DynamicConvLayer(val2list(3),
                             mid_input_channel,
                             3,
                             stride=2,
                             use_bn=True,
                             act_func='relu'),
            ResidualBlock(
                DynamicConvLayer(mid_input_channel,
                                 mid_input_channel,
                                 3,
                                 stride=1,
                                 use_bn=True,
                                 act_func='relu'),
                IdentityLayer(mid_input_channel, mid_input_channel)),
            DynamicConvLayer(mid_input_channel,
                             input_channel,
                             3,
                             stride=1,
                             use_bn=True,
                             act_func='relu')
        ]

        # blocks
        blocks = []
        for d, width, s in zip(n_block_list, stage_width_list, stride_list):
            for i in range(d):
                stride = s if i == 0 else 1
                bottleneck_block = DynamicResNetBottleneckBlock(
                    input_channel,
                    width,
                    expand_ratio_list=self.expand_ratio_list,
                    kernel_size=3,
                    stride=stride,
                    act_func='relu',
                    downsample_mode='avgpool_conv',
                )
                blocks.append(bottleneck_block)
                input_channel = width
        # classifier
        classifier = DynamicLinearLayer(input_channel,
                                        n_classes,
                                        dropout_rate=dropout_rate)

        super(OFAResNets, self).__init__(input_stem, blocks, classifier)

        # set bn param
        self.set_bn_param(*bn_param)

        # runtime_depth
        self.input_stem_skipping = 0
        self.runtime_depth = [0] * len(n_block_list)
Exemplo n.º 15
0
    def __init__(self,
                 n_classes=1000,
                 width_mult=1.0,
                 bn_param=(0.1, 1e-3),
                 dropout_rate=0.2,
                 ks=None,
                 expand_ratio=None,
                 depth_param=None,
                 stage_width_list=None):

        ks = 3 if ks is None else ks
        expand_ratio = 6 if expand_ratio is None else expand_ratio

        input_channel = 32
        last_channel = 1280

        input_channel = make_divisible(input_channel * width_mult,
                                       MyNetwork.CHANNEL_DIVISIBLE)
        last_channel = make_divisible(last_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE) \
         if width_mult > 1.0 else last_channel

        inverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1],
            [expand_ratio, 24, 2, 2],
            [expand_ratio, 32, 3, 2],
            [expand_ratio, 64, 4, 2],
            [expand_ratio, 96, 3, 1],
            [expand_ratio, 160, 3, 2],
            [expand_ratio, 320, 1, 1],
        ]

        if depth_param is not None:
            assert isinstance(depth_param, int)
            for i in range(1, len(inverted_residual_setting) - 1):
                inverted_residual_setting[i][2] = depth_param

        if stage_width_list is not None:
            for i in range(len(inverted_residual_setting)):
                inverted_residual_setting[i][1] = stage_width_list[i]

        ks = val2list(ks,
                      sum([n for _, _, n, _ in inverted_residual_setting]) - 1)
        _pt = 0

        # first conv layer
        first_conv = ConvLayer(3,
                               input_channel,
                               kernel_size=3,
                               stride=2,
                               use_bn=True,
                               act_func='relu6',
                               ops_order='weight_bn_act')
        # inverted residual blocks
        blocks = []
        for t, c, n, s in inverted_residual_setting:
            output_channel = make_divisible(c * width_mult,
                                            MyNetwork.CHANNEL_DIVISIBLE)
            for i in range(n):
                if i == 0:
                    stride = s
                else:
                    stride = 1
                if t == 1:
                    kernel_size = 3
                else:
                    kernel_size = ks[_pt]
                    _pt += 1
                mobile_inverted_conv = MBConvLayer(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    kernel_size=kernel_size,
                    stride=stride,
                    expand_ratio=t,
                )
                if stride == 1:
                    if input_channel == output_channel:
                        shortcut = IdentityLayer(input_channel, input_channel)
                    else:
                        shortcut = None
                else:
                    shortcut = None
                blocks.append(ResidualBlock(mobile_inverted_conv, shortcut))
                input_channel = output_channel
        # 1x1_conv before global average pooling
        feature_mix_layer = ConvLayer(
            input_channel,
            last_channel,
            kernel_size=1,
            use_bn=True,
            act_func='relu6',
            ops_order='weight_bn_act',
        )

        classifier = LinearLayer(last_channel,
                                 n_classes,
                                 dropout_rate=dropout_rate)

        super(MobileNetV2, self).__init__(first_conv, blocks,
                                          feature_mix_layer, classifier)

        # set bn param
        self.set_bn_param(*bn_param)
Exemplo n.º 16
0
    def __init__(self,
                 n_classes=1000,
                 width_mult=1.0,
                 bn_param=(0.1, 1e-5),
                 dropout_rate=0.2,
                 ks=None,
                 expand_ratio=None,
                 depth_param=None,
                 stage_width_list=None):
        input_channel = 16
        last_channel = 1280

        input_channel = make_divisible(input_channel * width_mult,
                                       MyNetwork.CHANNEL_DIVISIBLE)
        last_channel = make_divisible(last_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE) \
         if width_mult > 1.0 else last_channel

        cfg = {
            #    k,     exp,    c,      se,         nl,         s,      e,
            '0': [
                [3, 16, 16, False, 'relu', 1, 1],
            ],
            '1': [
                [3, 64, 24, False, 'relu', 2, None],  # 4
                [3, 72, 24, False, 'relu', 1, None],  # 3
            ],
            '2': [
                [5, 72, 40, True, 'relu', 2, None],  # 3
                [5, 120, 40, True, 'relu', 1, None],  # 3
                [5, 120, 40, True, 'relu', 1, None],  # 3
            ],
            '3': [
                [3, 240, 80, False, 'h_swish', 2, None],  # 6
                [3, 200, 80, False, 'h_swish', 1, None],  # 2.5
                [3, 184, 80, False, 'h_swish', 1, None],  # 2.3
                [3, 184, 80, False, 'h_swish', 1, None],  # 2.3
            ],
            '4': [
                [3, 480, 112, True, 'h_swish', 1, None],  # 6
                [3, 672, 112, True, 'h_swish', 1, None],  # 6
            ],
            '5': [
                [5, 672, 160, True, 'h_swish', 2, None],  # 6
                [5, 960, 160, True, 'h_swish', 1, None],  # 6
                [5, 960, 160, True, 'h_swish', 1, None],  # 6
            ]
        }

        cfg = self.adjust_cfg(cfg, ks, expand_ratio, depth_param,
                              stage_width_list)
        # width multiplier on mobile setting, change `exp: 1` and `c: 2`
        for stage_id, block_config_list in cfg.items():
            for block_config in block_config_list:
                if block_config[1] is not None:
                    block_config[1] = make_divisible(
                        block_config[1] * width_mult,
                        MyNetwork.CHANNEL_DIVISIBLE)
                block_config[2] = make_divisible(block_config[2] * width_mult,
                                                 MyNetwork.CHANNEL_DIVISIBLE)

        first_conv, blocks, final_expand_layer, feature_mix_layer, classifier = self.build_net_via_cfg(
            cfg, input_channel, last_channel, n_classes, dropout_rate)
        super(MobileNetV3Large,
              self).__init__(first_conv, blocks, final_expand_layer,
                             feature_mix_layer, classifier)
        # set bn param
        self.set_bn_param(*bn_param)