Exemplo n.º 1
0
  def _build_model(self, params, num_steps, is_training):
    """Builds the NCF model.

    Args:
      params: A dict of hyperparameters.
      is_training: If True, build the training model. If False, build the
        evaluation model.
    Returns:
      A _TrainModelProperties if is_training is True, or an _EvalModelProperties
      otherwise.
    """
    record_files_placeholder = tf.placeholder(tf.string, ())
    input_fn, _, _ = \
      data_preprocessing.make_input_fn(
          ncf_dataset=self._ncf_dataset, is_training=is_training,
          record_files=record_files_placeholder)
    dataset = input_fn(params)
    iterator = dataset.make_initializable_iterator()

    model_fn = neumf_model.neumf_model_fn
    if params["use_xla_for_gpu"]:
      model_fn = xla.estimator_model_fn(model_fn)

    if is_training:
      return self._build_train_specific_graph(
          iterator, model_fn, params, record_files_placeholder, num_steps)
    else:
      return self._build_eval_specific_graph(
          iterator, model_fn, params, record_files_placeholder, num_steps)
Exemplo n.º 2
0
    def _build_model(self, params, is_training):
        """Builds the NCF model.

    Args:
      params: A dict of hyperparameters.
      is_training: If True, build the training model. If False, build the
        evaluation model.
    Returns:
      A _TrainModelProperties if is_training is True, or an _EvalModelProperties
      otherwise.
    """
        record_files_placeholder = tf.placeholder(tf.string, ())
        input_fn, _, _ = \
          data_preprocessing.make_input_fn(
              ncf_dataset=self._ncf_dataset, is_training=is_training,
              record_files=record_files_placeholder)
        dataset = input_fn(params)
        iterator = dataset.make_initializable_iterator()

        model_fn = neumf_model.neumf_model_fn
        if params["use_xla_for_gpu"]:
            model_fn = xla.estimator_model_fn(model_fn)

        if is_training:
            features, labels = iterator.get_next()
            estimator_spec = model_fn(features, labels,
                                      tf.estimator.ModeKeys.TRAIN, params)
            with tf.control_dependencies([estimator_spec.train_op]):
                run_model_op = self._global_step.assign_add(1)
            return self._TrainModelProperties(record_files_placeholder,
                                              iterator, estimator_spec.loss,
                                              params["batch_size"],
                                              run_model_op)
        else:
            features = iterator.get_next()
            estimator_spec = model_fn(features, None,
                                      tf.estimator.ModeKeys.EVAL, params)
            run_model_op = tf.group(
                *(update_op
                  for _, update_op in estimator_spec.eval_metric_ops.values()))
            metric_initializer = tf.variables_initializer(
                tf.get_collection(tf.GraphKeys.METRIC_VARIABLES))
            return self._EvalModelProperties(record_files_placeholder,
                                             iterator, estimator_spec.loss,
                                             params["eval_batch_size"],
                                             run_model_op,
                                             estimator_spec.eval_metric_ops,
                                             metric_initializer)
Exemplo n.º 3
0
    def test_end_to_end(self):
        ncf_dataset, _ = data_preprocessing.instantiate_pipeline(
            dataset=DATASET,
            data_dir=self.temp_data_dir,
            batch_size=BATCH_SIZE,
            eval_batch_size=EVAL_BATCH_SIZE,
            num_cycles=1,
            num_data_readers=2,
            num_neg=NUM_NEG)

        g = tf.Graph()
        with g.as_default():
            input_fn, record_dir, batch_count = \
              data_preprocessing.make_input_fn(ncf_dataset, True)
            dataset = input_fn({
                "batch_size": BATCH_SIZE,
                "use_tpu": False,
                "use_xla_for_gpu": False
            })
        first_epoch = self.drain_dataset(dataset=dataset, g=g)
        user_inv_map = {v: k for k, v in ncf_dataset.user_map.items()}
        item_inv_map = {v: k for k, v in ncf_dataset.item_map.items()}

        train_examples = {
            True: set(),
            False: set(),
        }
        for features, labels in first_epoch:
            for u, i, l in zip(features[movielens.USER_COLUMN],
                               features[movielens.ITEM_COLUMN], labels):

                u_raw = user_inv_map[u]
                i_raw = item_inv_map[i]
                if ((u_raw, i_raw) in self.seen_pairs) != l:
                    # The evaluation item is not considered during false negative
                    # generation, so it will occasionally appear as a negative example
                    # during training.
                    assert not l
                    assert i_raw == self.holdout[u_raw][1]
                train_examples[l].add((u_raw, i_raw))
        num_positives_seen = len(train_examples[True])

        assert ncf_dataset.num_train_positives == num_positives_seen

        # This check is more heuristic because negatives are sampled with
        # replacement. It only checks that negative generation is reasonably random.
        assert len(train_examples[False]) / NUM_NEG / num_positives_seen > 0.9
Exemplo n.º 4
0
  def test_end_to_end(self):
    ncf_dataset, _ = data_preprocessing.instantiate_pipeline(
        dataset=DATASET, data_dir=self.temp_data_dir,
        batch_size=BATCH_SIZE, eval_batch_size=EVAL_BATCH_SIZE,
        num_cycles=1, num_data_readers=2, num_neg=NUM_NEG)

    g = tf.Graph()
    with g.as_default():
      input_fn, record_dir, batch_count = \
        data_preprocessing.make_input_fn(ncf_dataset, True)
      dataset = input_fn({"batch_size": BATCH_SIZE, "use_tpu": False,
                          "use_xla_for_gpu": False})
    first_epoch = self.drain_dataset(dataset=dataset, g=g)
    user_inv_map = {v: k for k, v in ncf_dataset.user_map.items()}
    item_inv_map = {v: k for k, v in ncf_dataset.item_map.items()}

    train_examples = {
        True: set(),
        False: set(),
    }
    for features, labels in first_epoch:
      for u, i, l in zip(features[movielens.USER_COLUMN],
                         features[movielens.ITEM_COLUMN], labels):

        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if ((u_raw, i_raw) in self.seen_pairs) != l:
          # The evaluation item is not considered during false negative
          # generation, so it will occasionally appear as a negative example
          # during training.
          assert not l
          assert i_raw == self.holdout[u_raw][1]
        train_examples[l].add((u_raw, i_raw))
    num_positives_seen = len(train_examples[True])

    assert ncf_dataset.num_train_positives == num_positives_seen

    # This check is more heuristic because negatives are sampled with
    # replacement. It only checks that negative generation is reasonably random.
    assert len(train_examples[False]) / NUM_NEG / num_positives_seen > 0.9
Exemplo n.º 5
0
def build_graph(params, ncf_dataset, mode):
    """Build graph_spec with graph and some useful handles."""
    tf.logging.info("building graph for mode {}.".format(mode))

    with tf.Graph().as_default() as graph:
        embedding = get_embedding(params, mode)
        tf.logging.info("tpu_embedding_config_proto: {}.".format(
            embedding.config_proto))
        if mode == tpu_embedding.INFERENCE:
            assert (params["batch_size"] %
                    (embedding.num_cores *
                     (1 + rconst.NUM_EVAL_NEGATIVES))) == 0

        input_fn, train_record_dir, batch_count = data_preprocessing.make_input_fn(
            ncf_dataset=ncf_dataset,
            is_training=(mode == tpu_embedding.TRAINING))

        get_infeed_thread_fn, infeed_queue = (build_infeed(
            input_fn, params, batch_count, embedding, mode))

        tpu_loop = build_tpu_loop(infeed_queue, params, batch_count, embedding,
                                  mode)

        def run_tpu_loop(sess, epoch):
            if mode == tpu_embedding.TRAINING:
                sess.run(tpu_loop)
            else:
                total_values, count_values = (sess.run(tpu_loop))
                hr = np.sum(total_values) / np.sum(count_values)
                tf.logging.info("HR = {} after epoch {}.".format(hr, epoch))

        hook_before, hook_after = build_hooks(mode, embedding, params,
                                              train_record_dir)

        return GraphSpec(graph, embedding, run_tpu_loop, get_infeed_thread_fn,
                         hook_before, hook_after)
Exemplo n.º 6
0
def run_ncf(_):
  """Run NCF training and eval loop."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)

  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)

  num_gpus = flags_core.get_num_gpus(FLAGS)
  batch_size = distribution_utils.per_device_batch_size(
      int(FLAGS.batch_size), num_gpus)
  total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals

  eval_per_user = rconst.NUM_EVAL_NEGATIVES + 1
  eval_batch_size = int(FLAGS.eval_batch_size or
                        max([FLAGS.batch_size, eval_per_user]))
  if eval_batch_size % eval_per_user:
    eval_batch_size = eval_batch_size // eval_per_user * eval_per_user
    tf.logging.warning(
        "eval examples per user does not evenly divide eval_batch_size. "
        "Overriding to {}".format(eval_batch_size))

  if FLAGS.use_synthetic_data:
    ncf_dataset = None
    cleanup_fn = lambda: None
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
    num_train_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
  else:
    ncf_dataset, cleanup_fn = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir,
        batch_size=batch_size,
        eval_batch_size=eval_batch_size,
        num_neg=FLAGS.num_neg,
        epochs_per_cycle=FLAGS.epochs_between_evals,
        num_cycles=total_training_cycle,
        match_mlperf=FLAGS.ml_perf,
        deterministic=FLAGS.seed is not None,
        use_subprocess=FLAGS.use_subprocess,
        cache_id=FLAGS.cache_id)
    num_users = ncf_dataset.num_users
    num_items = ncf_dataset.num_items
    num_train_steps = int(np.ceil(
        FLAGS.epochs_between_evals * ncf_dataset.num_train_positives *
        (1 + FLAGS.num_neg) / FLAGS.batch_size))
    num_eval_steps = int(np.ceil((1 + rconst.NUM_EVAL_NEGATIVES) *
                                 ncf_dataset.num_users / eval_batch_size))

  model_helpers.apply_clean(flags.FLAGS)

  params = {
      "use_seed": FLAGS.seed is not None,
      "hash_pipeline": FLAGS.hash_pipeline,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": FLAGS.learning_rate,
      "num_users": num_users,
      "num_items": num_items,
      "mf_dim": FLAGS.num_factors,
      "model_layers": [int(layer) for layer in FLAGS.layers],
      "mf_regularization": FLAGS.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in FLAGS.mlp_regularization],
      "num_neg": FLAGS.num_neg,
      "use_tpu": FLAGS.tpu is not None,
      "tpu": FLAGS.tpu,
      "tpu_zone": FLAGS.tpu_zone,
      "tpu_gcp_project": FLAGS.tpu_gcp_project,
      "beta1": FLAGS.beta1,
      "beta2": FLAGS.beta2,
      "epsilon": FLAGS.epsilon,
      "match_mlperf": FLAGS.ml_perf,
      "use_xla_for_gpu": FLAGS.use_xla_for_gpu,
      "use_estimator": FLAGS.use_estimator,
  }
  if FLAGS.use_estimator:
    train_estimator, eval_estimator = construct_estimator(
        num_gpus=num_gpus, model_dir=FLAGS.model_dir,
        iterations=num_train_steps, params=params,
        batch_size=flags.FLAGS.batch_size, eval_batch_size=eval_batch_size)
  else:
    runner = model_runner.NcfModelRunner(ncf_dataset, params, num_train_steps,
                                         num_eval_steps, FLAGS.use_while_loop)

  # Create hooks that log information about the training and metric values
  train_hooks = hooks_helper.get_train_hooks(
      FLAGS.hooks,
      model_dir=FLAGS.model_dir,
      batch_size=FLAGS.batch_size,  # for ExamplesPerSecondHook
      tensors_to_log={"cross_entropy": "cross_entropy"}
  )
  run_params = {
      "batch_size": FLAGS.batch_size,
      "eval_batch_size": eval_batch_size,
      "number_factors": FLAGS.num_factors,
      "hr_threshold": FLAGS.hr_threshold,
      "train_epochs": FLAGS.train_epochs,
  }
  benchmark_logger = logger.get_benchmark_logger()
  benchmark_logger.log_run_info(
      model_name="recommendation",
      dataset_name=FLAGS.dataset,
      run_params=run_params,
      test_id=FLAGS.benchmark_test_id)


  eval_input_fn = None
  target_reached = False
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
  for cycle_index in range(total_training_cycle):
    assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
    tf.logging.info("Starting a training cycle: {}/{}".format(
        cycle_index + 1, total_training_cycle))

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
                            value=cycle_index)

    # Train the model
    if FLAGS.use_estimator:
      train_input_fn, train_record_dir, batch_count = \
        data_preprocessing.make_input_fn(
            ncf_dataset=ncf_dataset, is_training=True)

      if batch_count != num_train_steps:
        raise ValueError(
            "Step counts do not match. ({} vs. {}) The async process is "
            "producing incorrect shards.".format(batch_count, num_train_steps))

      train_estimator.train(input_fn=train_input_fn, hooks=train_hooks,
                            steps=num_train_steps)
      if train_record_dir:
        tf.gfile.DeleteRecursively(train_record_dir)

      tf.logging.info("Beginning evaluation.")
      if eval_input_fn is None:
        eval_input_fn, _, eval_batch_count = data_preprocessing.make_input_fn(
            ncf_dataset=ncf_dataset, is_training=False)

        if eval_batch_count != num_eval_steps:
          raise ValueError(
              "Step counts do not match. ({} vs. {}) The async process is "
              "producing incorrect shards.".format(
                  eval_batch_count, num_eval_steps))

      mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                              value=cycle_index)
      eval_results = eval_estimator.evaluate(eval_input_fn,
                                             steps=num_eval_steps)
      tf.logging.info("Evaluation complete.")
    else:
      runner.train()
      tf.logging.info("Beginning evaluation.")
      mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                              value=cycle_index)
      eval_results = runner.eval()
      tf.logging.info("Evaluation complete.")
    hr = float(eval_results[rconst.HR_KEY])
    ndcg = float(eval_results[rconst.NDCG_KEY])

    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_TARGET,
        value={"epoch": cycle_index, "value": FLAGS.hr_threshold})
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
                            value={"epoch": cycle_index, "value": hr})
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
        value={"epoch": cycle_index, "value": rconst.NUM_EVAL_NEGATIVES})

    # Logged by the async process during record creation.
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_HP_NUM_USERS,
                            deferred=True)

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP, value=cycle_index)

    # Benchmark the evaluation results
    benchmark_logger.log_evaluation_result(eval_results)
    # Log the HR and NDCG results.
    tf.logging.info(
        "Iteration {}: HR = {:.4f}, NDCG = {:.4f}".format(
            cycle_index + 1, hr, ndcg))

    # If some evaluation threshold is met
    if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
      target_reached = True
      break

  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
                          value={"success": target_reached})
  cleanup_fn()  # Cleanup data construction artifacts and subprocess.

  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()

  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)
Exemplo n.º 7
0
def run_ncf(_):
    """Run NCF training and eval loop."""
    if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
        movielens.download(FLAGS.dataset, FLAGS.data_dir)

    if FLAGS.seed is not None:
        np.random.seed(FLAGS.seed)

    num_gpus = flags_core.get_num_gpus(FLAGS)
    batch_size = distribution_utils.per_device_batch_size(
        int(FLAGS.batch_size), num_gpus)

    eval_per_user = rconst.NUM_EVAL_NEGATIVES + 1
    eval_batch_size = int(FLAGS.eval_batch_size
                          or max([FLAGS.batch_size, eval_per_user]))
    if eval_batch_size % eval_per_user:
        eval_batch_size = eval_batch_size // eval_per_user * eval_per_user
        tf.logging.warning(
            "eval examples per user does not evenly divide eval_batch_size. "
            "Overriding to {}".format(eval_batch_size))

    if FLAGS.use_synthetic_data:
        ncf_dataset = None
        cleanup_fn = lambda: None
        num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
            FLAGS.dataset]
        num_train_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
        num_eval_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
    else:
        ncf_dataset, cleanup_fn = data_preprocessing.instantiate_pipeline(
            dataset=FLAGS.dataset,
            data_dir=FLAGS.data_dir,
            batch_size=batch_size,
            eval_batch_size=eval_batch_size,
            num_neg=FLAGS.num_neg,
            epochs_per_cycle=FLAGS.epochs_between_evals,
            match_mlperf=FLAGS.ml_perf,
            deterministic=FLAGS.seed is not None,
            use_subprocess=FLAGS.use_subprocess,
            cache_id=FLAGS.cache_id)
        num_users = ncf_dataset.num_users
        num_items = ncf_dataset.num_items
        num_train_steps = int(
            np.ceil(FLAGS.epochs_between_evals *
                    ncf_dataset.num_train_positives * (1 + FLAGS.num_neg) /
                    FLAGS.batch_size))
        num_eval_steps = int(
            np.ceil((1 + rconst.NUM_EVAL_NEGATIVES) * ncf_dataset.num_users /
                    eval_batch_size))

    model_helpers.apply_clean(flags.FLAGS)

    train_estimator, eval_estimator = construct_estimator(
        num_gpus=num_gpus,
        model_dir=FLAGS.model_dir,
        params={
            "use_seed": FLAGS.seed is not None,
            "hash_pipeline": FLAGS.hash_pipeline,
            "batch_size": batch_size,
            "eval_batch_size": eval_batch_size,
            "learning_rate": FLAGS.learning_rate,
            "num_users": num_users,
            "num_items": num_items,
            "mf_dim": FLAGS.num_factors,
            "model_layers": [int(layer) for layer in FLAGS.layers],
            "mf_regularization": FLAGS.mf_regularization,
            "mlp_reg_layers": [float(reg) for reg in FLAGS.mlp_regularization],
            "num_neg": FLAGS.num_neg,
            "use_tpu": FLAGS.tpu is not None,
            "tpu": FLAGS.tpu,
            "tpu_zone": FLAGS.tpu_zone,
            "tpu_gcp_project": FLAGS.tpu_gcp_project,
            "beta1": FLAGS.beta1,
            "beta2": FLAGS.beta2,
            "epsilon": FLAGS.epsilon,
            "match_mlperf": FLAGS.ml_perf,
            "use_xla_for_gpu": FLAGS.use_xla_for_gpu,
        },
        batch_size=flags.FLAGS.batch_size,
        eval_batch_size=eval_batch_size)

    # Create hooks that log information about the training and metric values
    train_hooks = hooks_helper.get_train_hooks(
        FLAGS.hooks,
        model_dir=FLAGS.model_dir,
        batch_size=FLAGS.batch_size,  # for ExamplesPerSecondHook
        tensors_to_log={"cross_entropy": "cross_entropy"})
    run_params = {
        "batch_size": FLAGS.batch_size,
        "eval_batch_size": eval_batch_size,
        "number_factors": FLAGS.num_factors,
        "hr_threshold": FLAGS.hr_threshold,
        "train_epochs": FLAGS.train_epochs,
    }
    benchmark_logger = logger.get_benchmark_logger()
    benchmark_logger.log_run_info(model_name="recommendation",
                                  dataset_name=FLAGS.dataset,
                                  run_params=run_params,
                                  test_id=FLAGS.benchmark_test_id)

    pred_input_fn = None
    total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals
    target_reached = False
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
    for cycle_index in range(total_training_cycle):
        assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
        tf.logging.info("Starting a training cycle: {}/{}".format(
            cycle_index + 1, total_training_cycle))

        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
                                value=cycle_index)

        # Train the model
        train_input_fn, train_record_dir, batch_count = \
          data_preprocessing.make_input_fn(
              ncf_dataset=ncf_dataset, is_training=True)

        if batch_count != num_train_steps:
            raise ValueError(
                "Step counts do not match. ({} vs. {}) The async process is "
                "producing incorrect shards.".format(batch_count,
                                                     num_train_steps))

        train_estimator.train(input_fn=train_input_fn,
                              hooks=train_hooks,
                              steps=num_train_steps)
        if train_record_dir:
            tf.gfile.DeleteRecursively(train_record_dir)

        tf.logging.info("Beginning evaluation.")
        if pred_input_fn is None:
            pred_input_fn, _, eval_batch_count = data_preprocessing.make_input_fn(
                ncf_dataset=ncf_dataset, is_training=False)

            if eval_batch_count != num_eval_steps:
                raise ValueError(
                    "Step counts do not match. ({} vs. {}) The async process is "
                    "producing incorrect shards.".format(
                        eval_batch_count, num_eval_steps))

        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                                value=cycle_index)
        eval_results = eval_estimator.evaluate(pred_input_fn,
                                               steps=num_eval_steps)
        hr = float(eval_results[rconst.HR_KEY])
        ndcg = float(eval_results[rconst.NDCG_KEY])
        tf.logging.info("Evaluation complete.")

        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_TARGET,
                                value={
                                    "epoch": cycle_index,
                                    "value": FLAGS.hr_threshold
                                })
        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
                                value={
                                    "epoch": cycle_index,
                                    "value": hr
                                })
        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
                                value={
                                    "epoch": cycle_index,
                                    "value": rconst.NUM_EVAL_NEGATIVES
                                })

        # Logged by the async process during record creation.
        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_HP_NUM_USERS,
                                deferred=True)

        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP,
                                value=cycle_index)

        # Benchmark the evaluation results
        benchmark_logger.log_evaluation_result(eval_results)
        # Log the HR and NDCG results.
        tf.logging.info("Iteration {}: HR = {:.4f}, NDCG = {:.4f}".format(
            cycle_index + 1, hr, ndcg))

        # If some evaluation threshold is met
        if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
            target_reached = True
            break

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
                            value={"success": target_reached})
    cleanup_fn()  # Cleanup data construction artifacts and subprocess.

    # Clear the session explicitly to avoid session delete error
    tf.keras.backend.clear_session()

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)