Exemplo n.º 1
0
def test_net_taxes(r, w, b, n, bq, factor, tr, theta, t, j, shift,
                   method, e, etr_params, p, expected):
    # Test function that computes total net taxes for the household
    # method = ss
    net_taxes = tax.net_taxes(r, w, b, n, bq, factor, tr, theta, t,
                              j, shift, method, e, etr_params, p)
    assert np.allclose(net_taxes, expected)
Exemplo n.º 2
0
def euler_equation_solver(guesses, *args):
    '''
    Finds the euler errors for certain b and n, one ability type at a
    time.

    Args:
        guesses (Numpy array): initial guesses for b and n, lenth 2S
        args (tuple): tuple of arguments (r, w, bq, TR, factor, j, p)
        w (scalar): real wage rate
        bq (Numpy array): bequest amounts by age, length S
        tr (scalar): government transfer amount by age, length S
        factor (scalar): scaling factor converting model units to dollars
        p (OG-USA Specifications object): model parameters

    Returns:
        errros (Numpy array): errors from FOCs, length 2S

    '''
    (r, w, bq, tr, factor, j, p) = args

    b_guess = np.array(guesses[:p.S])
    n_guess = np.array(guesses[p.S:])
    b_s = np.array([0] + list(b_guess[:-1]))
    b_splus1 = b_guess

    theta = tax.replacement_rate_vals(n_guess, w, factor, j, p)

    error1 = household.FOC_savings(r, w, b_s, b_splus1, n_guess, bq, factor,
                                   tr, theta, p.e[:, j], p.rho,
                                   p.tau_c[-1, :, j], p.etr_params[-1, :, :],
                                   p.mtry_params[-1, :, :], None, j, p, 'SS')
    error2 = household.FOC_labor(r, w, b_s, b_splus1, n_guess, bq, factor, tr,
                                 theta, p.chi_n, p.e[:, j], p.tau_c[-1, :, j],
                                 p.etr_params[-1, :, :],
                                 p.mtrx_params[-1, :, :], None, j, p, 'SS')

    # Put in constraints for consumption and savings.
    # According to the euler equations, they can be negative.  When
    # Chi_b is large, they will be.  This prevents that from happening.
    # I'm not sure if the constraints are needed for labor.
    # But we might as well put them in for now.
    mask1 = n_guess < 0
    mask2 = n_guess > p.ltilde
    mask3 = b_guess <= 0
    mask4 = np.isnan(n_guess)
    mask5 = np.isnan(b_guess)
    error2[mask1] = 1e14
    error2[mask2] = 1e14
    error1[mask3] = 1e14
    error1[mask5] = 1e14
    error2[mask4] = 1e14
    taxes = tax.net_taxes(r, w, b_s, n_guess, bq, factor, tr, theta, None, j,
                          False, 'SS', p.e[:, j], p.etr_params[-1, :, :], p)
    cons = household.get_cons(r, w, b_s, b_splus1, n_guess, bq, taxes,
                              p.e[:, j], p.tau_c[-1, :, j], p)
    mask6 = cons < 0
    error1[mask6] = 1e14
    errors = np.hstack((error1, error2))

    return errors
Exemplo n.º 3
0
def run_TPI(p, client=None):
    '''
    Solve for transition path equilibrium of OG-USA.

    Args:
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        output (dictionary): dictionary with transition path solution
            results

    '''
    # unpack tuples of parameters
    initial_values, ss_vars, theta, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n) =\
        initial_values
    (TRbaseline, Gbaseline, D0_baseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    guesses_b = utils.get_initial_path(initial_b, ss_vars['bssmat_splus1'], p,
                                       'ratio')
    guesses_n = utils.get_initial_path(initial_n, ss_vars['nssmat'], p,
                                       'ratio')
    b_mat = guesses_b
    n_mat = guesses_n
    ind = np.arange(p.S)

    # Get path for aggregate savings and labor supply`
    L_init = np.ones((p.T + p.S, )) * ss_vars['Lss']
    B_init = np.ones((p.T + p.S, )) * ss_vars['Bss']
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_B(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0
    K_init = B_init * ss_vars['Kss'] / ss_vars['Bss']
    K = K_init
    K_d = K_init * ss_vars['K_d_ss'] / ss_vars['Kss']
    K_f = K_init * ss_vars['K_f_ss'] / ss_vars['Kss']
    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = ss_vars['Yss']
    r = np.zeros_like(Y)
    r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
    r[p.T:] = ss_vars['rss']
    # For case where economy is small open econ
    r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1]
    # Compute other interest rates
    r_gov = fiscal.get_r_gov(r, p)
    r_hh = aggr.get_r_hh(r, r_gov, K, ss_vars['Dss'])

    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = ss_vars['wss']

    # initial guesses at fiscal vars
    if p.budget_balance:
        if np.abs(ss_vars['TR_ss']) < 1e-13:
            TR_ss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the
            # approximation error, which affects the pct changes below
        else:
            TR_ss2 = ss_vars['TR_ss']
        TR = np.ones(p.T + p.S) * TR_ss2
        total_tax_revenue = TR - ss_vars['agg_pension_outlays']
        G = np.zeros(p.T + p.S)
        D = np.zeros(p.T + p.S)
        D_d = np.zeros(p.T + p.S)
        D_f = np.zeros(p.T + p.S)
    else:
        if p.baseline_spending:
            TR = TRbaseline
            G = Gbaseline
            G[p.T:] = ss_vars['Gss']
        else:
            TR = p.alpha_T * Y
            G = np.ones(p.T + p.S) * ss_vars['Gss']
        D = np.ones(p.T + p.S) * ss_vars['Dss']
        D_d = D * ss_vars['D_d_ss'] / ss_vars['Dss']
        D_f = D * ss_vars['D_f_ss'] / ss_vars['Dss']
    total_tax_revenue = np.ones(p.T + p.S) * ss_vars['total_tax_revenue']

    # Initialize bequests
    BQ0 = aggr.get_BQ(r_hh[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], ss_vars['BQss'][j], p.T)) +
                        [ss_vars['BQss'][j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, ss_vars['BQss'], p.T)) +
              [ss_vars['BQss']] * p.S)
        BQ = np.array(BQ)

    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if not p.budget_balance:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')

        r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])

        outer_loop_vars = (r, w, r_hh, BQ, TR, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        if client:
            futures = client.compute(lazy_values, num_workers=p.num_workers)
            results = client.gather(futures)
        else:
            results = results = compute(*lazy_values,
                                        scheduler=dask.multiprocessing.get,
                                        num_workers=p.num_workers)

        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        trmat = household.get_tr(TR, None, p, 'TPI')
        tax_mat = tax.net_taxes(r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                                bqmat[:p.T, :, :], factor, trmat[:p.T, :, :],
                                theta, 0, None, False, 'TPI', p.e,
                                etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh)
        wpath = utils.to_timepath_shape(w)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)
        y_before_tax_mat = household.get_y(r_hh_path[:p.T, :, :],
                                           wpath[:p.T, :, :],
                                           bmat_s[:p.T, :, :],
                                           n_mat[:p.T, :, :], p)

        (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays,
         bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue,
         business_tax_revenue, payroll_tax_revenue,
         iit_revenue) = aggr.revenue(r_hh[:p.T], w[:p.T], bmat_s,
                                     n_mat[:p.T, :, :], bqmat[:p.T, :, :],
                                     c_mat[:p.T, :, :], Y[:p.T], L[:p.T],
                                     K[:p.T], factor, theta, etr_params_4D, p,
                                     'TPI')
        total_tax_revenue[:p.T] = total_tax_rev
        dg_fixed_values = (Y, total_tax_revenue, agg_pension_outlays, TR,
                           Gbaseline, D0_baseline)
        (Dnew, G[:p.T], D_d[:p.T], D_f[:p.T], new_borrowing,
         debt_service, new_borrowing_f) =\
            fiscal.D_G_path(r_gov, dg_fixed_values, p)
        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_B(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        K_demand_open = firm.get_K(L[:p.T], p.world_int_rate[:p.T], p, 'TPI')
        K[:p.T], K_d[:p.T], K_f[:p.T] = aggr.get_K_splits(
            B[:p.T], K_demand_open, D_d[:p.T], p.zeta_K[:p.T])
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        rnew = r.copy()
        rnew[:p.T] = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        # For case where economy is small open econ
        r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1]
        r_gov_new = fiscal.get_r_gov(rnew, p)
        r_hh_new = aggr.get_r_hh(rnew[:p.T], r_gov_new[:p.T], K[:p.T],
                                 Dnew[:p.T])
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays,
         bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue,
         business_tax_revenue, payroll_tax_revenue,
         iit_revenue) = aggr.revenue(r_hh_new[:p.T], wnew[:p.T], bmat_s,
                                     n_mat[:p.T, :, :], bqmat_new[:p.T, :, :],
                                     c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
                                     K[:p.T], factor, theta, etr_params_4D, p,
                                     'TPI')
        total_tax_revenue[:p.T] = total_tax_rev
        TR_new = fiscal.get_TR(Ynew[:p.T], TR[:p.T], G[:p.T],
                               total_tax_revenue[:p.T],
                               agg_pension_outlays[:p.T], p, 'TPI')

        # update vars for next iteration
        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D[:p.T] = Dnew[:p.T]
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            TR[:p.T] = utils.convex_combo(TR_new[:p.T], TR[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)
        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('TR diff: ', (TR_new[:p.T] - TR[:p.T]).max(),
              (TR_new[:p.T] - TR[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if TR.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(TR_new[:p.T], TR[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(np.abs(TR[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')
    # Note that implicity in this computation is that immigrants'
    # wealth is all in the form of private capital
    I_d = aggr.get_I(bmat_splus1[:p.T], K_d[1:p.T + 1], K_d[:p.T], p, 'TPI')
    I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
    # solve resource constraint
    # foreign debt service costs
    debt_service_f = fiscal.get_debt_service_f(r_hh, D_f)
    RC_error = aggr.resource_constraint(Y[:p.T - 1], C[:p.T - 1], G[:p.T - 1],
                                        I_d[:p.T - 1], K_f[:p.T - 1],
                                        new_borrowing_f[:p.T - 1],
                                        debt_service_f[:p.T - 1],
                                        r_hh[:p.T - 1], p)
    # Compute total investment (not just domestic)
    I_total = aggr.get_I(None, K[1:p.T + 1], K[:p.T], p, 'total_tpi')

    # Compute resource constraint error
    rce_max = np.amax(np.abs(RC_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'K_f': K_f,
        'K_d': K_d,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'I_d': I_d,
        'BQ': BQ,
        'total_tax_revenue': total_tax_revenue,
        'business_tax_revenue': business_tax_revenue,
        'iit_payroll_tax_revenue': iit_payroll_tax_revenue,
        'iit_revenue': iit_revenue,
        'payroll_tax_revenue': payroll_tax_revenue,
        'TR': TR,
        'agg_pension_outlays': agg_pension_outlays,
        'bequest_tax_revenue': bequest_tax_revenue,
        'wealth_tax_revenue': wealth_tax_revenue,
        'cons_tax_revenue': cons_tax_revenue,
        'G': G,
        'D': D,
        'D_f': D_f,
        'D_d': D_d,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'tr_path': trmat,
        'y_before_tax_mat': y_before_tax_mat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': RC_error,
        'new_borrowing_f': new_borrowing_f,
        'debt_service_f': debt_service_f,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    with open(tpi_vars, "wb") as f:
        pickle.dump(output, f)

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(RC_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(RC_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Exemplo n.º 4
0
Arquivo: SS.py Projeto: prrathi/OG-USA
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of the SS.  That is, given
    the guesses of the outer loop variables (r, w, TR, factor) this
    function solves the households' problems in the SS.

    Args:
        outer_loop_vars (tuple): tuple of outer loop variables,
            (bssmat, nssmat, r, BQ, TR, factor) or
            (bssmat, nssmat, r, BQ, Y, TR, factor)
        bssmat (Numpy array): initial guess at savings, size = SxJ
        nssmat (Numpy array): initial guess at labor supply, size = SxJ
        BQ (array_like): aggregate bequest amount(s)
        Y (scalar): real GDP
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        w (scalar): real wage rate
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        (tuple): results from household solution:

            * euler_errors (Numpy array): errors terms from FOCs,
                size = 2SxJ
            * bssmat (Numpy array): savings, size = SxJ
            * nssmat (Numpy array): labor supply, size = SxJ
            * new_r (scalar): real interest rate on firm capital
            * new_r_gov (scalar): real interest rate on government debt
            * new_r_hh (scalar): real interest rate on household
                portfolio
            * new_w (scalar): real wage rate
            * new_TR (scalar): lump sum transfer amount
            * new_Y (scalar): real GDP
            * new_factor (scalar): scaling factor converting model
                units to dollars
            * new_BQ (array_like): aggregate bequest amount(s)
            * average_income_model (scalar): average income in model
                units

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, TR, factor = outer_loop_vars
        r_hh = r
        Y = 1.0  # placeholder
        K = 1.0  # placeholder
    else:
        bssmat, nssmat, r, BQ, Y, TR, factor = outer_loop_vars
        K = firm.get_K_from_Y(Y, r, p, 'SS')
    # initialize array for euler errors
    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    D, D_d, D_f, new_borrowing, debt_service, new_borrowing_f =\
        fiscal.get_D_ss(r_gov, Y, p)
    r_hh = aggr.get_r_hh(r, r_gov, K, D)
    bq = household.get_bq(BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], tr[:, j], factor, j, p)
        lazy_values.append(delayed(opt.fsolve)(euler_equation_solver,
                                               guesses * .9,
                                               args=euler_params,
                                               xtol=MINIMIZER_TOL,
                                               full_output=True))
    if client:
        futures = client.compute(lazy_values, num_workers=p.num_workers)
        results = client.gather(futures)
    else:
        results = results = compute(
            *lazy_values, scheduler=dask.multiprocessing.get,
            num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    B = aggr.get_B(bssmat, p, 'SS', False)
    K_demand_open = firm.get_K(L, p.world_int_rate[-1], p, 'SS')
    K, K_d, K_f = aggr.get_K_splits(B, K_demand_open, D_d, p.zeta_K[-1])
    Y = firm.get_Y(K, L, p, 'SS')
    if p.zeta_K[-1] == 1.0:
        new_r = p.world_int_rate[-1]
    else:
        new_r = firm.get_r(Y, K, p, 'SS')
    new_w = firm.get_w_from_r(new_r, p, 'SS')

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) +
                   list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)
    etr_params_3D = np.tile(
        np.reshape(p.etr_params[-1, :, :],
                   (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    taxss = tax.net_taxes(
        new_r_hh, new_w, b_s, nssmat, new_bq, factor, tr, theta, None,
        None, False, 'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(
        new_r_hh, new_w, b_s, bssmat, nssmat, new_bq, taxss, p.e,
        p.tau_c[-1, :, :], p)
    total_tax_revenue, _, agg_pension_outlays, _, _, _, _, _, _ =\
        aggr.revenue(new_r_hh, new_w, b_s, nssmat, new_bq, cssmat, Y, L,
                     K, factor, theta, etr_params_3D, p, 'SS')
    G = fiscal.get_G_ss(Y, total_tax_revenue, agg_pension_outlays, TR,
                        new_borrowing, debt_service, p)
    new_TR = fiscal.get_TR(Y, TR, G, total_tax_revenue,
                           agg_pension_outlays, p, 'SS')

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_TR, Y, new_factor, new_BQ, average_income_model
Exemplo n.º 5
0
Arquivo: SS.py Projeto: prrathi/OG-USA
def SS_solver(bmat, nmat, r, BQ, TR, factor, Y, p, client,
              fsolve_flag=False):
    '''
    Solves for the steady state distribution of capital, labor, as well
    as w, r, TR and the scaling factor, using functional iteration.

    Args:
        bmat (Numpy array): initial guess at savings, size = SxJ
        nmat (Numpy array): initial guess at labor supply, size = SxJ
        r (scalar): real interest rate
        BQ (array_like): aggregate bequest amount(s)
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        Y (scalar): real GDP
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        output (dictionary): dictionary with steady state solution
            results

    '''
    dist = 10
    iteration = 0
    dist_vec = np.zeros(p.maxiter)
    maxiter_ss = p.maxiter
    nu_ss = p.nu
    if fsolve_flag:  # case where already solved via SS_fsolve
        maxiter_ss = 1
    while (dist > p.mindist_SS) and (iteration < maxiter_ss):
        # Solve for the steady state levels of b and n, given w, r,
        # Y and factor
        if p.budget_balance:
            outer_loop_vars = (bmat, nmat, r, BQ, TR, factor)
        else:
            outer_loop_vars = (bmat, nmat, r, BQ, Y, TR, factor)

        (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
         new_w, new_TR, new_Y, new_factor, new_BQ,
         average_income_model) =\
            inner_loop(outer_loop_vars, p, client)

        r = utils.convex_combo(new_r, r, nu_ss)
        factor = utils.convex_combo(new_factor, factor, nu_ss)
        BQ = utils.convex_combo(new_BQ, BQ, nu_ss)
        if p.baseline_spending:
            Y = utils.convex_combo(new_Y, Y, nu_ss)
            if Y != 0:
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [utils.pct_diff_func(new_Y, Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
            else:
                # If Y is zero (if there is no output), a percent difference
                # will throw NaN's, so we use an absolute difference
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [abs(new_Y - Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
        else:
            TR = utils.convex_combo(new_TR, TR, nu_ss)
            dist = np.array([utils.pct_diff_func(new_r, r)] +
                            list(utils.pct_diff_func(new_BQ, BQ)) +
                            [utils.pct_diff_func(new_TR, TR)] +
                            [utils.pct_diff_func(new_factor, factor)]).max()
        dist_vec[iteration] = dist
        # Similar to TPI: if the distance between iterations increases, then
        # decrease the value of nu to prevent cycling
        if iteration > 10:
            if dist_vec[iteration] - dist_vec[iteration - 1] > 0:
                nu_ss /= 2.0
                print('New value of nu:', nu_ss)
        iteration += 1
        print('Iteration: %02d' % iteration, ' Distance: ', dist)

    # Generate the SS values of variables, including euler errors
    bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0)
    bssmat_splus1 = bmat
    nssmat = nmat

    rss = r
    r_gov_ss = fiscal.get_r_gov(rss, p)
    TR_ss = TR
    Lss = aggr.get_L(nssmat, p, 'SS')
    Bss = aggr.get_B(bssmat_splus1, p, 'SS', False)
    (Dss, D_d_ss, D_f_ss, new_borrowing, debt_service,
     new_borrowing_f) = fiscal.get_D_ss(r_gov_ss, Y, p)
    K_demand_open_ss = firm.get_K(Lss, p.world_int_rate[-1], p, 'SS')
    Kss, K_d_ss, K_f_ss = aggr.get_K_splits(
        Bss, K_demand_open_ss, D_d_ss, p.zeta_K[-1])
    Yss = firm.get_Y(Kss, Lss, p, 'SS')
    r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, Dss)
    # Note that implicity in this computation is that immigrants'
    # wealth is all in the form of private capital
    I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
    Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS')
    wss = new_w
    BQss = new_BQ
    factor_ss = factor
    bqssmat = household.get_bq(BQss, None, p, 'SS')
    trssmat = household.get_tr(TR_ss, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p)

    # Compute effective and marginal tax rates for all agents
    etr_params_3D = np.tile(np.reshape(
        p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    mtrx_params_3D = np.tile(np.reshape(
        p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])),
                             (1, p.J, 1))
    mtry_params_3D = np.tile(np.reshape(
        p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])),
                             (1, p.J, 1))
    mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True,
                             p.e, etr_params_3D, mtry_params_3D, p)
    mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False,
                             p.e, etr_params_3D, mtrx_params_3D, p)
    etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e,
                            etr_params_3D, p)

    taxss = tax.net_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat,
                          factor_ss, trssmat, theta, None, None, False,
                          'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1,
                                nssmat, bqssmat, taxss,
                                p.e, p.tau_c[-1, :, :], p)
    yss_before_tax_mat = household.get_y(
        r_hh_ss, wss, bssmat_s, nssmat, p)
    Css = aggr.get_C(cssmat, p, 'SS')

    (total_tax_revenue, iit_payroll_tax_revenue, agg_pension_outlays,
     bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue,
     business_tax_revenue, payroll_tax_revenue, iit_revenue
     ) = aggr.revenue(
         r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat, Yss, Lss, Kss,
         factor, theta, etr_params_3D, p, 'SS')
    Gss = fiscal.get_G_ss(
        Yss, total_tax_revenue, agg_pension_outlays, TR_ss,
        new_borrowing, debt_service, p)

    # Compute total investment (not just domestic)
    Iss_total = aggr.get_I(None, Kss, Kss, p, 'total_ss')

    # solve resource constraint
    # net foreign borrowing
    print('Foreign debt holdings = ', D_f_ss)
    print('Foreign capital holdings = ', K_f_ss)
    debt_service_f = fiscal.get_debt_service_f(r_hh_ss, D_f_ss)
    RC = aggr.resource_constraint(
        Yss, Css, Gss, I_d_ss, K_f_ss, new_borrowing_f, debt_service_f,
        r_hh_ss, p)
    print('resource constraint: ', RC)

    if Gss < 0:
        print('Steady state government spending is negative to satisfy'
              + ' budget')

    if ENFORCE_SOLUTION_CHECKS and (np.absolute(RC) >
                                    p.mindist_SS):
        print('Resource Constraint Difference:', RC)
        err = 'Steady state aggregate resource constraint not satisfied'
        raise RuntimeError(err)

    # check constraints
    household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde)

    euler_savings = euler_errors[:p.S, :]
    euler_labor_leisure = euler_errors[p.S:, :]
    print('Maximum error in labor FOC = ',
          np.absolute(euler_labor_leisure).max())
    print('Maximum error in savings FOC = ',
          np.absolute(euler_savings).max())

    # Return dictionary of SS results
    output = {'Kss': Kss, 'K_f_ss': K_f_ss, 'K_d_ss': K_d_ss,
              'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss,
              'Iss_total': Iss_total, 'I_d_ss': I_d_ss, 'nssmat': nssmat,
              'Yss': Yss, 'Dss': Dss, 'D_f_ss': D_f_ss,
              'D_d_ss': D_d_ss, 'wss': wss, 'rss': rss,
              'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta,
              'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s,
              'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1,
              'yss_before_tax_mat': yss_before_tax_mat,
              'bqssmat': bqssmat, 'TR_ss': TR_ss, 'trssmat': trssmat,
              'Gss': Gss, 'total_tax_revenue': total_tax_revenue,
              'business_tax_revenue': business_tax_revenue,
              'iit_payroll_tax_revenue': iit_payroll_tax_revenue,
              'iit_revenue': iit_revenue,
              'payroll_tax_revenue': payroll_tax_revenue,
              'agg_pension_outlays': agg_pension_outlays,
              'bequest_tax_revenue': bequest_tax_revenue,
              'wealth_tax_revenue': wealth_tax_revenue,
              'cons_tax_revenue': cons_tax_revenue,
              'euler_savings': euler_savings,
              'debt_service_f': debt_service_f,
              'new_borrowing_f': new_borrowing_f,
              'debt_service': debt_service,
              'new_borrowing': new_borrowing,
              'euler_labor_leisure': euler_labor_leisure,
              'resource_constraint_error': RC,
              'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss}

    return output
Exemplo n.º 6
0
def FOC_labor(r, w, b, b_splus1, n, bq, factor, tr, theta, chi_n, e, tau_c,
              etr_params, mtrx_params, t, j, p, method):
    r'''
    Computes errors for the FOC for labor supply in the steady
    state.  This function is usually looped through over J, so it does
    one lifetime income group at a time.

    .. math::
        w_t e_{j,s}\bigl(1 - \tau^{mtrx}_{s,t}\bigr)
        (c_{j,s,t})^{-\sigma} = \chi^n_{s}
        \biggl(\frac{b}{\tilde{l}}\biggr)\biggl(\frac{n_{j,s,t}}
        {\tilde{l}}\biggr)^{\upsilon-1}\Biggl[1 -
        \biggl(\frac{n_{j,s,t}}{\tilde{l}}\biggr)^\upsilon\Biggr]
        ^{\frac{1-\upsilon}{\upsilon}}

    Args:
        r (array_like): the real interest rate
        w (array_like): the real wage rate
        b (Numpy array): household savings
        b_splus1 (Numpy array): household savings one period ahead
        n (Numpy array): household labor supply
        bq (Numpy array): household bequests received
        factor (scalar): scaling factor converting model units to dollars
        tr (Numpy array): government transfers to household
        theta (Numpy array): social security replacement rate for each
            lifetime income group
        chi_n (Numpy array): utility weight on the disutility of labor
            supply
        e (Numpy array): effective labor units
        tau_c (array_like): consumption tax rates
        etr_params (Numpy array): parameters of the effective tax rate
            functions
        mtrx_params (Numpy array): parameters of the marginal tax rate
            on labor income functions
        t (int): model period
        j (int): index of ability type
        p (OG-USA Specifications object): model parameters
        method (str): adjusts calculation dimensions based on 'SS' or
            'TPI'

    Returns:
        FOC_error (Numpy array): error from FOC for labor supply

    '''
    if method == 'SS':
        tau_payroll = p.tau_payroll[-1]
    elif method == 'TPI_scalar':  # for 1st donut ring only
        tau_payroll = p.tau_payroll[0]
    else:
        length = r.shape[0]
        tau_payroll = p.tau_payroll[t:t + length]
    if method == 'TPI':
        if b.ndim == 2:
            r = r.reshape(r.shape[0], 1)
            w = w.reshape(w.shape[0], 1)
            tau_payroll = tau_payroll.reshape(tau_payroll.shape[0], 1)

    taxes = tax.net_taxes(r, w, b, n, bq, factor, tr, theta, t, j, False,
                          method, e, etr_params, p)
    cons = get_cons(r, w, b, b_splus1, n, bq, taxes, e, tau_c, p)
    deriv = (1 - tau_payroll - tax.MTR_income(r, w, b, n, factor, False, e,
                                              etr_params, mtrx_params, p))
    FOC_error = (marg_ut_cons(cons, p.sigma) * (1 /
                                                (1 + tau_c)) * w * deriv * e -
                 marg_ut_labor(n, chi_n, p))

    return FOC_error
Exemplo n.º 7
0
def FOC_savings(r, w, b, b_splus1, n, bq, factor, tr, theta, e, rho, tau_c,
                etr_params, mtry_params, t, j, p, method):
    r'''
    Computes Euler errors for the FOC for savings in the steady state.
    This function is usually looped through over J, so it does one
    lifetime income group at a time.

    .. math::
        c_{j,s,t}^{-\sigma} = e^{-\sigma g_y}
        \biggl[\chi^b_j\rho_s(b_{j,s+1,t+1})^{-\sigma} +
        \beta_j\bigl(1 - \rho_s\bigr)\Bigl(1 + r_{t+1}
        \bigl[1 - \tau^{mtry}_{s+1,t+1}\bigr]\Bigr)
        (c_{j,s+1,t+1})^{-\sigma}\biggr]

    Args:
        r (array_like): the real interest rate
        w (array_like): the real wage rate
        b (Numpy array): household savings
        b_splus1 (Numpy array): household savings one period ahead
        b_splus2 (Numpy array): household savings two periods ahead
        n (Numpy array): household labor supply
        bq (Numpy array): household bequests received
        factor (scalar): scaling factor converting model units to dollars
        tr (Numpy array): government transfers to household
        theta (Numpy array): social security replacement rate for each
            lifetime income group
        e (Numpy array): effective labor units
        rho (Numpy array): mortality rates
        tau_c (array_like): consumption tax rates
        etr_params (Numpy array): parameters of the effective tax rate
            functions
        mtry_params (Numpy array): parameters of the marginal tax rate
            on capital income functions
        t (int): model period
        j (int): index of ability type
        p (OG-USA Specifications object): model parameters
        method (str): adjusts calculation dimensions based on 'SS' or
            'TPI'

    Returns:
        euler (Numpy array): Euler error from FOC for savings

    '''
    if j is not None:
        chi_b = p.chi_b[j]
        beta = p.beta[j]
    else:
        chi_b = p.chi_b
        beta = p.beta
    if method == 'SS':
        h_wealth = p.h_wealth[-1]
        m_wealth = p.m_wealth[-1]
        p_wealth = p.p_wealth[-1]
    else:
        h_wealth = p.h_wealth[t]
        m_wealth = p.m_wealth[t]
        p_wealth = p.p_wealth[t]

    taxes = tax.net_taxes(r, w, b, n, bq, factor, tr, theta, t, j, False,
                          method, e, etr_params, p)
    cons = get_cons(r, w, b, b_splus1, n, bq, taxes, e, tau_c, p)
    deriv = ((1 + r) - (r * tax.MTR_income(r, w, b, n, factor, True, e,
                                           etr_params, mtry_params, p)) -
             tax.MTR_wealth(b, h_wealth, m_wealth, p_wealth))
    savings_ut = (rho * np.exp(-p.sigma * p.g_y) * chi_b *
                  b_splus1**(-p.sigma))
    euler_error = np.zeros_like(n)
    if n.shape[0] > 1:
        euler_error[:-1] = (
            marg_ut_cons(cons[:-1], p.sigma) * (1 / (1 + tau_c[:-1])) - beta *
            (1 - rho[:-1]) * deriv[1:] * marg_ut_cons(cons[1:], p.sigma) *
            (1 / (1 + tau_c[1:])) * np.exp(-p.sigma * p.g_y) - savings_ut[:-1])
        euler_error[-1] = (marg_ut_cons(cons[-1], p.sigma) *
                           (1 / (1 + tau_c[-1])) - savings_ut[-1])
    else:
        euler_error[-1] = (marg_ut_cons(cons[-1], p.sigma) *
                           (1 / (1 + tau_c[-1])) - savings_ut[-1])

    return euler_error