Exemplo n.º 1
0
  def test_mobile_conv2d(self):
    conv2d = movinet_layers.MobileConv2D(
        filters=3,
        kernel_size=(3, 3),
        strides=(1, 1),
        padding='same',
        kernel_initializer='ones',
        use_bias=False,
        use_depthwise=False,
        use_temporal=False,
        use_buffered_input=True,
    )

    inputs = tf.ones([1, 2, 2, 2, 3])

    predicted = conv2d(inputs)

    expected = tf.constant(
        [[[[[12., 12., 12.],
            [12., 12., 12.]],
           [[12., 12., 12.],
            [12., 12., 12.]]],
          [[[12., 12., 12.],
            [12., 12., 12.]],
           [[12., 12., 12.],
            [12., 12., 12.]]]]])

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected)
Exemplo n.º 2
0
  def test_mobile_conv2d_bn(self):
    batch_norm_op = tf.keras.layers.BatchNormalization(
        momentum=0.9,
        epsilon=1.,
        name='bn')
    conv2d = movinet_layers.MobileConv2D(
        filters=3,
        kernel_size=(3, 3),
        strides=(1, 1),
        padding='same',
        kernel_initializer='ones',
        use_bias=False,
        use_depthwise=False,
        use_temporal=False,
        use_buffered_input=True,
        batch_norm_op=batch_norm_op,
    )

    inputs = tf.ones([1, 2, 2, 2, 3])

    predicted = conv2d(inputs)

    expected = tf.constant(
        [[[[[8.48528, 8.48528, 8.48528],
            [8.48528, 8.48528, 8.48528]],
           [[8.48528, 8.48528, 8.48528],
            [8.48528, 8.48528, 8.48528]]],
          [[[8.48528, 8.48528, 8.48528],
            [8.48528, 8.48528, 8.48528]],
           [[8.48528, 8.48528, 8.48528],
            [8.48528, 8.48528, 8.48528]]]]])

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected)
Exemplo n.º 3
0
  def test_mobile_conv2d_temporal(self):
    conv2d = movinet_layers.MobileConv2D(
        filters=3,
        kernel_size=(3, 1),
        strides=(1, 1),
        padding='causal',
        kernel_initializer='ones',
        use_bias=False,
        use_depthwise=True,
        use_temporal=True,
        use_buffered_input=True,
    )

    inputs = tf.ones([1, 2, 2, 1, 3])

    paddings = [[0, 0], [2, 0], [0, 0], [0, 0], [0, 0]]
    padded_inputs = tf.pad(inputs, paddings)
    predicted = conv2d(padded_inputs)

    expected = tf.constant(
        [[[[[1., 1., 1.]],
           [[1., 1., 1.]]],
          [[[2., 2., 2.]],
           [[2., 2., 2.]]]]])

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected)