def wrf_file_data(file, quiet=False): ''' WRF data for ROMS ''' out = {} # time: if not quiet: print(' --> get time') time = read_time(file) out['time'] = time # lon,lat: if not quiet: print(' --> reading x,y') x = netcdf.use(file, 'XLONG', Time=0) #**{'0': 0}) y = netcdf.use(file, 'XLAT', Time=0) #**{'0': 0}) # tair [K-->C] if not quiet: print(' --> T air') tair = netcdf.use(file, 'T2') - 273.15 out['tair'] = Data(x, y, tair, 'Celsius') # R humidity [kg/kg --> 0--1] if not quiet: print(' --> R humidity from QV at 2m') wv = netcdf.use(file, 'Q2') # water vapor mixing ratio at 2m rhum = wv / air_sea.qsat(tair) rhum[rhum > 1] = 1 out['rhum'] = Data(x, y, rhum, '0--1') # surface pressure [Pa] if not quiet: print(' --> Surface pressure') pres = netcdf.use(file, 'PSFC') out['pres'] = Data(x, y, pres, 'Pa') # P rate [mm --> cm day-1] if not quiet: print(' --> P rate (rainc+rainnc)') rainc = netcdf.use(file, 'RAINC') rainnc = netcdf.use(file, 'RAINNC') prate = rainc + rainnc if not quiet: print(' accum2avg...') prate = accum2avg(prate, dt=time[1] - time[0]) # mm s-1 conv = 0.1 * 86400 # from mm s-1 --> cm day-1 prate = prate * conv # cm day-1 prate[prate < 0] = 0 # interpolation errors may result in negative rain! out['prate'] = Data(x, y, prate, 'cm day-1') # LW, SW, latent, sensible signs: # positive (downward flux, heating) or negative (upward flux, cooling) #https://www.myroms.org/forum/viewtopic.php?f=1&t=2621 # Net shortwave flux [W m-2] if not quiet: print(' --> Net shortwave flux') sw_down = netcdf.use(file, 'SWDOWN') albedo = netcdf.use(file, 'ALBEDO') sw_net = sw_down * (1 - albedo) out['radsw'] = Data(x, y, sw_net, 'W m-2', info='positive downward') # Net longwave flux [W m-2] if not quiet: print(' --> Net longwave flux') lw_down = netcdf.use(file, 'GLW') # positive # sst needed: if not quiet: print(' --> SST for LW up') sst = netcdf.use(file, 'SST') # K lw_net = air_sea.lwhf(sst, lw_down) # positive down # here vars have roms-agrif signs --> radlw is positive upward! #conversion to ROMS is done in surface.py out['radlw'] = Data(x, y, -lw_net, 'W m-2', info='positive upward') out['dlwrf'] = Data(x, y, -lw_down, 'W m-2', info='positive upward') # U and V wind speed 10m if not quiet: print(' --> U and V wind') uwnd = netcdf.use(file, 'U10') vwnd = netcdf.use(file, 'V10') if not quiet: print(' --> calc wind speed and stress') speed = np.sqrt(uwnd**2 + vwnd**2) taux, tauy = air_sea.wind_stress(uwnd, vwnd) out['wspd'] = Data(x, y, speed, 'm s-1') out['uwnd'] = Data(x, y, uwnd, 'm s-1') out['vwnd'] = Data(x, y, vwnd, 'm s-1') out['sustr'] = Data(x, y, taux, 'Pa') out['svstr'] = Data(x, y, tauy, 'Pa') # Cloud cover [0--1]: if not quiet: print(' --> Cloud cover for LONGWAVE. Use LONGWAVE_OUT instead...') if 0: pass # next code is wrong! If cloud cover is really needed, it needs to be calculated using wrfpost. # See http://www2.mmm.ucar.edu/wrf/users/docs/user_guide/users_guide_chap8.html#_ARWpost_1 # # if 'CLDFRA' in netcdf.varnames(file): # clouds=netcdf.use(file,'CLDFRA').sum(-3) # clouds=np.where(clouds>1,1,clouds) else: if not quiet: print('CLDFRA not found!! Using SST and air_sea.cloud_fraction') sst = netcdf.use(file, 'SST') - 273.15 clouds = air_sea.cloud_fraction(lw_net, sst, tair, rhum, Wtype='net') clouds[clouds < 0] = 0 clouds[clouds > 1] = 1 out['cloud'] = Data(x, y, clouds, 'fraction (0--1)') return out
def cordex_file_data(f,lims=False,quiet=False): ''' CORDEX data for ROMS No accumulated variables are considered ''' out={} # time, x, y: if not quiet: print(' reading time,x,y') out['time']=netcdf.nctime(f,'time') x=netcdf.use(f,'lon') y=netcdf.use(f,'lat') x[x>180]=x[x>180]-360 if x.ndim==1 and y.ndim==1: x,y=np.meshgrid(x,y) if np.ma.isMA(x): x=x.data if np.ma.isMA(y): y=y.data if lims: from okean import calc xlim,ylim=lims i1,i2,j1,j2=calc.ij_limits(x,y,xlim,ylim,margin=3) else: i0=0 j0=0 j1,i1=x.shape I=range(i1,i2) J=range(j1,j2) x=x[j1:j2,i1:i2] y=y[j1:j2,i1:i2] # tair [K-->C] if not quiet: print(' --> T air') vname='tair' tair=netcdf.use(f,vname,lon=I,lat=J)-273.15 out['tair']=Data(x,y,tair,'Celsius') # R humidity [0--1] if not quiet: print(' --> R humidity (from specific humidity)') vname='humid' q=netcdf.use(f,vname,lon=I,lat=J) # specific humidity rhum=q/air_sea.qsat(tair) rhum[rhum>1]=1 out['rhum']=Data(x,y,rhum,'0--1') # surface pressure [Pa] if not quiet: print(' --> Surface pressure') vname='press' pres=netcdf.use(f,vname,lon=I,lat=J) out['pres']=Data(x,y,pres,'Pa') # P rate [kg m-2 s-1 -> cm/d] if not quiet: print(' --> P rate') vname='rain' prate=netcdf.use(f,vname,lon=I,lat=J) prate=prate*86400*100/1000. prate[prate<0]=0 out['prate']=Data(x,y,prate,'cm/d') # Net shortwave flux [W m-2] if not quiet: print(' --> Net shortwave flux') if not quiet: print(' SW down') sw_down=netcdf.use(f,'sw_down',lon=I,lat=J) if not quiet: print(' SW up') sw_up=netcdf.use(f,'sw_up',lon=I,lat=J) sw_net=sw_down-sw_up out['radsw']=Data(x,y,sw_net,'W m-2',info='positive downward') # Net longwave flux [W m-2] if not quiet: print(' --> Net longwave flux') if not quiet: print(' LW down') lw_down=netcdf.use(f,'lw_down',lon=I,lat=J) if not quiet: print(' LW up') lw_up=netcdf.use(f,'lw_up',lon=I,lat=J) lw_net=lw_down-lw_up out['radlw']=Data(x,y,-lw_net,'W m-2',info='positive upward') # downward lw: out['dlwrf']=Data(x,y,-lw_down,'W m-2',info='negative... downward') # signs convention is better explained in wrf.py # U and V wind speed 10m if not quiet: print(' --> U and V wind') uwnd=netcdf.use(f,'u',lon=I,lat=J) vwnd=netcdf.use(f,'v',lon=I,lat=J) if not quiet: print(' --> calc wind speed and stress') speed = np.sqrt(uwnd**2+vwnd**2) taux,tauy=air_sea.wind_stress(uwnd,vwnd) out['wspd']=Data(x,y,speed,'m s-1') out['uwnd']=Data(x,y,uwnd,'m s-1') out['vwnd']=Data(x,y,vwnd,'m s-1') out['sustr']=Data(x,y,taux,'Pa') out['svstr']=Data(x,y,tauy,'Pa') # Cloud cover [0--100 --> 0--1]: if not quiet: print(' --> Cloud cover') if 'clouds' in netcdf.varnames(f): clouds=netcdf.use(f,'clouds',lon=I,lat=J)/100. out['cloud']=Data(x,y,clouds,'fraction (0--1)') else: print('==> clouds not present!') return fill_extremes(out,quiet)
def gfs_file_data(fname, xlim=False, ylim=False, quiet=False): ''' Returns bulk data from one GFS file ''' # the way to ectract differes if using pygrib or grib2 ! so check first: try: import pygrib isPygrib = True except: isPygrib = False out = {} # T air 2m [K->C] if not quiet: print(' --> T air') if isPygrib: #x,y,tair=gribu.getvar(fname,'temperature',tags=(':2 metre',),lons=xlim,lats=ylim) #newest gribu: x, y, tair = gribu.getvar(fname, '2t', lons=xlim, lats=ylim) else: x, y, tair = gribu.getvar(fname, 'temperature', tags=(':2 m', 'TMP'), lons=xlim, lats=ylim) tair = tair - 273.15 out['tair'] = Data(x, y, tair, 'C') # R humidity 2m [%-->0--1] if not quiet: print(' --> R humidity') if 0: # kg/kg x, y, rhum = gribu.getvar(fname, 'humidity', tags=(':2 m', 'kg'), lons=xlim, lats=ylim) rhum = rhum / air_sea.qsat(tair) rhum = np.where(rhum > 1.0, 1.0, rhum) else: # % #x,y,rhum=gribu.getvar(fname,'humidity',tags=('2 m','%'),lons=xlim,lats=ylim) x, y, rhum = gribu.getvar(fname, '2r', lons=xlim, lats=ylim) rhum = rhum / 100. out['rhum'] = Data(x, y, rhum, '0--1') # surface pressure [Pa] if not quiet: print(' --> Surface pressure') #x,y,pres=gribu.getvar(fname,'pressure',tags='surface',lons=xlim,lats=ylim) x, y, pres = gribu.getvar(fname, 'sp', lons=xlim, lats=ylim) out['pres'] = Data(x, y, pres, 'Pa') # P rate [kg m-2 s-1 -> cm/d] if not quiet: print(' --> P rate') #x,y,prate=gribu.getvar(fname,'precipitation rate',lons=xlim,lats=ylim) x, y, prate = gribu.getvar(fname, 'prate', lons=xlim, lats=ylim) # Conversion kg m^-2 s^-1 to cm/day prate = prate * 86400 * 100 / 1000. prate = np.where(abs(prate) < 1.e-4, 0, prate) out['prate'] = Data(x, y, prate, 'cm/d') # Net shortwave flux [W/m^2] if not quiet: print(' --> Net shortwave flux') if not quiet: print(' SW down') if isPygrib: #x,y,sw_down = gribu.getvar(fname,'',tags='Downward short-wave radiation flux',lons=xlim,lats=ylim) x, y, sw_down = gribu.getvar(fname, 'dswrf', lons=xlim, lats=ylim) else: x, y, sw_down = gribu.getvar(fname, 'downward short-wave', lons=xlim, lats=ylim) if not quiet: print(' SW up') #x,y,sw_up = gribu.getvar(fname,'',tags='Upward short-wave radiation flux',lons=xlim,lats=ylim) x, y, sw_up = gribu.getvar(fname, 'uswrf', lons=xlim, lats=ylim) if sw_up is False: if not quiet: print(' SW up not found: using albedo') #x,y,albedo = gribu.getvar(fname,'albedo',lons=xlim,lats=ylim) x, y, albedo = gribu.getvar(fname, 'al', lons=xlim, lats=ylim) albedo = albedo / 100. sw_net = sw_down * (1 - albedo) else: sw_net = sw_down - sw_up sw_net = np.where(sw_net < 1.e-10, 0, sw_net) out['radsw'] = Data(x, y, sw_net, 'W m-2', info='positive downward') # Net longwave flux [W/m^2] if not quiet: print(' --> Net longwave flux') if not quiet: print(' LW down') if isPygrib: #x,y,lw_down = gribu.getvar(fname,'',tags='Downward long-wave radiation flux',lons=xlim,lats=ylim) x, y, lw_down = gribu.getvar(fname, 'dlwrf', lons=xlim, lats=ylim) else: x, y, lw_down = gribu.getvar(fname, 'downward long-wave', lons=xlim, lats=ylim) if not quiet: print(' LW up') #x,y,lw_up = gribu.getvar(fname,'',tags='Upward long-wave radiation flux',lons=xlim,lats=ylim) x, y, lw_up = gribu.getvar(fname, 'ulwrf', lons=xlim, lats=ylim) if lw_up is False: if not quiet: print(' LW up not found: using sst') if isPygrib: #x,y,sst=gribu.getvar(fname,'temperature',tags='surface',lons=xlim,lats=ylim) # K x, y, sst = gribu.getvar(fname, 't', lons=xlim, lats=ylim) # K else: x, y, sst = gribu.getvar(fname, 'temperature', tags='water surface', lons=xlim, lats=ylim) # K lw_net = air_sea.lwhf(sst, lw_down) lw_up = lw_down - lw_net else: lw_net = lw_down - lw_up # ROMS convention: positive upward # GFS convention: positive downward --> * (-1) lw_net = np.where(np.abs(lw_net) < 1.e-10, 0, lw_net) out['radlw'] = Data(x, y, -lw_net, 'W m-2', info='positive upward') # downward lw: out['dlwrf'] = Data(x, y, -lw_down, 'W m-2', info='negative... downward') # U and V wind speed 10m if not quiet: print(' --> U and V wind') #x,y,uwnd = gribu.getvar(fname,'u',tags=':10 m',lons=xlim,lats=ylim) #x,y,vwnd = gribu.getvar(fname,'v',tags=':10 m',lons=xlim,lats=ylim) x, y, uwnd = gribu.getvar(fname, '10u', lons=xlim, lats=ylim) x, y, vwnd = gribu.getvar(fname, '10v', lons=xlim, lats=ylim) if not quiet: print(' --> calc wind speed and stress') speed = np.sqrt(uwnd**2 + vwnd**2) taux, tauy = air_sea.wind_stress(uwnd, vwnd) out['wspd'] = Data(x, y, speed, 'm s-1') out['uwnd'] = Data(x, y, uwnd, 'm s-1') out['vwnd'] = Data(x, y, vwnd, 'm s-1') out['sustr'] = Data(x, y, taux, 'Pa') out['svstr'] = Data(x, y, tauy, 'Pa') # Cloud cover [0--100 --> 0--1]: if not quiet: print(' --> Cloud cover') #x,y,clouds = gribu.getvar(fname,'cloud cover',lons=xlim,lats=ylim) x, y, clouds = gribu.getvar(fname, 'tcc', lons=xlim, lats=ylim) if clouds is False: if not quiet: print('CALC clouds from LW,TAIR,TSEA and RH') # first get sst (maybe already done to calc lw_up) try: sst except: if not quiet: print(' get TSEA') if isPygrib: #x,y,sst=gribu.getvar(fname,'temperature',tags='surface',lons=xlim,lats=ylim) # K x, y, sst = gribu.getvar(fname, 't', lons=xlim, lats=ylim) # K else: x, y, sst = gribu.getvar(fname, 'temperature', tags='water surface', lons=xlim, lats=ylim) # K clouds = air_sea.cloud(lw_net, sst - 273.15, tair, rhum, 'net') else: clouds = clouds / 100. out['cloud'] = Data(x, y, clouds, 'fraction (0--1)') return out
def gfs_file_data(fname,xlim=False,ylim=False,quiet=False): ''' Returns bulk data from one GFS file ''' # the way to ectract differes if using pygrib or grib2 ! so check first: try: import pygrib isPygrib=True except: isPygrib=False out={} # T air 2m [K->C] if not quiet: print(' --> T air') if isPygrib: #x,y,tair=gribu.getvar(fname,'temperature',tags=(':2 metre',),lons=xlim,lats=ylim) #newest gribu: x,y,tair=gribu.getvar(fname,'2t',lons=xlim,lats=ylim) else: x,y,tair=gribu.getvar(fname,'temperature',tags=(':2 m','TMP'),lons=xlim,lats=ylim) tair=tair-273.15 out['tair']=Data(x,y,tair,'C') # R humidity 2m [%-->0--1] if not quiet: print(' --> R humidity') if 0: # kg/kg x,y,rhum=gribu.getvar(fname,'humidity',tags=(':2 m','kg'),lons=xlim,lats=ylim) rhum=rhum/air_sea.qsat(tair) rhum=np.where(rhum>1.0,1.0,rhum) else: # % #x,y,rhum=gribu.getvar(fname,'humidity',tags=('2 m','%'),lons=xlim,lats=ylim) x,y,rhum=gribu.getvar(fname,'2r',lons=xlim,lats=ylim) rhum=rhum/100. out['rhum']=Data(x,y,rhum,'0--1') # surface pressure [Pa] if not quiet: print(' --> Surface pressure') #x,y,pres=gribu.getvar(fname,'pressure',tags='surface',lons=xlim,lats=ylim) x,y,pres=gribu.getvar(fname,'sp',lons=xlim,lats=ylim) out['pres']=Data(x,y,pres,'Pa') # P rate [kg m-2 s-1 -> cm/d] if not quiet: print(' --> P rate') #x,y,prate=gribu.getvar(fname,'precipitation rate',lons=xlim,lats=ylim) x,y,prate=gribu.getvar(fname,'prate',lons=xlim,lats=ylim) # Conversion kg m^-2 s^-1 to cm/day prate=prate*86400*100/1000. prate=np.where(abs(prate)<1.e-4,0,prate) out['prate']=Data(x,y,prate,'cm/d') # Net shortwave flux [W/m^2] if not quiet: print(' --> Net shortwave flux') if not quiet: print(' SW down') if isPygrib: #x,y,sw_down = gribu.getvar(fname,'',tags='Downward short-wave radiation flux',lons=xlim,lats=ylim) x,y,sw_down = gribu.getvar(fname,'dswrf',lons=xlim,lats=ylim) else: x,y,sw_down = gribu.getvar(fname,'downward short-wave',lons=xlim,lats=ylim) if not quiet: print(' SW up') #x,y,sw_up = gribu.getvar(fname,'',tags='Upward short-wave radiation flux',lons=xlim,lats=ylim) x,y,sw_up = gribu.getvar(fname,'uswrf',lons=xlim,lats=ylim) if sw_up is False: if not quiet: print(' SW up not found: using albedo') #x,y,albedo = gribu.getvar(fname,'albedo',lons=xlim,lats=ylim) x,y,albedo = gribu.getvar(fname,'al',lons=xlim,lats=ylim) albedo=albedo/100. sw_net=sw_down*(1-albedo) else: sw_net=sw_down-sw_up sw_net=np.where(sw_net<1.e-10,0,sw_net) out['radsw']=Data(x,y,sw_net,'W m-2',info='positive downward') # Net longwave flux [W/m^2] if not quiet: print(' --> Net longwave flux') if not quiet: print(' LW down') if isPygrib: #x,y,lw_down = gribu.getvar(fname,'',tags='Downward long-wave radiation flux',lons=xlim,lats=ylim) x,y,lw_down = gribu.getvar(fname,'dlwrf',lons=xlim,lats=ylim) else: x,y,lw_down = gribu.getvar(fname,'downward long-wave',lons=xlim,lats=ylim) if not quiet: print(' LW up') #x,y,lw_up = gribu.getvar(fname,'',tags='Upward long-wave radiation flux',lons=xlim,lats=ylim) x,y,lw_up = gribu.getvar(fname,'ulwrf',lons=xlim,lats=ylim) if lw_up is False: if not quiet: print(' LW up not found: using sst') if isPygrib: #x,y,sst=gribu.getvar(fname,'temperature',tags='surface',lons=xlim,lats=ylim) # K x,y,sst=gribu.getvar(fname,'t',lons=xlim,lats=ylim) # K else: x,y,sst=gribu.getvar(fname,'temperature',tags='water surface',lons=xlim,lats=ylim) # K lw_net=air_sea.lwhf(sst,lw_down) lw_up=lw_down-lw_net else: lw_net=lw_down-lw_up # ROMS convention: positive upward # GFS convention: positive downward --> * (-1) lw_net=np.where(np.abs(lw_net)<1.e-10,0,lw_net) out['radlw']=Data(x,y,-lw_net,'W m-2',info='positive upward') # downward lw: out['dlwrf']=Data(x,y,-lw_down,'W m-2',info='negative... downward') # U and V wind speed 10m if not quiet: print(' --> U and V wind') #x,y,uwnd = gribu.getvar(fname,'u',tags=':10 m',lons=xlim,lats=ylim) #x,y,vwnd = gribu.getvar(fname,'v',tags=':10 m',lons=xlim,lats=ylim) x,y,uwnd = gribu.getvar(fname,'10u',lons=xlim,lats=ylim) x,y,vwnd = gribu.getvar(fname,'10v',lons=xlim,lats=ylim) if not quiet: print(' --> calc wind speed and stress') speed = np.sqrt(uwnd**2+vwnd**2) taux,tauy=air_sea.wind_stress(uwnd,vwnd) out['wspd']=Data(x,y,speed,'m s-1') out['uwnd']=Data(x,y,uwnd,'m s-1') out['vwnd']=Data(x,y,vwnd,'m s-1') out['sustr']=Data(x,y,taux,'Pa') out['svstr']=Data(x,y,tauy,'Pa') # Cloud cover [0--100 --> 0--1]: if not quiet: print(' --> Cloud cover') #x,y,clouds = gribu.getvar(fname,'cloud cover',lons=xlim,lats=ylim) x,y,clouds = gribu.getvar(fname,'tcc',lons=xlim,lats=ylim) if clouds is False: if not quiet: print('CALC clouds from LW,TAIR,TSEA and RH') # first get sst (maybe already done to calc lw_up) try: sst except: if not quiet: print(' get TSEA') if isPygrib: #x,y,sst=gribu.getvar(fname,'temperature',tags='surface',lons=xlim,lats=ylim) # K x,y,sst=gribu.getvar(fname,'t',lons=xlim,lats=ylim) # K else: x,y,sst=gribu.getvar(fname,'temperature',tags='water surface',lons=xlim,lats=ylim) # K clouds=air_sea.cloud(lw_net,sst-273.15,tair,rhum,'net') else: clouds=clouds/100. out['cloud']=Data(x,y,clouds,'fraction (0--1)') return out
def wrf_file_data(file,quiet=False): ''' WRF data for ROMS ''' out={} # time: if not quiet: print ' --> get time' time=read_time(file) out['time']=time # lon,lat: if not quiet: print ' --> reading x,y' x=netcdf.use(file,'XLONG',**{'0': 0}) y=netcdf.use(file,'XLAT',**{'0': 0}) # tair [K-->C] if not quiet: print ' --> T air' tair=netcdf.use(file,'T2')-273.15 out['tair']=Data(x,y,tair,'Celsius') # R humidity [kg/kg --> 0--1] if not quiet: print ' --> R humidity from QV at 2m' wv=netcdf.use(file,'Q2') # water vapor mixing ratio at 2m rhum=wv/air_sea.qsat(tair) rhum[rhum>1]=1 out['rhum']=Data(x,y,rhum,'0--1') # surface pressure [Pa] if not quiet: print ' --> Surface pressure' pres=netcdf.use(file,'PSFC') out['pres']=Data(x,y,pres,'Pa') # P rate [mm --> cm day-1] if not quiet: print ' --> P rate (rainc+rainnc)' rainc = netcdf.use(file,'RAINC') rainnc = netcdf.use(file,'RAINNC') prate=rainc+rainnc if not quiet: print ' accum2avg...' prate=accum2avg(prate,dt=time[1]-time[0]) # mm s-1 conv= 0.1*86400 # from mm s-1 --> cm day-1 prate=prate*conv # cm day-1 prate[prate<0]=0 # interpolation errors may result in negative rain! out['prate']=Data(x,y,prate,'cm day-1') # LW, SW, latent, sensible signs: # positive (downward flux, heating) or negative (upward flux, cooling) #https://www.myroms.org/forum/viewtopic.php?f=1&t=2621 # Net shortwave flux [W m-2] if not quiet: print ' --> Net shortwave flux' sw_down=netcdf.use(file,'SWDOWN') albedo=netcdf.use(file,'ALBEDO') sw_net=sw_down*(1-albedo) out['radsw']=Data(x,y,sw_net,'W m-2',info='positive downward') # Net longwave flux [W m-2] if not quiet: print ' --> Net longwave flux' lw_down=netcdf.use(file,'GLW') # positive # sst needed: if not quiet: print ' --> SST for LW up' sst=netcdf.use(file,'SST') # K lw_net = air_sea.lwhf(sst,lw_down) # positive down # here vars have roms-agrif signs --> radlw is positive upward! #conversion to ROMS is done in surface.py out['radlw']=Data(x,y,-lw_net,'W m-2',info='positive upward') out['dlwrf']=Data(x,y,-lw_down,'W m-2',info='positive upward') # U and V wind speed 10m if not quiet: print ' --> U and V wind' uwnd=netcdf.use(file,'U10') vwnd=netcdf.use(file,'V10') if not quiet: print ' --> calc wind speed and stress' speed = np.sqrt(uwnd**2+vwnd**2) taux,tauy=air_sea.wind_stress(uwnd,vwnd) out['wspd']=Data(x,y,speed,'m s-1') out['uwnd']=Data(x,y,uwnd,'m s-1') out['vwnd']=Data(x,y,vwnd,'m s-1') out['sustr']=Data(x,y,taux,'Pa') out['svstr']=Data(x,y,tauy,'Pa') # Cloud cover [0--1]: if not quiet: print ' --> Cloud cover for LONGWAVE. Use LONGWAVE_OUT instead...' if 'CLDFRA' in netcdf.varnames(file): clouds=netcdf.use(file,'CLDFRA').sum(-3) clouds=np.where(clouds>1,1,clouds) else: if not quiet: print 'CLDFRA not found!! Using SST and air_sea.clouds' sst=netcdf.use(f,'SST') clouds=air_sea.clouds(lw_net,sst,tair,rhum,Wtype='net') out['cloud']=Data(x,y,clouds,'fraction (0--1)') return out