Exemplo n.º 1
0
async def list_stock_pool(plot=None, time_offset: int = 3):
    now = arrow.now().date()
    start = tf.day_shift(now, -time_offset)
    if plot is None:
        keys = await cache.sys.keys("plots.*.pool")
    else:
        keys = [f"plots.{plot}.pool"]

    results = []
    for key in keys:
        recs = await cache.sys.hgetall(key)
        data = []
        for k, v in recs.items():
            _frame, code = k.split(":")
            if len(_frame) == 8:
                frame = tf.int2date(int(_frame))
            else:
                frame = tf.int2time(int(_frame))

            if arrow.get(frame) < arrow.get(start):
                continue

            sec = Security(code)
            row = {"name": sec.display_name, "code": code, "frame": frame}
            row.update(json.loads(v))
            data.append(row)

        print(f"----------{key.lower()}----------")
        df = DataFrame(data=data)
        df.set_index('frame', inplace=True)
        display(df)

        results.append(df)

    return results
Exemplo n.º 2
0
async def list_momentum_pool(day_offset: int = 1, sort_by='y'):
    start = tf.day_shift(arrow.now().date(), -day_offset)
    key = f"plots.momentum.pool"
    recs = await cache.sys.hgetall(key)
    data = []
    for k, v in recs.items():
        frame, code = k.split(":")
        if arrow.get(frame) < arrow.get(start):
            continue

        sec = Security(code)
        v = json.loads(v)

        frame_type = FrameType(v.get("frame_type"))
        fired = tf.int2time(frame) if frame_type in tf.minute_level_frames else \
            tf.int2date(frame)
        data.append({
            "name": sec.display_name,
            "code": code,
            "fired": fired,
            "frame": frame_type.value,
            "y": round(v.get("y"), 2),
            "vx": round(v.get("vx"), 1),
            "a": round(v.get("a"), 4),
            "b": round(v.get("b"), 4),
            "err": round(v.get("err"), 4)
        })

    if len(data) == 0:
        print("no data")
    else:
        df = DataFrame(data)
        df.set_index('fired', inplace=True)
        display(df.sort_values(sort_by))
Exemplo n.º 3
0
    async def scan(self,
                   start: Frame,
                   end: Frame,
                   signal_func: Callable,
                   frame_type: FrameType = FrameType.DAY):
        frames = tf.get_frames(start, end, frame_type)
        results = []
        for frame in frames:
            if frame_type in tf.day_level_frames:
                frame = tf.int2date(frame)
            else:
                frame = tf.int2time(frame)
            result = await signal_func(frame,
                                       frame_type=frame_type,
                                       win=60,
                                       adv=0.0)
            results.extend(result)

        df = DataFrame(data=results, columns=['date', 'code', 'pc'])
        df.to_csv("/tmp/hrp.csv")
Exemplo n.º 4
0
    async def test_test_signal(self):
        plot = Momentum()

        results = {}
        async def on_trade_signal(results, msg):
            results[msg.get('fire_on')] = {
                "flag": msg.get('flag'),
                "frame_type": msg.get('frame_type')
            }

        emit.register(Events.sig_trade, functools.partial(on_trade_signal, results))
        for frame in tf.get_frames(arrow.get('2020-8-24 11:00'),
                                   arrow.get('2020-8-28 15:00'),
                                   FrameType.MIN30):
            frame = tf.int2time(frame)
            await plot.evaluate('000001.XSHG', '30m', frame, flag='both')

        self.assertDictEqual({
            202008261000: {"flag": "short", "frame_type": '30m'},
            202008271130: {"flag": "long", "frame_type": '30m'}
        }, results)
Exemplo n.º 5
0
    async def scan(self,
                   start: Frame,
                   end: Frame,
                   signal_func: Callable,
                   frame_type: FrameType = FrameType.DAY):
        frames = tf.get_frames(start, end, frame_type)
        results = []
        for frame in frames:
            if frame_type in tf.day_level_frames:
                frame = tf.int2date(frame)
            else:
                frame = tf.int2time(frame)
            result = await signal_func(frame, frame_type=frame_type)
            results.extend(result)

        df = DataFrame(data=results,
                       columns=[
                           'date', 'code', 't1', 't2', 't3', 't4', 'slope_60',
                           'pct', "fired"
                       ])
        df.to_csv("/tmp/two.csv")
Exemplo n.º 6
0
    def test_get_frames(self):
        days = [
            20200117,
            20200120,
            20200121,
            20200122,
            20200123,
            20200203,
            20200204,
            20200205,
            20200206,
            20200207,
            20200210,
            20200211,
        ]

        for i in range(len(days)):
            start = tf.int2date(days[0])
            end = tf.int2date(days[i])

            actual = tf.get_frames(start, end, FrameType.DAY)
            logger.debug(
                "get_frames(%s, %s, %s)->%s", start, end, FrameType.DAY, actual
            )
            self.assertListEqual(days[0 : i + 1], list(actual))

        X = [
            (202002041030, 1, [202002041030]),
            (202002041030, 2, [202002041000, 202002041030]),
            (202002041030, 3, [202002031500, 202002041000, 202002041030]),
            (202002041030, 4, [202002031430, 202002031500, 202002041000, 202002041030]),
            (
                202002041030,
                5,
                [202002031400, 202002031430, 202002031500, 202002041000, 202002041030],
            ),
            (
                202002041030,
                6,
                [
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                7,
                [
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                8,
                [
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                9,
                [
                    202002031030,
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                10,
                [
                    202002031000,
                    202002031030,
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                11,
                [
                    202001231500,
                    202002031000,
                    202002031030,
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
        ]

        for i, (end, n, expected) in enumerate(X):
            start = tf.int2time(expected[0])
            end = tf.int2time(end)
            actual = tf.get_frames(start, end, FrameType.MIN30)
            logger.debug(
                "get_frames(%s, %s, %s)->%s", start, end, FrameType.MIN30, actual
            )
            self.assertListEqual(expected, actual)
Exemplo n.º 7
0
    def test_get_frames_by_count(self):
        days = [
            20200117,
            20200120,
            20200121,
            20200122,
            20200123,
            20200203,
            20200204,
            20200205,
            20200206,
            20200207,
            20200210,
            20200211,
        ]

        for i in range(len(days)):
            end, n = tf.int2date(days[i]), i + 1
            expected = days[:n]
            actual = tf.get_frames_by_count(end, n, FrameType.DAY)
            logger.debug(
                "get_frames_by_count(%s, %s, %s)->%s", end, n, FrameType.DAY, actual
            )
            self.assertListEqual(expected, list(actual))

        X = [
            (202002041030, 1, [202002041030]),
            (202002041030, 2, [202002041000, 202002041030]),
            (202002041030, 3, [202002031500, 202002041000, 202002041030]),
            (202002041030, 4, [202002031430, 202002031500, 202002041000, 202002041030]),
            (
                202002041030,
                5,
                [202002031400, 202002031430, 202002031500, 202002041000, 202002041030],
            ),
            (
                202002041030,
                6,
                [
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                7,
                [
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                8,
                [
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                9,
                [
                    202002031030,
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                10,
                [
                    202002031000,
                    202002031030,
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
            (
                202002041030,
                11,
                [
                    202001231500,
                    202002031000,
                    202002031030,
                    202002031100,
                    202002031130,
                    202002031330,
                    202002031400,
                    202002031430,
                    202002031500,
                    202002041000,
                    202002041030,
                ],
            ),
        ]
        for i, (end, n, expected) in enumerate(X):
            end = tf.int2time(end)
            actual = tf.get_frames_by_count(end, n, FrameType.MIN30)
            logger.debug(
                "get_frames_by_count(%s, %s, %s)->%s", end, n, FrameType.DAY, actual
            )
            self.assertListEqual(expected, actual)

        actual = tf.get_frames_by_count(datetime.date(2020, 2, 12), 3, FrameType.MONTH)
        self.assertListEqual([20191129, 20191231, 20200123], actual.tolist())

        actual = tf.get_frames_by_count(datetime.date(2020, 2, 12), 3, FrameType.WEEK)
        self.assertListEqual([20200117, 20200123, 20200207], actual.tolist())
Exemplo n.º 8
0
    async def list_stock_pool(self,
                              frames: int,
                              frame_types: List[FrameType] = None):
        key = "plots.momentum.pool"

        recs = await cache.sys.hgetall(key)
        items = []
        now = arrow.now()
        for k, v in recs.items():
            frame, code = k.split(":")

            sec = Security(code)
            v = json.loads(v)

            frame_type = FrameType(v.get("frame_type"))

            if frame_type not in frame_types:
                continue

            latest_frame = tf.floor(now, frame_type)
            start = tf.shift(latest_frame, -frames, frame_type)

            fired = tf.int2time(frame) if frame_type in tf.minute_level_frames else \
                tf.int2date(frame)

            if fired < start:
                continue

            items.append({
                "name": sec.display_name,
                "code": code,
                "fired": str(fired),
                "frame": frame_type.value,
                "y": round(v.get("y"), 2),
                "vx": round(v.get("vx"), 1),
                "a": round(v.get("a"), 4),
                "b": round(v.get("b"), 4),
                "err": round(v.get("err"), 4)
            })

        return {
            "name":
            self.display_name,
            "plot":
            self.name,
            "items":
            items,
            "headers": [{
                "text": '名称',
                "value": 'name'
            }, {
                "text": '代码',
                "value": 'code'
            }, {
                "text": '信号时间',
                "value": 'fired'
            }, {
                "text": '预测涨幅',
                "value": 'y'
            }, {
                "text": '动能',
                "value": 'a'
            }, {
                "text": '势能',
                "value": 'b'
            }, {
                "text": '周期',
                "value": 'frame'
            }, {
                "text": '底部距离(周期)',
                "value": 'vx'
            }, {
                "text": '拟合误差',
                "value": 'err'
            }]
        }