Exemplo n.º 1
0
def _rename_dem_folder(gdir, source=''):
    """Put the DEM files in a subfolder of the gdir.

    Parameters
    ----------
    gdir : GlacierDirectory
    source : str
        the DEM source
    """

    # open tif-file to check if it's worth it
    dem_f = gdir.get_filepath('dem')
    try:
        dem = gis.read_geotiff_dem(gdir)
    except IOError:
        # Error reading file, no problem - still, delete the file if needed
        if os.path.exists(dem_f):
            os.remove(dem_f)
        gdir.log('{},DEM SOURCE,{}'.format(gdir.rgi_id, source),
                 err=InvalidDEMError('File does not exist'))
        return

    # Check the DEM
    isfinite = np.isfinite(dem)
    if np.all(~isfinite) or (np.min(dem) == np.max(dem)):
        # Remove the file and return
        if os.path.exists(dem_f):
            os.remove(dem_f)
        gdir.log('{},DEM SOURCE,{}'.format(gdir.rgi_id, source),
                 err=InvalidDEMError('DEM does not contain more than one '
                                     'valid values.'))
        return

    # Create a source dir and move the files
    out = os.path.join(gdir.dir, source)
    utils.mkdir(out)
    for fname in ['dem', 'dem_source']:
        f = gdir.get_filepath(fname)
        os.rename(f, os.path.join(out, os.path.basename(f)))

    # log SUCCESS for this DEM source
    gdir.log('{},DEM SOURCE,{}'.format(gdir.rgi_id, source))
Exemplo n.º 2
0
def simple_glacier_masks(gdir):
    """Compute glacier masks based on much simpler rules than OGGM's default.

    This is therefore more robust: we use this function to compute glacier
    hypsometries.

    Parameters
    ----------
    gdir : :py:class:`oggm.GlacierDirectory`
        where to write the data
    """

    # open srtm tif-file:
    dem_dr = rasterio.open(gdir.get_filepath('dem'), 'r', driver='GTiff')
    dem = dem_dr.read(1).astype(rasterio.float32)

    # Grid
    nx = dem_dr.width
    ny = dem_dr.height
    assert nx == gdir.grid.nx
    assert ny == gdir.grid.ny

    # Correct the DEM
    # Currently we just do a linear interp -- filling is totally shit anyway
    min_z = -999.
    dem[dem <= min_z] = np.NaN
    isfinite = np.isfinite(dem)
    if np.all(~isfinite):
        raise InvalidDEMError('Not a single valid grid point in DEM')
    if np.any(~isfinite):
        xx, yy = gdir.grid.ij_coordinates
        pnan = np.nonzero(~isfinite)
        pok = np.nonzero(isfinite)
        points = np.array((np.ravel(yy[pok]), np.ravel(xx[pok]))).T
        inter = np.array((np.ravel(yy[pnan]), np.ravel(xx[pnan]))).T
        try:
            dem[pnan] = griddata(points,
                                 np.ravel(dem[pok]),
                                 inter,
                                 method='linear')
        except ValueError:
            raise InvalidDEMError('DEM interpolation not possible.')
        log.warning(gdir.rgi_id + ': DEM needed interpolation.')
        gdir.add_to_diagnostics('dem_needed_interpolation', True)
        gdir.add_to_diagnostics('dem_invalid_perc', len(pnan[0]) / (nx * ny))

    isfinite = np.isfinite(dem)
    if np.any(~isfinite):
        # this happens when extrapolation is needed
        # see how many percent of the dem
        if np.sum(~isfinite) > (0.5 * nx * ny):
            log.warning('({}) many NaNs in DEM'.format(gdir.rgi_id))
        xx, yy = gdir.grid.ij_coordinates
        pnan = np.nonzero(~isfinite)
        pok = np.nonzero(isfinite)
        points = np.array((np.ravel(yy[pok]), np.ravel(xx[pok]))).T
        inter = np.array((np.ravel(yy[pnan]), np.ravel(xx[pnan]))).T
        try:
            dem[pnan] = griddata(points,
                                 np.ravel(dem[pok]),
                                 inter,
                                 method='nearest')
        except ValueError:
            raise InvalidDEMError('DEM extrapolation not possible.')
        log.warning(gdir.rgi_id + ': DEM needed extrapolation.')
        gdir.add_to_diagnostics('dem_needed_extrapolation', True)
        gdir.add_to_diagnostics('dem_extrapol_perc', len(pnan[0]) / (nx * ny))

    if np.min(dem) == np.max(dem):
        raise InvalidDEMError('({}) min equal max in the DEM.'.format(
            gdir.rgi_id))

    # Proj
    if LooseVersion(rasterio.__version__) >= LooseVersion('1.0'):
        transf = dem_dr.transform
    else:
        raise ImportError('This task needs rasterio >= 1.0 to work properly')
    x0 = transf[2]  # UL corner
    y0 = transf[5]  # UL corner
    dx = transf[0]
    dy = transf[4]  # Negative
    assert dx == -dy
    assert dx == gdir.grid.dx
    assert y0 == gdir.grid.corner_grid.y0
    assert x0 == gdir.grid.corner_grid.x0

    profile = dem_dr.profile
    dem_dr.close()

    # Clip topography to 0 m a.s.l.
    dem = dem.clip(0)

    # Smooth DEM?
    if cfg.PARAMS['smooth_window'] > 0.:
        gsize = np.rint(cfg.PARAMS['smooth_window'] / dx)
        smoothed_dem = gaussian_blur(dem, np.int(gsize))
    else:
        smoothed_dem = dem.copy()

    if not np.all(np.isfinite(smoothed_dem)):
        raise InvalidDEMError('({}) NaN in smoothed DEM'.format(gdir.rgi_id))

    # Geometries
    geometry = gdir.read_shapefile('outlines').geometry[0]

    # simple trick to correct invalid polys:
    # http://stackoverflow.com/questions/20833344/
    # fix-invalid-polygon-python-shapely
    geometry = geometry.buffer(0)
    if not geometry.is_valid:
        raise InvalidDEMError('This glacier geometry is not valid.')

    # Compute the glacier mask using rasterio
    # Small detour as mask only accepts DataReader objects
    with rasterio.io.MemoryFile() as memfile:
        with memfile.open(**profile) as dataset:
            dataset.write(dem.astype(np.int16)[np.newaxis, ...])
        dem_data = rasterio.open(memfile.name)
        masked_dem, _ = riomask(dem_data, [shpg.mapping(geometry)],
                                filled=False)
    glacier_mask = ~masked_dem[0, ...].mask

    # Smame without nunataks
    with rasterio.io.MemoryFile() as memfile:
        with memfile.open(**profile) as dataset:
            dataset.write(dem.astype(np.int16)[np.newaxis, ...])
        dem_data = rasterio.open(memfile.name)
        poly = shpg.mapping(shpg.Polygon(geometry.exterior))
        masked_dem, _ = riomask(dem_data, [poly], filled=False)
    glacier_mask_nonuna = ~masked_dem[0, ...].mask

    # Glacier exterior excluding nunataks
    erode = binary_erosion(glacier_mask_nonuna)
    glacier_ext = glacier_mask_nonuna ^ erode
    glacier_ext = np.where(glacier_mask_nonuna, glacier_ext, 0)

    # Last sanity check based on the masked dem
    tmp_max = np.max(dem[glacier_mask])
    tmp_min = np.min(dem[glacier_mask])
    if tmp_max < (tmp_min + 1):
        raise InvalidDEMError('({}) min equal max in the masked DEM.'.format(
            gdir.rgi_id))

    # hypsometry
    bsize = 50.
    dem_on_ice = dem[glacier_mask]
    bins = np.arange(nicenumber(dem_on_ice.min(), bsize, lower=True),
                     nicenumber(dem_on_ice.max(), bsize) + 0.01, bsize)

    h, _ = np.histogram(dem_on_ice, bins)
    h = h / np.sum(h) * 1000  # in permil

    # We want to convert the bins to ints but preserve their sum to 1000
    # Start with everything rounded down, then round up the numbers with the
    # highest fractional parts until the desired sum is reached.
    hi = np.floor(h).astype(np.int)
    hup = np.ceil(h).astype(np.int)
    aso = np.argsort(hup - h)
    for i in aso:
        hi[i] = hup[i]
        if np.sum(hi) == 1000:
            break

    # slope
    sy, sx = np.gradient(dem, dx)
    aspect = np.arctan2(np.mean(-sx[glacier_mask]), np.mean(sy[glacier_mask]))
    aspect = np.rad2deg(aspect)
    if aspect < 0:
        aspect += 360
    slope = np.arctan(np.sqrt(sx**2 + sy**2))
    avg_slope = np.rad2deg(np.mean(slope[glacier_mask]))

    # write
    df = pd.DataFrame()
    df['RGIId'] = [gdir.rgi_id]
    df['GLIMSId'] = [gdir.glims_id]
    df['Zmin'] = [dem_on_ice.min()]
    df['Zmax'] = [dem_on_ice.max()]
    df['Zmed'] = [np.median(dem_on_ice)]
    df['Area'] = [gdir.rgi_area_km2]
    df['Slope'] = [avg_slope]
    df['Aspect'] = [aspect]
    for b, bs in zip(hi, (bins[1:] + bins[:-1]) / 2):
        df['{}'.format(np.round(bs).astype(int))] = [b]
    df.to_csv(gdir.get_filepath('hypsometry'), index=False)

    # write out the grids in the netcdf file
    nc = gdir.create_gridded_ncdf_file('gridded_data')

    v = nc.createVariable('topo', 'f4', (
        'y',
        'x',
    ), zlib=True)
    v.units = 'm'
    v.long_name = 'DEM topography'
    v[:] = dem

    v = nc.createVariable('topo_smoothed', 'f4', (
        'y',
        'x',
    ), zlib=True)
    v.units = 'm'
    v.long_name = ('DEM topography smoothed '
                   'with radius: {:.1} m'.format(cfg.PARAMS['smooth_window']))
    v[:] = smoothed_dem

    v = nc.createVariable('glacier_mask', 'i1', (
        'y',
        'x',
    ), zlib=True)
    v.units = '-'
    v.long_name = 'Glacier mask'
    v[:] = glacier_mask

    v = nc.createVariable('glacier_ext', 'i1', (
        'y',
        'x',
    ), zlib=True)
    v.units = '-'
    v.long_name = 'Glacier external boundaries'
    v[:] = glacier_ext

    # add some meta stats and close
    nc.max_h_dem = np.max(dem)
    nc.min_h_dem = np.min(dem)
    dem_on_g = dem[np.where(glacier_mask)]
    nc.max_h_glacier = np.max(dem_on_g)
    nc.min_h_glacier = np.min(dem_on_g)
    nc.close()
Exemplo n.º 3
0
def glacier_masks(gdir):
    """Makes a gridded mask of the glacier outlines and topography.

    This function fills holes in the source DEM and produces smoothed gridded
    topography and glacier outline arrays. These are the ones which will later
    be used to determine bed and surface height.

    Parameters
    ----------
    gdir : :py:class:`oggm.GlacierDirectory`
        where to write the data
    """

    # open srtm tif-file:
    dem_dr = rasterio.open(gdir.get_filepath('dem'), 'r', driver='GTiff')
    dem = dem_dr.read(1).astype(rasterio.float32)

    # Grid
    nx = dem_dr.width
    ny = dem_dr.height
    assert nx == gdir.grid.nx
    assert ny == gdir.grid.ny

    # Correct the DEM
    # Currently we just do a linear interp -- filling is totally shit anyway
    min_z = -999.
    dem[dem <= min_z] = np.NaN
    isfinite = np.isfinite(dem)
    if np.all(~isfinite):
        raise InvalidDEMError('Not a single valid grid point in DEM')
    if np.any(~isfinite):
        xx, yy = gdir.grid.ij_coordinates
        pnan = np.nonzero(~isfinite)
        pok = np.nonzero(isfinite)
        points = np.array((np.ravel(yy[pok]), np.ravel(xx[pok]))).T
        inter = np.array((np.ravel(yy[pnan]), np.ravel(xx[pnan]))).T
        try:
            dem[pnan] = griddata(points,
                                 np.ravel(dem[pok]),
                                 inter,
                                 method='linear')
        except ValueError:
            raise InvalidDEMError('DEM interpolation not possible.')
        log.warning(gdir.rgi_id + ': DEM needed interpolation.')
        gdir.add_to_diagnostics('dem_needed_interpolation', True)
        gdir.add_to_diagnostics('dem_invalid_perc', len(pnan[0]) / (nx * ny))

    isfinite = np.isfinite(dem)
    if np.any(~isfinite):
        # this happens when extrapolation is needed
        # see how many percent of the dem
        if np.sum(~isfinite) > (0.5 * nx * ny):
            log.warning('({}) many NaNs in DEM'.format(gdir.rgi_id))
        xx, yy = gdir.grid.ij_coordinates
        pnan = np.nonzero(~isfinite)
        pok = np.nonzero(isfinite)
        points = np.array((np.ravel(yy[pok]), np.ravel(xx[pok]))).T
        inter = np.array((np.ravel(yy[pnan]), np.ravel(xx[pnan]))).T
        try:
            dem[pnan] = griddata(points,
                                 np.ravel(dem[pok]),
                                 inter,
                                 method='nearest')
        except ValueError:
            raise InvalidDEMError('DEM extrapolation not possible.')
        log.warning(gdir.rgi_id + ': DEM needed extrapolation.')
        gdir.add_to_diagnostics('dem_needed_extrapolation', True)
        gdir.add_to_diagnostics('dem_extrapol_perc', len(pnan[0]) / (nx * ny))

    if np.min(dem) == np.max(dem):
        raise InvalidDEMError('({}) min equal max in the DEM.'.format(
            gdir.rgi_id))

    # Projection
    if LooseVersion(rasterio.__version__) >= LooseVersion('1.0'):
        transf = dem_dr.transform
    else:
        transf = dem_dr.affine
    x0 = transf[2]  # UL corner
    y0 = transf[5]  # UL corner
    dx = transf[0]
    dy = transf[4]  # Negative

    if not (np.allclose(dx, -dy) or np.allclose(dx, gdir.grid.dx)
            or np.allclose(y0, gdir.grid.corner_grid.y0, atol=1e-2)
            or np.allclose(x0, gdir.grid.corner_grid.x0, atol=1e-2)):
        raise InvalidDEMError('DEM file and Salem Grid do not match!')
    dem_dr.close()

    # Clip topography to 0 m a.s.l.
    dem = dem.clip(0)

    # Smooth DEM?
    if cfg.PARAMS['smooth_window'] > 0.:
        gsize = np.rint(cfg.PARAMS['smooth_window'] / dx)
        smoothed_dem = gaussian_blur(dem, np.int(gsize))
    else:
        smoothed_dem = dem.copy()

    if not np.all(np.isfinite(smoothed_dem)):
        raise InvalidDEMError('({}) NaN in smoothed DEM'.format(gdir.rgi_id))

    # Geometries
    geometry = gdir.read_shapefile('outlines').geometry[0]

    # Interpolate shape to a regular path
    glacier_poly_hr = _interp_polygon(geometry, gdir.grid.dx)

    # Transform geometry into grid coordinates
    # It has to be in pix center coordinates because of how skimage works
    def proj(x, y):
        grid = gdir.grid.center_grid
        return grid.transform(x, y, crs=grid.proj)

    glacier_poly_hr = shapely.ops.transform(proj, glacier_poly_hr)

    # simple trick to correct invalid polys:
    # http://stackoverflow.com/questions/20833344/
    # fix-invalid-polygon-python-shapely
    glacier_poly_hr = glacier_poly_hr.buffer(0)
    if not glacier_poly_hr.is_valid:
        raise InvalidGeometryError('This glacier geometry is not valid.')

    # Rounded nearest pix
    glacier_poly_pix = _polygon_to_pix(glacier_poly_hr)
    if glacier_poly_pix.exterior is None:
        raise InvalidGeometryError('Problem in converting glacier geometry '
                                   'to grid resolution.')

    # Compute the glacier mask (currently: center pixels + touched)
    nx, ny = gdir.grid.nx, gdir.grid.ny
    glacier_mask = np.zeros((ny, nx), dtype=np.uint8)
    glacier_ext = np.zeros((ny, nx), dtype=np.uint8)
    (x, y) = glacier_poly_pix.exterior.xy
    glacier_mask[skdraw.polygon(np.array(y), np.array(x))] = 1
    for gint in glacier_poly_pix.interiors:
        x, y = tuple2int(gint.xy)
        glacier_mask[skdraw.polygon(y, x)] = 0
        glacier_mask[y, x] = 0  # on the nunataks, no
    x, y = tuple2int(glacier_poly_pix.exterior.xy)
    glacier_mask[y, x] = 1
    glacier_ext[y, x] = 1

    # Because of the 0 values at nunataks boundaries, some "Ice Islands"
    # can happen within nunataks (e.g.: RGI40-11.00062)
    # See if we can filter them out easily
    regions, nregions = label(glacier_mask, structure=label_struct)
    if nregions > 1:
        log.debug('(%s) we had to cut an island in the mask', gdir.rgi_id)
        # Check the size of those
        region_sizes = [
            np.sum(regions == r) for r in np.arange(1, nregions + 1)
        ]
        am = np.argmax(region_sizes)
        # Check not a strange glacier
        sr = region_sizes.pop(am)
        for ss in region_sizes:
            assert (ss / sr) < 0.1
        glacier_mask[:] = 0
        glacier_mask[np.where(regions == (am + 1))] = 1

    # Last sanity check based on the masked dem
    tmp_max = np.max(dem[np.where(glacier_mask == 1)])
    tmp_min = np.min(dem[np.where(glacier_mask == 1)])
    if tmp_max < (tmp_min + 1):
        raise InvalidDEMError('({}) min equal max in the masked DEM.'.format(
            gdir.rgi_id))

    # write out the grids in the netcdf file
    nc = gdir.create_gridded_ncdf_file('gridded_data')

    v = nc.createVariable('topo', 'f4', (
        'y',
        'x',
    ), zlib=True)
    v.units = 'm'
    v.long_name = 'DEM topography'
    v[:] = dem

    v = nc.createVariable('topo_smoothed', 'f4', (
        'y',
        'x',
    ), zlib=True)
    v.units = 'm'
    v.long_name = ('DEM topography smoothed '
                   'with radius: {:.1} m'.format(cfg.PARAMS['smooth_window']))
    v[:] = smoothed_dem

    v = nc.createVariable('glacier_mask', 'i1', (
        'y',
        'x',
    ), zlib=True)
    v.units = '-'
    v.long_name = 'Glacier mask'
    v[:] = glacier_mask

    v = nc.createVariable('glacier_ext', 'i1', (
        'y',
        'x',
    ), zlib=True)
    v.units = '-'
    v.long_name = 'Glacier external boundaries'
    v[:] = glacier_ext

    # add some meta stats and close
    nc.max_h_dem = np.max(dem)
    nc.min_h_dem = np.min(dem)
    dem_on_g = dem[np.where(glacier_mask)]
    nc.max_h_glacier = np.max(dem_on_g)
    nc.min_h_glacier = np.min(dem_on_g)
    nc.close()

    geometries = dict()
    geometries['polygon_hr'] = glacier_poly_hr
    geometries['polygon_pix'] = glacier_poly_pix
    geometries['polygon_area'] = geometry.area
    gdir.write_pickle(geometries, 'geometries')
Exemplo n.º 4
0
def simple_glacier_masks(gdir):
    """Compute glacier masks based on much simpler rules than OGGM's default.

    This is therefore more robust: we use this function to compute glacier
    hypsometries.

    Parameters
    ----------
    gdir : :py:class:`oggm.GlacierDirectory`
        where to write the data
    """

    if not os.path.exists(gdir.get_filepath('gridded_data')):
        # In a possible future, we might actually want to raise a
        # deprecation warning here
        process_dem(gdir)

    # Geometries
    geometry = gdir.read_shapefile('outlines').geometry[0]

    # rio metadata
    with rasterio.open(gdir.get_filepath('dem'), 'r', driver='GTiff') as ds:
        data = ds.read(1).astype(rasterio.float32)
        profile = ds.profile

    # simple trick to correct invalid polys:
    # http://stackoverflow.com/questions/20833344/
    # fix-invalid-polygon-python-shapely
    geometry = geometry.buffer(0)
    if not geometry.is_valid:
        raise InvalidDEMError('This glacier geometry is not valid.')

    # Compute the glacier mask using rasterio
    # Small detour as mask only accepts DataReader objects
    with rasterio.io.MemoryFile() as memfile:
        with memfile.open(**profile) as dataset:
            dataset.write(data.astype(np.int16)[np.newaxis, ...])
        dem_data = rasterio.open(memfile.name)
        masked_dem, _ = riomask(dem_data, [shpg.mapping(geometry)],
                                filled=False)
    glacier_mask = ~masked_dem[0, ...].mask

    # Same without nunataks
    with rasterio.io.MemoryFile() as memfile:
        with memfile.open(**profile) as dataset:
            dataset.write(data.astype(np.int16)[np.newaxis, ...])
        dem_data = rasterio.open(memfile.name)
        poly = shpg.mapping(shpg.Polygon(geometry.exterior))
        masked_dem, _ = riomask(dem_data, [poly],
                                filled=False)
    glacier_mask_nonuna = ~masked_dem[0, ...].mask

    # Glacier exterior excluding nunataks
    erode = binary_erosion(glacier_mask_nonuna)
    glacier_ext = glacier_mask_nonuna ^ erode
    glacier_ext = np.where(glacier_mask_nonuna, glacier_ext, 0)

    dem = read_geotiff_dem(gdir)

    # Last sanity check based on the masked dem
    tmp_max = np.max(dem[glacier_mask])
    tmp_min = np.min(dem[glacier_mask])
    if tmp_max < (tmp_min + 1):
        raise InvalidDEMError('({}) min equal max in the masked DEM.'
                              .format(gdir.rgi_id))

    # hypsometry
    bsize = 50.
    dem_on_ice = dem[glacier_mask]
    bins = np.arange(nicenumber(dem_on_ice.min(), bsize, lower=True),
                     nicenumber(dem_on_ice.max(), bsize) + 0.01, bsize)

    h, _ = np.histogram(dem_on_ice, bins)
    h = h / np.sum(h) * 1000  # in permil

    # We want to convert the bins to ints but preserve their sum to 1000
    # Start with everything rounded down, then round up the numbers with the
    # highest fractional parts until the desired sum is reached.
    hi = np.floor(h).astype(np.int)
    hup = np.ceil(h).astype(np.int)
    aso = np.argsort(hup - h)
    for i in aso:
        hi[i] = hup[i]
        if np.sum(hi) == 1000:
            break

    # slope
    sy, sx = np.gradient(dem, gdir.grid.dx)
    aspect = np.arctan2(np.mean(-sx[glacier_mask]), np.mean(sy[glacier_mask]))
    aspect = np.rad2deg(aspect)
    if aspect < 0:
        aspect += 360
    slope = np.arctan(np.sqrt(sx ** 2 + sy ** 2))
    avg_slope = np.rad2deg(np.mean(slope[glacier_mask]))

    # write
    df = pd.DataFrame()
    df['RGIId'] = [gdir.rgi_id]
    df['GLIMSId'] = [gdir.glims_id]
    df['Zmin'] = [dem_on_ice.min()]
    df['Zmax'] = [dem_on_ice.max()]
    df['Zmed'] = [np.median(dem_on_ice)]
    df['Area'] = [gdir.rgi_area_km2]
    df['Slope'] = [avg_slope]
    df['Aspect'] = [aspect]
    for b, bs in zip(hi, (bins[1:] + bins[:-1])/2):
        df['{}'.format(np.round(bs).astype(int))] = [b]
    df.to_csv(gdir.get_filepath('hypsometry'), index=False)

    # write out the grids in the netcdf file
    with GriddedNcdfFile(gdir) as nc:

        if 'glacier_mask' not in nc.variables:
            v = nc.createVariable('glacier_mask', 'i1', ('y', 'x', ),
                                  zlib=True)
            v.units = '-'
            v.long_name = 'Glacier mask'
        else:
            v = nc.variables['glacier_mask']
        v[:] = glacier_mask

        if 'glacier_ext' not in nc.variables:
            v = nc.createVariable('glacier_ext', 'i1', ('y', 'x', ),
                                  zlib=True)
            v.units = '-'
            v.long_name = 'Glacier external boundaries'
        else:
            v = nc.variables['glacier_ext']
        v[:] = glacier_ext

        # Log DEM that needed processing within the glacier mask
        valid_mask = nc.variables['topo_valid_mask'][:]
        if gdir.get_diagnostics().get('dem_needed_interpolation', False):
            pnan = (valid_mask == 0) & glacier_mask
            gdir.add_to_diagnostics('dem_invalid_perc_in_mask',
                                    np.sum(pnan) / np.sum(glacier_mask))

        # add some meta stats and close
        nc.max_h_dem = np.max(dem)
        nc.min_h_dem = np.min(dem)
        dem_on_g = dem[np.where(glacier_mask)]
        nc.max_h_glacier = np.max(dem_on_g)
        nc.min_h_glacier = np.min(dem_on_g)
Exemplo n.º 5
0
def glacier_masks(gdir):
    """Makes a gridded mask of the glacier outlines that can be used by OGGM.

    For a more robust solution (not OGGM compatible) see simple_glacier_masks.

    Parameters
    ----------
    gdir : :py:class:`oggm.GlacierDirectory`
        where to write the data
    """

    # In case nominal, just raise
    if gdir.is_nominal:
        raise GeometryError('{} is a nominal glacier.'.format(gdir.rgi_id))

    if not os.path.exists(gdir.get_filepath('gridded_data')):
        # In a possible future, we might actually want to raise a
        # deprecation warning here
        process_dem(gdir)

    # Geometries
    geometry = gdir.read_shapefile('outlines').geometry[0]

    # Interpolate shape to a regular path
    glacier_poly_hr = _interp_polygon(geometry, gdir.grid.dx)

    # Transform geometry into grid coordinates
    # It has to be in pix center coordinates because of how skimage works
    def proj(x, y):
        grid = gdir.grid.center_grid
        return grid.transform(x, y, crs=grid.proj)
    glacier_poly_hr = shapely.ops.transform(proj, glacier_poly_hr)

    # simple trick to correct invalid polys:
    # http://stackoverflow.com/questions/20833344/
    # fix-invalid-polygon-python-shapely
    glacier_poly_hr = glacier_poly_hr.buffer(0)
    if not glacier_poly_hr.is_valid:
        raise InvalidGeometryError('This glacier geometry is not valid.')

    # Rounded nearest pix
    glacier_poly_pix = _polygon_to_pix(glacier_poly_hr)
    if glacier_poly_pix.exterior is None:
        raise InvalidGeometryError('Problem in converting glacier geometry '
                                   'to grid resolution.')

    # Compute the glacier mask (currently: center pixels + touched)
    nx, ny = gdir.grid.nx, gdir.grid.ny
    glacier_mask = np.zeros((ny, nx), dtype=np.uint8)
    glacier_ext = np.zeros((ny, nx), dtype=np.uint8)
    (x, y) = glacier_poly_pix.exterior.xy
    glacier_mask[skdraw.polygon(np.array(y), np.array(x))] = 1
    for gint in glacier_poly_pix.interiors:
        x, y = tuple2int(gint.xy)
        glacier_mask[skdraw.polygon(y, x)] = 0
        glacier_mask[y, x] = 0  # on the nunataks, no
    x, y = tuple2int(glacier_poly_pix.exterior.xy)
    glacier_mask[y, x] = 1
    glacier_ext[y, x] = 1

    # Because of the 0 values at nunataks boundaries, some "Ice Islands"
    # can happen within nunataks (e.g.: RGI40-11.00062)
    # See if we can filter them out easily
    regions, nregions = label(glacier_mask, structure=label_struct)
    if nregions > 1:
        log.debug('(%s) we had to cut an island in the mask', gdir.rgi_id)
        # Check the size of those
        region_sizes = [np.sum(regions == r) for r in np.arange(1, nregions+1)]
        am = np.argmax(region_sizes)
        # Check not a strange glacier
        sr = region_sizes.pop(am)
        for ss in region_sizes:
            assert (ss / sr) < 0.1
        glacier_mask[:] = 0
        glacier_mask[np.where(regions == (am+1))] = 1

    # Write geometries
    geometries = dict()
    geometries['polygon_hr'] = glacier_poly_hr
    geometries['polygon_pix'] = glacier_poly_pix
    geometries['polygon_area'] = geometry.area
    gdir.write_pickle(geometries, 'geometries')

    # write out the grids in the netcdf file
    with GriddedNcdfFile(gdir) as nc:

        if 'glacier_mask' not in nc.variables:
            v = nc.createVariable('glacier_mask', 'i1', ('y', 'x', ),
                                  zlib=True)
            v.units = '-'
            v.long_name = 'Glacier mask'
        else:
            v = nc.variables['glacier_mask']
        v[:] = glacier_mask

        if 'glacier_ext' not in nc.variables:
            v = nc.createVariable('glacier_ext', 'i1', ('y', 'x', ),
                                  zlib=True)
            v.units = '-'
            v.long_name = 'Glacier external boundaries'
        else:
            v = nc.variables['glacier_ext']
        v[:] = glacier_ext

        dem = nc.variables['topo'][:]
        valid_mask = nc.variables['topo_valid_mask'][:]

        # Last sanity check based on the masked dem
        tmp_max = np.max(dem[np.where(glacier_mask == 1)])
        tmp_min = np.min(dem[np.where(glacier_mask == 1)])
        if tmp_max < (tmp_min + 1):
            raise InvalidDEMError('({}) min equal max in the masked DEM.'
                                  .format(gdir.rgi_id))

        # Log DEM that needed processing within the glacier mask
        if gdir.get_diagnostics().get('dem_needed_interpolation', False):
            pnan = (valid_mask == 0) & glacier_mask
            gdir.add_to_diagnostics('dem_invalid_perc_in_mask',
                                    np.sum(pnan) / np.sum(glacier_mask))

        # add some meta stats and close
        dem_on_g = dem[np.where(glacier_mask)]
        nc.max_h_glacier = np.max(dem_on_g)
        nc.min_h_glacier = np.min(dem_on_g)
Exemplo n.º 6
0
def process_dem(gdir):
    """Reads the DEM from the tiff, attempts to fill voids and apply smooth.

    The data is then written to `gridded_data.nc`.

    Parameters
    ----------
    gdir : :py:class:`oggm.GlacierDirectory`
        where to write the data
    """

    # open srtm tif-file:
    dem = read_geotiff_dem(gdir)

    # Grid
    nx = gdir.grid.nx
    ny = gdir.grid.ny

    # Correct the DEM
    valid_mask = np.isfinite(dem)
    if np.all(~valid_mask):
        raise InvalidDEMError('Not a single valid grid point in DEM')

    if np.any(~valid_mask):
        # We interpolate
        if np.sum(~valid_mask) > (0.25 * nx * ny):
            log.warning('({}) more than 25% NaNs in DEM'.format(gdir.rgi_id))
        xx, yy = gdir.grid.ij_coordinates
        pnan = np.nonzero(~valid_mask)
        pok = np.nonzero(valid_mask)
        points = np.array((np.ravel(yy[pok]), np.ravel(xx[pok]))).T
        inter = np.array((np.ravel(yy[pnan]), np.ravel(xx[pnan]))).T
        try:
            dem[pnan] = griddata(points, np.ravel(dem[pok]), inter,
                                 method='linear')
        except ValueError:
            raise InvalidDEMError('DEM interpolation not possible.')
        log.warning(gdir.rgi_id + ': DEM needed interpolation.')
        gdir.add_to_diagnostics('dem_needed_interpolation', True)
        gdir.add_to_diagnostics('dem_invalid_perc', len(pnan[0]) / (nx * ny))

    isfinite = np.isfinite(dem)
    if np.any(~isfinite):
        # interpolation will still leave NaNs in DEM:
        # extrapolate with NN if needed (e.g. coastal areas)
        xx, yy = gdir.grid.ij_coordinates
        pnan = np.nonzero(~isfinite)
        pok = np.nonzero(isfinite)
        points = np.array((np.ravel(yy[pok]), np.ravel(xx[pok]))).T
        inter = np.array((np.ravel(yy[pnan]), np.ravel(xx[pnan]))).T
        try:
            dem[pnan] = griddata(points, np.ravel(dem[pok]), inter,
                                 method='nearest')
        except ValueError:
            raise InvalidDEMError('DEM extrapolation not possible.')
        log.warning(gdir.rgi_id + ': DEM needed extrapolation.')
        gdir.add_to_diagnostics('dem_needed_extrapolation', True)
        gdir.add_to_diagnostics('dem_extrapol_perc', len(pnan[0]) / (nx * ny))

    if np.min(dem) == np.max(dem):
        raise InvalidDEMError('({}) min equal max in the DEM.'
                              .format(gdir.rgi_id))

    # Clip topography to 0 m a.s.l.
    utils.clip_min(dem, 0, out=dem)

    # Smooth DEM?
    if cfg.PARAMS['smooth_window'] > 0.:
        gsize = np.rint(cfg.PARAMS['smooth_window'] / gdir.grid.dx)
        smoothed_dem = gaussian_blur(dem, np.int(gsize))
    else:
        smoothed_dem = dem.copy()

    # Write to file
    with GriddedNcdfFile(gdir, reset=True) as nc:

        v = nc.createVariable('topo', 'f4', ('y', 'x',), zlib=True)
        v.units = 'm'
        v.long_name = 'DEM topography'
        v[:] = dem

        v = nc.createVariable('topo_smoothed', 'f4', ('y', 'x',), zlib=True)
        v.units = 'm'
        v.long_name = ('DEM topography smoothed with radius: '
                       '{:.1} m'.format(cfg.PARAMS['smooth_window']))
        v[:] = smoothed_dem

        # If there was some invalid data store this as well
        v = nc.createVariable('topo_valid_mask', 'i1', ('y', 'x',), zlib=True)
        v.units = '-'
        v.long_name = 'DEM validity mask according to geotiff input (1-0)'
        v[:] = valid_mask.astype(int)

        # add some meta stats and close
        nc.max_h_dem = np.max(dem)
        nc.min_h_dem = np.min(dem)
Exemplo n.º 7
0
def define_glacier_region(gdir, entity=None):
    """Very first task: define the glacier's local grid.

    Defines the local projection (Transverse Mercator), centered on the
    glacier. There is some options to set the resolution of the local grid.
    It can be adapted depending on the size of the glacier with::

        dx (m) = d1 * AREA (km) + d2 ; clipped to dmax

    or be set to a fixed value. See ``params.cfg`` for setting these options.
    Default values of the adapted mode lead to a resolution of 50 m for
    Hintereisferner, which is approx. 8 km2 large.
    After defining the grid, the topography and the outlines of the glacier
    are transformed into the local projection. The default interpolation for
    the topography is `cubic`.

    Parameters
    ----------
    gdir : :py:class:`oggm.GlacierDirectory`
        where to write the data
    entity : geopandas.GeoSeries
        the glacier geometry to process
    """

    # Make a local glacier map
    proj_params = dict(name='tmerc', lat_0=0., lon_0=gdir.cenlon,
                       k=0.9996, x_0=0, y_0=0, datum='WGS84')
    proj4_str = "+proj={name} +lat_0={lat_0} +lon_0={lon_0} +k={k} " \
                "+x_0={x_0} +y_0={y_0} +datum={datum}".format(**proj_params)
    proj_in = pyproj.Proj("+init=EPSG:4326", preserve_units=True)
    proj_out = pyproj.Proj(proj4_str, preserve_units=True)
    project = partial(transform_proj, proj_in, proj_out)
    # transform geometry to map
    geometry = shapely.ops.transform(project, entity['geometry'])
    geometry = multi_to_poly(geometry, gdir=gdir)
    xx, yy = geometry.exterior.xy

    # Save transformed geometry to disk
    entity = entity.copy()
    entity['geometry'] = geometry
    # Avoid fiona bug: https://github.com/Toblerity/Fiona/issues/365
    for k, s in entity.iteritems():
        if type(s) in [np.int32, np.int64]:
            entity[k] = int(s)
    towrite = gpd.GeoDataFrame(entity).T
    towrite.crs = proj4_str
    # Delete the source before writing
    if 'DEM_SOURCE' in towrite:
        del towrite['DEM_SOURCE']

    # Define glacier area to use
    area = entity['Area']

    # Do we want to use the RGI area or ours?
    if not cfg.PARAMS['use_rgi_area']:
        # Update Area
        area = geometry.area * 1e-6
        entity['Area'] = area
        towrite['Area'] = area

    # Write shapefile
    gdir.write_shapefile(towrite, 'outlines')

    # Also transform the intersects if necessary
    gdf = cfg.PARAMS['intersects_gdf']
    if len(gdf) > 0:
        gdf = gdf.loc[((gdf.RGIId_1 == gdir.rgi_id) |
                       (gdf.RGIId_2 == gdir.rgi_id))]
        if len(gdf) > 0:
            gdf = salem.transform_geopandas(gdf, to_crs=proj_out)
            if hasattr(gdf.crs, 'srs'):
                # salem uses pyproj
                gdf.crs = gdf.crs.srs
            gdir.write_shapefile(gdf, 'intersects')
    else:
        # Sanity check
        if cfg.PARAMS['use_intersects']:
            raise InvalidParamsError('You seem to have forgotten to set the '
                                     'intersects file for this run. OGGM '
                                     'works better with such a file. If you '
                                     'know what your are doing, set '
                                     "cfg.PARAMS['use_intersects'] = False to "
                                     "suppress this error.")

    # 6. choose a spatial resolution with respect to the glacier area
    dxmethod = cfg.PARAMS['grid_dx_method']
    if dxmethod == 'linear':
        dx = np.rint(cfg.PARAMS['d1'] * area + cfg.PARAMS['d2'])
    elif dxmethod == 'square':
        dx = np.rint(cfg.PARAMS['d1'] * np.sqrt(area) + cfg.PARAMS['d2'])
    elif dxmethod == 'fixed':
        dx = np.rint(cfg.PARAMS['fixed_dx'])
    else:
        raise InvalidParamsError('grid_dx_method not supported: {}'
                                 .format(dxmethod))
    # Additional trick for varying dx
    if dxmethod in ['linear', 'square']:
        dx = utils.clip_scalar(dx, cfg.PARAMS['d2'], cfg.PARAMS['dmax'])

    log.debug('(%s) area %.2f km, dx=%.1f', gdir.rgi_id, area, dx)

    # Safety check
    border = cfg.PARAMS['border']
    if border > 1000:
        raise InvalidParamsError("You have set a cfg.PARAMS['border'] value "
                                 "of {}. ".format(cfg.PARAMS['border']) +
                                 'This a very large value, which is '
                                 'currently not supported in OGGM.')

    # For tidewater glaciers we force border to 10
    if gdir.is_tidewater and cfg.PARAMS['clip_tidewater_border']:
        border = 10

    # Corners, incl. a buffer of N pix
    ulx = np.min(xx) - border * dx
    lrx = np.max(xx) + border * dx
    uly = np.max(yy) + border * dx
    lry = np.min(yy) - border * dx
    # n pixels
    nx = np.int((lrx - ulx) / dx)
    ny = np.int((uly - lry) / dx)

    # Back to lon, lat for DEM download/preparation
    tmp_grid = salem.Grid(proj=proj_out, nxny=(nx, ny), x0y0=(ulx, uly),
                          dxdy=(dx, -dx), pixel_ref='corner')
    minlon, maxlon, minlat, maxlat = tmp_grid.extent_in_crs(crs=salem.wgs84)

    # Open DEM
    source = entity.DEM_SOURCE if hasattr(entity, 'DEM_SOURCE') else None
    if not is_dem_source_available(source,
                                   (minlon, maxlon),
                                   (minlat, maxlat)):
        raise InvalidDEMError('Source: {} not available for glacier {}'
                              .format(source, gdir.rgi_id))
    dem_list, dem_source = get_topo_file((minlon, maxlon), (minlat, maxlat),
                                         rgi_region=gdir.rgi_region,
                                         rgi_subregion=gdir.rgi_subregion,
                                         dx_meter=dx,
                                         source=source)
    log.debug('(%s) DEM source: %s', gdir.rgi_id, dem_source)
    log.debug('(%s) N DEM Files: %s', gdir.rgi_id, len(dem_list))

    # Decide how to tag nodata
    def _get_nodata(rio_ds):
        nodata = rio_ds[0].meta.get('nodata', None)
        if nodata is None:
            # badly tagged geotiffs, let's do it ourselves
            nodata = -32767 if source == 'TANDEM' else -9999
        return nodata

    # A glacier area can cover more than one tile:
    if len(dem_list) == 1:
        dem_dss = [rasterio.open(dem_list[0])]  # if one tile, just open it
        dem_data = rasterio.band(dem_dss[0], 1)
        if LooseVersion(rasterio.__version__) >= LooseVersion('1.0'):
            src_transform = dem_dss[0].transform
        else:
            src_transform = dem_dss[0].affine
        nodata = _get_nodata(dem_dss)
    else:
        dem_dss = [rasterio.open(s) for s in dem_list]  # list of rasters
        nodata = _get_nodata(dem_dss)
        dem_data, src_transform = merge_tool(dem_dss, nodata=nodata)  # merge

    # Use Grid properties to create a transform (see rasterio cookbook)
    dst_transform = rasterio.transform.from_origin(
        ulx, uly, dx, dx  # sign change (2nd dx) is done by rasterio.transform
    )

    # Set up profile for writing output
    profile = dem_dss[0].profile
    profile.update({
        'crs': proj4_str,
        'transform': dst_transform,
        'nodata': nodata,
        'width': nx,
        'height': ny
    })

    # Could be extended so that the cfg file takes all Resampling.* methods
    if cfg.PARAMS['topo_interp'] == 'bilinear':
        resampling = Resampling.bilinear
    elif cfg.PARAMS['topo_interp'] == 'cubic':
        resampling = Resampling.cubic
    else:
        raise InvalidParamsError('{} interpolation not understood'
                                 .format(cfg.PARAMS['topo_interp']))

    dem_reproj = gdir.get_filepath('dem')
    profile.pop('blockxsize', None)
    profile.pop('blockysize', None)
    profile.pop('compress', None)
    with rasterio.open(dem_reproj, 'w', **profile) as dest:
        dst_array = np.empty((ny, nx), dtype=dem_dss[0].dtypes[0])
        reproject(
            # Source parameters
            source=dem_data,
            src_crs=dem_dss[0].crs,
            src_transform=src_transform,
            src_nodata=nodata,
            # Destination parameters
            destination=dst_array,
            dst_transform=dst_transform,
            dst_crs=proj4_str,
            dst_nodata=nodata,
            # Configuration
            resampling=resampling)
        dest.write(dst_array, 1)

    for dem_ds in dem_dss:
        dem_ds.close()

    # Glacier grid
    x0y0 = (ulx+dx/2, uly-dx/2)  # To pixel center coordinates
    glacier_grid = salem.Grid(proj=proj_out, nxny=(nx, ny),  dxdy=(dx, -dx),
                              x0y0=x0y0)
    glacier_grid.to_json(gdir.get_filepath('glacier_grid'))

    # Write DEM source info
    gdir.add_to_diagnostics('dem_source', dem_source)
    source_txt = DEM_SOURCE_INFO.get(dem_source, dem_source)
    with open(gdir.get_filepath('dem_source'), 'w') as fw:
        fw.write(source_txt)
        fw.write('\n\n')
        fw.write('# Data files\n\n')
        for fname in dem_list:
            fw.write('{}\n'.format(os.path.basename(fname)))